Added a bunch of tests from ScaLBL

This commit is contained in:
James E McClure
2018-01-24 16:41:40 -05:00
parent ec9d7b146f
commit bcd54408d2
11 changed files with 4931 additions and 0 deletions

View File

@@ -37,6 +37,15 @@ ADD_LBPM_TEST( pmmc_cylinder )
ADD_LBPM_TEST( TestTorus )
ADD_LBPM_TEST( TestFluxBC )
ADD_LBPM_TEST( TestMap )
ADD_LBPM_TEST( TestMRT )
ADD_LBPM_TEST( TestColorGrad )
ADD_LBPM_TEST( TestColorMassBounceback )
ADD_LBPM_TEST( TestPressVel )
ADD_LBPM_TEST( TestPoiseuille )
ADD_LBPM_TEST( TestForceMoments )
ADD_LBPM_TEST( TestForceD3Q19 )
ADD_LBPM_TEST( TestMomentsD3Q19 )
ADD_LBPM_TEST( TestInterfaceSpeed )
ADD_LBPM_TEST( TestSphereCurvature )
#ADD_LBPM_TEST_1_2_4( TestTwoPhase )
@@ -57,6 +66,9 @@ ENDIF()
# Sample test that will run with 1, 2, and 4 processors, failing with 4 or more procs
ADD_LBPM_TEST_1_2_4( hello_world )
ADD_LBPM_TEST_1_2_4( TestColorBubble )
ADD_LBPM_TEST_1_2_4( TestColorSquareTube )
SET_TESTS_PROPERTIES( hello_world PROPERTIES ENVIRONMENT "MPICH_RDMA_ENABLED_CUDA=0")
IF ( USE_MPI )
SET_TESTS_PROPERTIES( hello_world_2procs PROPERTIES ENVIRONMENT "MPICH_RDMA_ENABLED_CUDA=0")

577
tests/TestColorBubble.cpp Normal file
View File

@@ -0,0 +1,577 @@
//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI_Helpers.h"
using namespace std;
inline void AssignComponentLabels(char *id, double *phase, int Nx, int Ny, int Nz, int rank, MPI_Comm comm)
{
int NLABELS=0;
char VALUE=0;
double AFFINITY=0.f;
vector <char> Label;
vector <double> Affinity;
// Read the labels
if (rank==0){
printf("Component labels:\n");
ifstream iFILE("ComponentLabels.csv");\
if (iFILE.good()){
while (!iFILE.eof()){
iFILE>>VALUE;
iFILE>>AFFINITY;
Label.push_back(VALUE);
Affinity.push_back(AFFINITY);
NLABELS++;
printf("%i %f\n",VALUE,AFFINITY);
}
}
else{
printf("Using default labels: Solid (0 --> -1.0), NWP (1 --> 1.0), WP (2 --> -1.0)\n");
// Set default values
VALUE=0; AFFINITY=-1.0;
Label.push_back(VALUE);
Affinity.push_back(AFFINITY);
NLABELS++;
printf("%i %f\n",VALUE,AFFINITY);
VALUE=1; AFFINITY=1.0;
Label.push_back(VALUE);
Affinity.push_back(AFFINITY);
NLABELS++;
printf("%i %f\n",VALUE,AFFINITY);
VALUE=2; AFFINITY=-1.0;
Label.push_back(VALUE);
Affinity.push_back(AFFINITY);
NLABELS++;
printf("%i %f\n",VALUE,AFFINITY);
}
}
// Broadcast the list
MPI_Bcast(&NLABELS,1,MPI_INT,0,comm);
// Copy into contiguous buffers
char *LabelList;
double * AffinityList;
LabelList=new char[NLABELS];
AffinityList=new double[NLABELS];
MPI_Bcast(&LabelList,NLABELS,MPI_CHAR,0,comm);
MPI_Bcast(&AffinityList,NLABELS,MPI_DOUBLE,0,comm);
// Assign the labels
for (int k=0;k<Nz;k++){
for (int j=0;j<Ny;j++){
for (int i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
VALUE=id[n];
// Assign the affinity from the paired list
for (int idx=0; idx < NLABELS; idx++){
if (VALUE == LabelList[idx]){
AFFINITY=AffinityList[idx];
idx = NLABELS;
}
}
phase[n] = AFFINITY;
}
}
}
}
//***************************************************************************************
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
int check;
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
if (rank == 0){
printf("********************************************************\n");
printf("Running Color Model: TestColor \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
