refactor color bubble
This commit is contained in:
@@ -98,442 +98,18 @@ int main(int argc, char **argv)
|
||||
MPI_Comm_size(comm,&nprocs);
|
||||
int check;
|
||||
{
|
||||
// parallel domain size (# of sub-domains)
|
||||
int nprocx,nprocy,nprocz;
|
||||
int iproc,jproc,kproc;
|
||||
|
||||
|
||||
if (rank == 0){
|
||||
printf("********************************************************\n");
|
||||
printf("Running Color Model: TestColor \n");
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
// BGK Model parameters
|
||||
string FILENAME;
|
||||
unsigned int nBlocks, nthreads;
|
||||
int timestepMax, interval;
|
||||
double Fx,Fy,Fz,tol;
|
||||
// Domain variables
|
||||
double Lx,Ly,Lz;
|
||||
int nspheres;
|
||||
int Nx,Ny,Nz;
|
||||
int i,j,k,n;
|
||||
int dim = 50;
|
||||
//if (rank == 0) printf("dim=%d\n",dim);
|
||||
int timestep = 0;
|
||||
int timesteps = 100;
|
||||
int centralNode = 2;
|
||||
|
||||
double tauA = 1.0;
|
||||
double tauB = 1.0;
|
||||
double rhoA = 1.0;
|
||||
double rhoB = 1.0;
|
||||
double alpha = 0.001;
|
||||
double beta = 0.95;
|
||||
|
||||
double tau = 1.0;
|
||||
double mu=(tau-0.5)/3.0;
|
||||
double rlx_setA=1.0/tau;
|
||||
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
||||
|
||||
Fx = Fy = 0.f;
|
||||
Fz = 0.f;
|
||||
|
||||
if (rank==0){
|
||||
//.......................................................................
|
||||
// Reading the domain information file
|
||||
//.......................................................................
|
||||
ifstream domain("Domain.in");
|
||||
if (domain.good()){
|
||||
domain >> nprocx;
|
||||
domain >> nprocy;
|
||||
domain >> nprocz;
|
||||
domain >> Nx;
|
||||
domain >> Ny;
|
||||
domain >> Nz;
|
||||
domain >> nspheres;
|
||||
domain >> Lx;
|
||||
domain >> Ly;
|
||||
domain >> Lz;
|
||||
}
|
||||
else if (nprocs==1){
|
||||
nprocx=nprocy=nprocz=1;
|
||||
Nx=3; Ny = 1;
|
||||
Nz = 1;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==2){
|
||||
nprocx=2; nprocy=1;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
Nx = dim; Ny = dim; Nz = dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==4){
|
||||
nprocx=nprocy=2;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==8){
|
||||
nprocx=nprocy=nprocz=2;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
//.......................................................................
|
||||
}
|
||||
// **************************************************************
|
||||
// Broadcast simulation parameters from rank 0 to all other procs
|
||||
MPI_Barrier(comm);
|
||||
//.................................................
|
||||
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
||||
//.................................................
|
||||
MPI_Barrier(comm);
|
||||
// **************************************************************
|
||||
// **************************************************************
|
||||
|
||||
if (nprocs != nprocx*nprocy*nprocz){
|
||||
printf("nprocx = %i \n",nprocx);
|
||||
printf("nprocy = %i \n",nprocy);
|
||||
printf("nprocz = %i \n",nprocz);
|
||||
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
|
||||
}
|
||||
|
||||
if (rank==0){
|
||||
printf("********************************************************\n");
|
||||
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
MPI_Barrier(comm);
|
||||
|
||||
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
|
||||
int BoundaryCondition=0;
|
||||
|
||||
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
|
||||
|
||||
Nx += 2;
|
||||
Ny += 2;
|
||||
Nz += 2;
|
||||
int N = Nx*Ny*Nz;
|
||||
|
||||
//.......................................................................
|
||||
// Assign the phase ID field
|
||||
//.......................................................................
