working on multiline eqs in docs
This commit is contained in:
parent
7c5e0f05e1
commit
a39ceffec5
@ -66,10 +66,89 @@ Model Formulation
|
||||
****************************
|
||||
|
||||
|
||||
The relaxation parameters are determined from the relaxation time:
|
||||
Two LBEs are constructed to model the mass transport, incorporating the anti-diffusion
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{eqnarray}
|
||||
A_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) &=& w_q N_a \Big[1 + \frac{\bm{u} \cdot \bm{\xi}_q}{c_s^2}
|
||||
+ \beta \frac{N_b}{N_a+N_b} \bm{n} \cdot \bm{\xi}_q\Big] \;
|
||||
\\
|
||||
B_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) &=&
|
||||
w_q N_b \Big[1 + \frac{\bm{u} \cdot \bm{\xi}_q}{c_s^2}
|
||||
- \beta \frac{N_a}{N_a+N_b} \bm{n} \cdot \bm{\xi}_q\Big]\;,
|
||||
\\end{eqnarray}
|
||||
$$
|
||||
|
||||
The number density is obtained directly for each fluid as the sum of the mass transport distributions
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
N_a = \sum_q A_q\;, \quad N_b = \sum_q B_q\;
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
|
||||
The phase indicator field is then defined as
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
\phi = \frac{N_a-N_b}{N_a+N_b}
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
The local fluid viscosity and density are determined based on linear interpolation
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
\nu = \frac{(1+\phi) \nu_n}{2}+\frac{(1-\phi) \nu_w}{2} \;,
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
\rho_0 = \frac{(1+\phi) \rho_n}{2}+ \frac{(1-\phi) \rho_w}{2} \;,
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
These values are then used to model the momentum transport.
|
||||
The LBE governing momentum transport is defined based on a MRT relaxation process with additional
|
||||
terms to account for the interfacial stresses
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
f_q(\bm{x}_i + \bm{\xi}_q \delta t,t + \delta t) - f_q(\bm{x}_i,t) = \sum^{Q-1}_{k=0} M^{-1}_{qk} \lambda_{k} (m_k^{eq}-m_k) + t_q \bm{\xi}_q \cdot \frac{\bm{F}}{c_s^2} \;,
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
|
||||
The moments are linearly indepdendent
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
m_k = \sum_{q=0}^{18} M_{qk} f_q\;.
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
|
||||
The relaxation parameters are determined from the relaxation time:
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{eqnarray}
|
||||
@ -94,7 +173,25 @@ The non-zero equilibrium moments are defined as
|
||||
\\end{eqnarray}
|
||||
$$
|
||||
|
||||
where the color gradient is determined from the phase indicator field
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
\textbf{C}=\nabla \phi\;.
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
and the unit normal vector is
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
\bm{n} = \frac{\textbf{C}}{|\textbf{C}|}\;.
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
****************************
|
||||
Boundary Conditions
|
||||
|
Loading…
Reference in New Issue
Block a user