unsigned int nBlocks, nthreads;
int timestepMax, interval;
double Fx,Fy,Fz,tol;
// Domain variables
double Lx,Ly,Lz;
int nspheres;
int Nx,Ny,Nz;
int i,j,k,n;
int dim = 50;
//if (rank == 0) printf("dim=%d\n",dim);
int timestep = 0;
int timesteps = 100;
int centralNode = 2;
double tauA = 1.0;
double tauB = 1.0;
double rhoA = 1.0;
double rhoB = 1.0;
double alpha = 0.001;
double beta = 0.95;
double tau = 1.0;
double mu=(tau-0.5)/3.0;
double rlx_setA=1.0/tau;
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
Fx = Fy = 0.f;
Fz = 0.f;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
if (domain.good()){
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
}
else if (nprocs==1){
nprocx=nprocy=nprocz=1;
Nx=3; Ny = 1;
Nz = 1;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==2){
nprocx=2; nprocy=1;
nprocz=1;
Nx=Ny=Nz=dim;
Nx = dim; Ny = dim; Nz = dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==4){
nprocx=nprocy=2;
nprocz=1;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==8){
nprocx=nprocy=nprocz=2;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
//.......................................................................
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// **************************************************************
// **************************************************************
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
MPI_Barrier(comm);
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
int BoundaryCondition=0;
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
//.......................................................................
// Assign the phase ID field
//.......................................................................
char LocalRankString[8];
sprintf(LocalRankString,"%05d",rank);
char LocalRankFilename[40];
sprintf(LocalRankFilename,"ID.%05i",rank);
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny + j*Nx + i;
Dm.id[n]=1;
}
}
}
Dm.CommInit(comm);
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny + j*Nx + i;
Dm.id[n]=0;
}
}
}
printf("rank=%i, %i,%i,%i \n",rank,Dm.iproc,Dm.jproc,Dm.jproc);
// Initialize a bubble
int BubbleRadius=Nx/3;
int center_x = (Nx-2)*nprocx/2;
int center_y = (Ny-2)*nprocy/2;
int center_z = (Nz-2)*nprocz/2;
if (rank==0) printf("Bubble radius = %i, center=%i,%i,%i \n",BubbleRadius,center_x,center_y,center_z);
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny + j*Nx + i;
int iglobal= i+(Nx-2)*Dm.iproc;
int jglobal= j+(Ny-2)*Dm.jproc;
int kglobal= k+(Nz-2)*Dm.kproc;
// Initialize phase position field for parallel bubble test
if ((iglobal-center_x)*(iglobal-center_x)
+(jglobal-center_y)*(jglobal-center_y)
+(kglobal-center_z)*(kglobal-center_z) < BubbleRadius*BubbleRadius){
Dm.id[n] = 2;
}
else{
Dm.id[n]=1;
}
}
}
}
//.......................................................................
// Compute the media porosity, assign phase labels and solid composition
//.......................................................................
double sum;
double sum_local=0.0, porosity;
int Np=0; // number of local pore nodes
double *PhaseLabel;
PhaseLabel = new double[N];
Dm.AssignComponentLabels(PhaseLabel);
//.......................................................................