|
||||
char LocalRankString[8];
|
||||
sprintf(LocalRankString,"%05d",rank);
|
||||
char LocalRankFilename[40];
|
||||
sprintf(LocalRankFilename,"ID.%05i",rank);
|
||||
|
||||
for (k=0;k<Nz;k++){
|
||||
for (j=0;j<Ny;j++){
|
||||
for (i=0;i<Nx;i++){
|
||||
n = k*Nx*Ny + j*Nx + i;
|
||||
Dm.id[n]=1;
|
||||
}
|
||||
if ( argc < 2 ) {
|
||||
std::cerr << "Invalid number of arguments, no input file specified\n";
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
Dm.CommInit(comm);
|
||||
|
||||
|
||||
for (k=0;k<Nz;k++){
|
||||
for (j=0;j<Ny;j++){
|
||||
for (i=0;i<Nx;i++){
|
||||
n = k*Nx*Ny + j*Nx + i;
|
||||
Dm.id[n]=0;
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("rank=%i, %i,%i,%i \n",rank,Dm.iproc(),Dm.jproc(),Dm.jproc());
|
||||
// Initialize a bubble
|
||||
int BubbleRadius=Nx/3;
|
||||
int center_x = (Nx-2)*nprocx/2;
|
||||
int center_y = (Ny-2)*nprocy/2;
|
||||
int center_z = (Nz-2)*nprocz/2;
|
||||
if (rank==0) printf("Bubble radius = %i, center=%i,%i,%i \n",BubbleRadius,center_x,center_y,center_z);
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny + j*Nx + i;
|
||||
int iglobal= i+(Nx-2)*Dm.iproc();
|
||||
int jglobal= j+(Ny-2)*Dm.jproc();
|
||||
int kglobal= k+(Nz-2)*Dm.kproc();
|
||||
|
||||
// Initialize phase position field for parallel bubble test
|
||||
if ((iglobal-center_x)*(iglobal-center_x)
|
||||
+(jglobal-center_y)*(jglobal-center_y)
|
||||
+(kglobal-center_z)*(kglobal-center_z) < BubbleRadius*BubbleRadius){
|
||||
Dm.id[n] = 2;
|
||||
}
|
||||
else{
|
||||
Dm.id[n]=1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//.......................................................................
|
||||
// Compute the media porosity, assign phase labels and solid composition
|
||||
//.......................................................................
|
||||
double sum;
|
||||
double sum_local=0.0, porosity;
|
||||
int Np=0; // number of local pore nodes
|
||||
double *PhaseLabel;
|
||||
PhaseLabel = new double[N];
|
||||
Dm.AssignComponentLabels(PhaseLabel);
|
||||
//.......................................................................
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
sum_local+=1.0;
|
||||
Np++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
|
||||
porosity = sum*iVol_global;
|
||||
if (rank==0) printf("Media porosity = %f \n",porosity);
|
||||
if (rank==0) printf ("Create ScaLBL_Communicator \n");
|
||||
MPI_Barrier(comm);
|
||||
|
||||
// Create a communicator for the device (will use optimized layout)
|
||||
ScaLBL_Communicator ScaLBL_Comm(Dm);
|
||||
//Create a second communicator based on the regular data layout
|
||||
ScaLBL_Communicator ScaLBL_Comm_Regular(Dm);
|
||||
|
||||
//...........device phase ID.................................................
|
||||
if (rank==0) printf ("Copying phase ID to device \n");
|
||||
char *ID;
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
|
||||
// Copy to the device
|
||||
ScaLBL_CopyToDevice(ID, Dm.id, N);
|
||||
//...........................................................................
|
||||
|
||||
if (rank==0){
|
||||
printf("Total domain size = %i \n",N);
|
||||
printf("Reduced domain size = %i \n",Np);
|
||||
}
|
||||
|
||||
// LBM variables
|
||||
if (rank==0) printf ("Set up the neighborlist \n");
|
||||
|
||||
int neighborSize=18*Np*sizeof(int);
|
||||
int *neighborList;
|
||||
IntArray Map(Nx,Ny,Nz);
|
||||
neighborList= new int[18*Np];
|
||||
|
||||
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
|
||||
MPI_Barrier(comm);
|
||||
|
||||
//......................device distributions.................................