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
sum_local+=1.0;
Np++;
}
}
}
}
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
porosity = sum*iVol_global;
if (rank==0) printf("Media porosity = %f \n",porosity);
if (rank==0) printf ("Create ScaLBL_Communicator \n");
MPI_Barrier(comm);
// Create a communicator for the device (will use optimized layout)
ScaLBL_Communicator ScaLBL_Comm(Dm);
//Create a second communicator based on the regular data layout
ScaLBL_Communicator ScaLBL_Comm_Regular(Dm);
//...........device phase ID.................................................
if (rank==0) printf ("Copying phase ID to device \n");
char *ID;
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
// Copy to the device
ScaLBL_CopyToDevice(ID, Dm.id, N);
//...........................................................................
if (rank==0){
printf("Total domain size = %i \n",N);
printf("Reduced domain size = %i \n",Np);
}
// LBM variables
if (rank==0) printf ("Set up the neighborlist \n");
int neighborSize=18*Np*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Np];
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
MPI_Barrier(comm);
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
if (rank==0) printf ("Allocating distributions \n");
int *NeighborList;
int *dvcMap;
// double *f_even,*f_odd;
double *fq, *Aq, *Bq;
double *Den, *Phi;
double *ColorGrad;
double *Vel;
double *Pressure;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Vel, 3*sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
int *TmpMap;
TmpMap=new int[Np];
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
//for (int idx=0; idx<Np; idx++) printf("Map=%i\n",TmpMap[idx]);
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
// initialize phi based on PhaseLabel (include solid component labels)
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
//...........................................................................
if (rank==0) printf ("Initializing distributions \n");
// Initialize the phase field and variables
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, Np);
//************ MAIN ITERATION LOOP (timing communications)***************************************
if (rank==0) printf("Beginning AA timesteps...\n");
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("No. of timesteps for timing: %i \n", timesteps);
//.......create and start timer............
double starttime,stoptime,cputime;
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
starttime = MPI_Wtime();
//timesteps=4;
while (timestep < timesteps) {
// ODD TIMESTEP
// Compute the Phase indicator field
// Read for Aq, Bq happens in this routine (requires communication)
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Compute the Color Gradient
ScaLBL_Comm_Regular.SendHalo(Phi);
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, ScaLBL_Comm.next, Np, Np, Nx, Ny, Nz);
ScaLBL_Comm_Regular.RecvHalo(Phi);
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, 0,ScaLBL_Comm.next, Np, Nx, Ny, Nz);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
// ScaLBL_D3Q19_AAodd_ColorMomentum(NeighborList, fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
// alpha, beta, Fx, Fy, Fz,ScaLBL_Comm.next, Np, Np);
// ScaLBL_D3Q19_AAodd_ColorMass(NeighborList, Aq, Bq, Den, Vel, ColorGrad, beta, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
// ScaLBL_D3Q19_AAodd_ColorMomentum(NeighborList, fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
// alpha, beta, Fx, Fy, Fz, 0, ScaLBL_Comm.next, Np);
// ScaLBL_D3Q19_AAodd_ColorMass(NeighborList, Aq, Bq, Den, Vel, ColorGrad, beta, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
// EVEN TIMESTEP
// Compute the Phase indicator field
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Compute the Color Gradient
ScaLBL_Comm_Regular.SendHalo(Phi);
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, ScaLBL_Comm.next, Np, Np, Nx, Ny, Nz);
ScaLBL_Comm_Regular.RecvHalo(Phi);
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, 0, ScaLBL_Comm.next, Np, Nx, Ny, Nz);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
// ScaLBL_D3Q19_AAeven_ColorMomentum(fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
// alpha, beta, Fx, Fy, Fz, ScaLBL_Comm.next, Np, Np);
// ScaLBL_D3Q19_AAeven_ColorMass(Aq, Bq, Den, Vel, ColorGrad, beta, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
// ScaLBL_D3Q19_AAeven_ColorMomentum(fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
// alpha, beta, Fx, Fy, Fz, 0, ScaLBL_Comm.next, Np);
// ScaLBL_D3Q19_AAeven_ColorMass(Aq, Bq, Den, Vel, ColorGrad, beta, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
//************************************************************************
}
//************************************************************************
stoptime = MPI_Wtime();
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
cputime = stoptime - starttime;
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
double MLUPS = double(Np*timestep)/cputime/1000000;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
if (rank==0) printf("********************************************************\n");
// Number of memory references for color model
double MemoryRefs = double(Np)*(77*8+(9+7+7)*4); // extra memory refs to read from neighborlist (every other timestep)
// number of memory references for the swap algorithm - GigaBytes / second
if (rank==0) printf("DRAM bandwidth (per process)= %f GB/sec \n",MemoryRefs*timestep/1e9/cputime);
// Report bandwidth in Gigabits per second
// communication bandwidth includes both send and recieve
if (rank==0) printf("Communication bandwidth (per process)= %f Gbit/sec \n",ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
if (rank==0) printf("Aggregated communication bandwidth = %f Gbit/sec \n",nprocs*ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
double *VEL;
VEL= new double [3*Np];
int SIZE=3*Np*sizeof(double);
ScaLBL_D3Q19_Momentum(fq,Vel,Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
ScaLBL_CopyToHost(&VEL[0],&Vel[0],SIZE);
sum_local=0.f;
sum = 0.f;
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
sum_local+=VEL[2*Np+idx];
}
}
}
}
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
double PoreVel = sum*iVol_global;
if (rank==0) printf("Velocity = %f \n",PoreVel);
double *PHASE;
PHASE= new double [Nx*Ny*Nz];
SIZE=Nx*Ny*Nz*sizeof(double);
ScaLBL_CopyToHost(&PHASE[0],&Phi[0],SIZE);
FILE *OUTFILE;
OUTFILE = fopen("Phase.raw","wb");
fwrite(PHASE,8,N,OUTFILE);
fclose(OUTFILE);
double *DENA, *DENB, *TMPDAT;
SIZE=Np*sizeof(double);
TMPDAT = new double [Np];
DENA= new double [Nx*Ny*Nz];
DENB= new double [Nx*Ny*Nz];
ScaLBL_CopyToHost(&TMPDAT[0],&Den[0],SIZE);
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENA);
ScaLBL_CopyToHost(&TMPDAT[0],&Den[Np],SIZE);
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENB);
FILE *AFILE;
sprintf(LocalRankFilename,"na.%05i.raw",rank);
AFILE = fopen(LocalRankFilename,"wb");
fwrite(DENA,8,N,AFILE);
fclose(AFILE);
FILE *BFILE;
BFILE = fopen("nB.raw","wb");
fwrite(DENB,8,N,BFILE);
fclose(BFILE);
double *CG;
CG= new double [3*Np];
ScaLBL_CopyToHost(&CG[0],&ColorGrad[0],3*SIZE);
for (int idx=0; idx<Np; idx++){
double C=CG[idx]*CG[idx]+CG[Np+idx]*CG[Np+idx]+CG[2*Np+idx]*CG[2*Np+idx];
TMPDAT[idx]=C;
}
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENB);
FILE *CGFILE;
CGFILE = fopen("cgrad.raw","wb");
fwrite(DENB,8,N,CGFILE);
fclose(CGFILE);
}
// ****************************************************
MPI_Barrier(comm);
MPI_Finalize();
// ****************************************************
return check;
}

269
tests/TestColorGrad.cpp Normal file
View File

@@ -0,0 +1,269 @@
//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI_Helpers.h"
using namespace std;
//***************************************************************************************
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
int check;
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
if (rank == 0){
printf("********************************************************\n");
printf("Running Color Model: TestColor \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
unsigned int nBlocks, nthreads;
int timestepMax, interval;
double Fx,Fy,Fz,tol;
// Domain variables
double Lx,Ly,Lz;
int nspheres;
int Nx,Ny,Nz;
int i,j,k,n;
int dim = 3;
//if (rank == 0) printf("dim=%d\n",dim);
int timestep = 0;
int timesteps = 100;
int centralNode = 2;
double tauA = 1.0;
double tauB = 1.0;
double rhoA = 1.0;
double rhoB = 1.0;
double alpha = 0.005;
double beta = 0.95;
double tau = 1.0;
double mu=(tau-0.5)/3.0;
double rlx_setA=1.0/tau;
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
Fx = Fy = 0.f;
Fz = 0.f;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
if (domain.good()){
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
}
else if (nprocs==1){
nprocx=nprocy=nprocz=1;
Nx=Ny=Nz=3;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==2){
nprocx=2; nprocy=1;
nprocz=1;
Nx=Ny=Nz=dim;
Nx = dim; Ny = dim; Nz = dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==4){
nprocx=nprocy=2;
nprocz=1;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==8){
nprocx=nprocy=nprocz=2;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
//.......................................................................