|
||||
int dist_mem_size = Np*sizeof(double);
|
||||
if (rank==0) printf ("Allocating distributions \n");
|
||||
|
||||
int *NeighborList;
|
||||
int *dvcMap;
|
||||
// double *f_even,*f_odd;
|
||||
double *fq, *Aq, *Bq;
|
||||
double *Den, *Phi;
|
||||
double *ColorGrad;
|
||||
double *Vel;
|
||||
double *Pressure;
|
||||
|
||||
//...........................................................................
|
||||
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
|
||||
|
||||
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Vel, 3*sizeof(double)*Np);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
|
||||
|
||||
//...........................................................................
|
||||
// Update GPU data structures
|
||||
if (rank==0) printf ("Setting up device map and neighbor list \n");
|
||||
int *TmpMap;
|
||||
TmpMap=new int[Np];
|
||||
for (k=1; k<Nz-1; k++){
|
||||
for (j=1; j<Ny-1; j++){
|
||||
for (i=1; i<Nx-1; i++){
|
||||
int idx=Map(i,j,k);
|
||||
if (!(idx < 0))
|
||||
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
|
||||
}
|
||||
}
|
||||
}
|
||||
//for (int idx=0; idx<Np; idx++) printf("Map=%i\n",TmpMap[idx]);
|
||||
|
||||
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
|
||||
ScaLBL_DeviceBarrier();
|
||||
delete [] TmpMap;
|
||||
|
||||
// copy the neighbor list
|
||||
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
|
||||
// initialize phi based on PhaseLabel (include solid component labels)
|
||||
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
|
||||
//...........................................................................
|
||||
|
||||
if (rank==0) printf ("Initializing distributions \n");
|
||||
// Initialize the phase field and variables
|
||||
ScaLBL_D3Q19_Init(fq, Np);
|
||||
if (rank==0) printf ("Initializing phase field \n");
|
||||
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, 0, ScaLBL_Comm.last_interior, Np);
|
||||
|
||||
//************ MAIN ITERATION LOOP (timing communications)***************************************
|
||||
|
||||
if (rank==0) printf("Beginning AA timesteps...\n");
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
if (rank==0) printf("No. of timesteps for timing: %i \n", timesteps);
|
||||
|
||||
//.......create and start timer............
|
||||
double starttime,stoptime,cputime;
|
||||
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
starttime = MPI_Wtime();
|
||||
//timesteps=4;
|
||||
while (timestep < timesteps) {
|
||||
|
||||
// ODD TIMESTEP
|
||||
// Compute the Phase indicator field
|
||||
// Read for Aq, Bq happens in this routine (requires communication)
|
||||
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
|
||||
|
||||
// Compute the Color Gradient
|
||||
ScaLBL_Comm_Regular.SendHalo(Phi);
|
||||
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, ScaLBL_Comm.next, Np, Np, Nx, Ny, Nz);
|
||||
ScaLBL_Comm_Regular.RecvHalo(Phi);
|
||||
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, 0,ScaLBL_Comm.next, Np, Nx, Ny, Nz);
|
||||
|
||||
// Perform the collision operation
|
||||
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
|
||||
// ScaLBL_D3Q19_AAodd_ColorMomentum(NeighborList, fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
|
||||
// alpha, beta, Fx, Fy, Fz,ScaLBL_Comm.next, Np, Np);
|
||||
// ScaLBL_D3Q19_AAodd_ColorMass(NeighborList, Aq, Bq, Den, Vel, ColorGrad, beta, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
|
||||
// ScaLBL_D3Q19_AAodd_ColorMomentum(NeighborList, fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
|
||||
// alpha, beta, Fx, Fy, Fz, 0, ScaLBL_Comm.next, Np);
|
||||
// ScaLBL_D3Q19_AAodd_ColorMass(NeighborList, Aq, Bq, Den, Vel, ColorGrad, beta, 0, ScaLBL_Comm.next, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
|
||||
// EVEN TIMESTEP