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// **************************************************************
// **************************************************************
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
MPI_Barrier(comm);
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
int BoundaryCondition=0;
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
int Np=0; // number of local pore nodes
double *PhaseLabel;
PhaseLabel = new double[N];
//.......................................................................
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
Dm.id[n]=1;
Np++;
// Initialize gradient ColorGrad = (1,2,3)
double value=double(3*k+2*j+i);
PhaseLabel[n]= value;
}
}
}
Dm.CommInit(comm);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
if (rank==0) printf ("Create ScaLBL_Communicator \n");
//Create a second communicator based on the regular data layout
ScaLBL_Communicator ScaLBL_Comm_Regular(Dm);
ScaLBL_Communicator ScaLBL_Comm(Dm);
// LBM variables
if (rank==0) printf ("Set up the neighborlist \n");
int neighborSize=18*Np*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Np];
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
MPI_Barrier(comm);
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
if (rank==0) printf ("Allocating distributions \n");
int *NeighborList;
int *dvcMap;
double *Phi;
double *ColorGrad;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
int *TmpMap;
TmpMap=new int[Np*sizeof(int)];
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
// initialize phi based on PhaseLabel (include solid component labels)
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
//...........................................................................
ScaLBL_D3Q19_Gradient(dvcMap, Phi, ColorGrad, 0, Np, Np, Nx, Ny, Nz);
double *COLORGRAD;
COLORGRAD= new double [3*Np];
int SIZE=3*Np*sizeof(double);
ScaLBL_CopyToHost(&COLORGRAD[0],&ColorGrad[0],SIZE);
double CX,CY,CZ;
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
CX=COLORGRAD[idx];
CY=COLORGRAD[Np+idx];
CZ=COLORGRAD[2*Np+idx];
double error=sqrt((CX-1.0)*(CX-1.0)+(CY-2.0)*(CY-2.0)+ (CZ-3.0)*(CZ-3.0));
if (error > 1e-8)
printf("i,j,k=%i,%i,%i: Color gradient=%f,%f,%f \n",i,j,k,CX,CY,CZ);
}
}
}
}
}
// ****************************************************
MPI_Barrier(comm);
MPI_Finalize();
// ****************************************************
return check;
}

View File

@@ -0,0 +1,557 @@
//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI_Helpers.h"
using namespace std;
//***************************************************************************************
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
int check;
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
if (rank == 0){
printf("********************************************************\n");
printf("Running Color Model: TestColor \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
unsigned int nBlocks, nthreads;
int timestepMax, interval;
double Fx,Fy,Fz,tol;
// Domain variables
double Lx,Ly,Lz;
int nspheres;
int Nx,Ny,Nz;
int i,j,k,n;
int dim = 3;
//if (rank == 0) printf("dim=%d\n",dim);
int timestep = 0;
int timesteps = 100;
int centralNode = 2;
double tauA = 1.0;
double tauB = 1.0;
double rhoA = 1.0;
double rhoB = 1.0;
double alpha = 0.005;
double beta = 0.95;
double tau = 1.0;
double mu=(tau-0.5)/3.0;
double rlx_setA=1.0/tau;
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
Fx = Fy = 0.f;
Fz = 0.f;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
if (domain.good()){
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
}
else if (nprocs==1){
nprocx=nprocy=nprocz=1;
Nx=Ny=Nz=3;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==2){
nprocx=2; nprocy=1;
nprocz=1;
Nx=Ny=Nz=dim;
Nx = dim; Ny = dim; Nz = dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==4){
nprocx=nprocy=2;
nprocz=1;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==8){
nprocx=nprocy=nprocz=2;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
//.......................................................................
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// **************************************************************
// **************************************************************
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
MPI_Barrier(comm);
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
int BoundaryCondition=0;
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
int Np=0; // number of local pore nodes
double *PhaseLabel;
PhaseLabel = new double[N];
//.......................................................................
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
Dm.id[n]=0;
}
}
}
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
Dm.id[n]=1;
Np++;
// constant color
PhaseLabel[n]= -1.0;
}
}
}
Dm.CommInit(comm);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
if (rank==0) printf ("Create ScaLBL_Communicator \n");
//Create a second communicator based on the regular data layout
ScaLBL_Communicator ScaLBL_Comm_Regular(Dm);
ScaLBL_Communicator ScaLBL_Comm(Dm);
// LBM variables
if (rank==0) printf ("Set up the neighborlist \n");
int neighborSize=18*Np*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Np];
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
MPI_Barrier(comm);
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
if (rank==0) printf ("Allocating distributions \n");
int *NeighborList;
int *dvcMap;
// double *f_even,*f_odd;
double *fq, *Aq, *Bq;
double *Den, *Phi;
double *ColorGrad;
double *Vel;
double *Pressure;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Vel, 3*sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
int *TmpMap;
TmpMap=new int[Np*sizeof(int)];
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
//...........................................................................
// Distributions / densities for checking
double nA,nB;
double *DIST;
DIST= new double [7*Np];
double *DENSITY;
DENSITY= new double [2*Np];
int SIZE;
int errc_odd_a=0;
int errc_even_a=0;
int errc_odd_b=0;
int errc_even_b=0;
//*******************Component A*******************
// initialize phi based on PhaseLabel (include solid component labels)
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
// constant color
PhaseLabel[n]= 1.0;
}
}
}
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
if (rank==0) printf ("Initializing distributions \n");
// Initialize the phase field and variables
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, Np);
// *************ODD TIMESTEP*************
// Compute the Phase indicator field
// Read for Aq, Bq happens in this routine (requires communication)
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_Comm_Regular.RecvHalo(Phi);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
printf("Check after odd time \n");
SIZE=2*Np*sizeof(double);
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
// Check the distributions
SIZE=7*Np*sizeof(double);
ScaLBL_CopyToHost(&DIST[0],&Aq[0],SIZE);
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
nA=DENSITY[idx];
nB=DENSITY[Np+idx];
//printf("i,j,k=%i,%i,%i \n",i,j,k);
//printf(" nA=%f, nB=%f \n",nA,nB);
double val=DIST[idx];
double error = fabs(val - 0.3333333333333333*nA);
if (error > 1.0e-12) {
printf(" q=0, Aq=%f \n",val);
errc_odd_b++;
}
for (int q=1; q<7; q++){
val=DIST[q*Np+idx];
error = fabs(val - 0.1111111111111111*nA);
if (error > 1.0e-12) {
printf(" q=%i, Aq=%f \n",q,val);
errc_odd_b++;
}
}
}
}
}
}
// *************EVEN TIMESTEP*************
// Compute the Phase indicator field
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_Comm_Regular.RecvHalo(Phi);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