|
||||
// Compute the Phase indicator field
|
||||
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
|
||||
|
||||
// Compute the Color Gradient
|
||||
ScaLBL_Comm_Regular.SendHalo(Phi);
|
||||
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, ScaLBL_Comm.next, Np, Np, Nx, Ny, Nz);
|
||||
ScaLBL_Comm_Regular.RecvHalo(Phi);
|
||||
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, 0, ScaLBL_Comm.next, Np, Nx, Ny, Nz);
|
||||
|
||||
// Perform the collision operation
|
||||
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
|
||||
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
|
||||
// ScaLBL_D3Q19_AAeven_ColorMomentum(fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
|
||||
// alpha, beta, Fx, Fy, Fz, ScaLBL_Comm.next, Np, Np);
|
||||
// ScaLBL_D3Q19_AAeven_ColorMass(Aq, Bq, Den, Vel, ColorGrad, beta, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
|
||||
// ScaLBL_D3Q19_AAeven_ColorMomentum(fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
|
||||
// alpha, beta, Fx, Fy, Fz, 0, ScaLBL_Comm.next, Np);
|
||||
// ScaLBL_D3Q19_AAeven_ColorMass(Aq, Bq, Den, Vel, ColorGrad, beta, 0, ScaLBL_Comm.next, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
//************************************************************************
|
||||
|
||||
}
|
||||
//************************************************************************
|
||||
stoptime = MPI_Wtime();
|
||||
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
|
||||
cputime = stoptime - starttime;
|
||||
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
|
||||
double MLUPS = double(Np*timestep)/cputime/1000000;
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
if (rank==0) printf("CPU time = %f \n", cputime);
|
||||
if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
|
||||
MLUPS *= nprocs;
|
||||
if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
|
||||
// Number of memory references for color model
|
||||
double MemoryRefs = double(Np)*(77*8+(9+7+7)*4); // extra memory refs to read from neighborlist (every other timestep)
|
||||
// number of memory references for the swap algorithm - GigaBytes / second
|
||||
if (rank==0) printf("DRAM bandwidth (per process)= %f GB/sec \n",MemoryRefs*timestep/1e9/cputime);
|
||||
// Report bandwidth in Gigabits per second
|
||||
// communication bandwidth includes both send and recieve
|
||||
if (rank==0) printf("Communication bandwidth (per process)= %f Gbit/sec \n",ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
|
||||
if (rank==0) printf("Aggregated communication bandwidth = %f Gbit/sec \n",nprocs*ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
|
||||
|
||||
double *VEL;
|
||||
VEL= new double [3*Np];
|
||||
int SIZE=3*Np*sizeof(double);
|
||||
ScaLBL_D3Q19_Momentum(fq,Vel,Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
ScaLBL_CopyToHost(&VEL[0],&Vel[0],SIZE);
|
||||
|
||||
sum_local=0.f;
|
||||
sum = 0.f;
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
int idx = Map(i,j,k);
|
||||
sum_local+=VEL[2*Np+idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
|
||||
double PoreVel = sum*iVol_global;
|
||||
if (rank==0) printf("Velocity = %f \n",PoreVel);
|
||||
|
||||
/*
|
||||
double *PHASE;
|
||||
PHASE= new double [Nx*Ny*Nz];
|
||||
SIZE=Nx*Ny*Nz*sizeof(double);
|
||||
ScaLBL_CopyToHost(&PHASE[0],&Phi[0],SIZE);
|
||||
|
||||
FILE *OUTFILE;
|
||||
sprintf(LocalRankFilename,"Phase.%05i.raw",rank);
|
||||
OUTFILE = fopen(LocalRankFilename,"wb");
|
||||
fwrite(PHASE,8,N,OUTFILE);
|
||||
fclose(OUTFILE);
|
||||
*/
|
||||
|
||||
auto filename = argv[1];
|
||||
ScaLBL_ColorModel() ColorModel;
|
||||
ColorModel.ReadParams(filename);
|
||||
}
|
||||
// ****************************************************
|
||||
MPI_Barrier(comm);
|
||||
|
||||
Reference in New Issue
Block a user