printf("Check after even time \n");
SIZE=2*Np*sizeof(double);
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
// Check the distributions
SIZE=7*Np*sizeof(double);
ScaLBL_CopyToHost(&DIST[0],&Aq[0],SIZE);
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
nA=DENSITY[idx];
nB=DENSITY[Np+idx];
//printf("i,j,k=%i,%i,%i \n",i,j,k);
//printf(" nA=%f, nB=%f \n",nA,nB);
double val=DIST[idx];
double error = fabs(val - 0.3333333333333333*nA);
if (error > 1.0e-12) {
printf(" q=0, Aq=%f \n",val);
errc_even_b++;
}
for (int q=1; q<7; q++){
val=DIST[q*Np+idx];
error = fabs(val - 0.1111111111111111*nA);
if (error > 1.0e-12) {
printf(" q=%i, Aq=%f \n",q,val);
errc_even_b++;
}
}
}
}
}
}
//*******************Component B*******************
// initialize phi based on PhaseLabel (include solid component labels)
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
// constant color
PhaseLabel[n]= -1.0;
}
}
}
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
if (rank==0) printf ("Initializing distributions \n");
// Initialize the phase field and variables
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, Np);
// *************ODD TIMESTEP*************
// Compute the Phase indicator field
// Read for Aq, Bq happens in this routine (requires communication)
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_Comm_Regular.RecvHalo(Phi);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
printf("Check after odd time \n");
SIZE=2*Np*sizeof(double);
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
// Check the distributions
SIZE=7*Np*sizeof(double);
ScaLBL_CopyToHost(&DIST[0],&Bq[0],SIZE);
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
nA=DENSITY[idx];
nB=DENSITY[Np+idx];
//printf("i,j,k=%i,%i,%i \n",i,j,k);
//printf(" nA=%f, nB=%f \n",nA,nB);
double val=DIST[idx];
double error = fabs(val - 0.3333333333333333*nB);
if (error > 1.0e-12) {
printf(" q=0, Bq=%f \n",val);
errc_odd_b++;
}
for (int q=1; q<7; q++){
val=DIST[q*Np+idx];
error = fabs(val - 0.1111111111111111*nB);
if (error > 1.0e-12) {
printf(" q=%i, Bq=%f \n",q,val);
errc_odd_b++;
}
}
}
}
}
}
// *************EVEN TIMESTEP*************
// Compute the Phase indicator field
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_Comm_Regular.RecvHalo(Phi);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
printf("Check after even time \n");
SIZE=2*Np*sizeof(double);
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
// Check the distributions
SIZE=7*Np*sizeof(double);
ScaLBL_CopyToHost(&DIST[0],&Bq[0],SIZE);
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
nA=DENSITY[idx];
nB=DENSITY[Np+idx];
//printf("i,j,k=%i,%i,%i \n",i,j,k);
//printf(" nA=%f, nB=%f \n",nA,nB);
double val=DIST[idx];
double error = fabs(val - 0.3333333333333333*nB);
if (error > 1.0e-12) {
printf(" q=0, Bq=%f \n",val);
errc_even_b++;
}
for (int q=1; q<7; q++){
val=DIST[q*Np+idx];
error = fabs(val - 0.1111111111111111*nB);
if (error > 1.0e-12) {
printf(" q=%i, Bq=%f \n",q,val);
errc_even_b++;
}
}
}
}
}
}
printf("Error counts: A even=%i, A odd=%i, B even=%i, B odd=%i \n",errc_even_a,errc_odd_a,errc_even_b,errc_odd_b);
int errc_total=errc_even_a+errc_odd_a+errc_even_b+errc_odd_b;
if (errc_total>0) check=1;
else check=0;
}
// ****************************************************
MPI_Barrier(comm);
MPI_Finalize();
// ****************************************************
return check;
}

View File

@@ -0,0 +1,544 @@
//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI_Helpers.h"
using namespace std;
//***************************************************************************************
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
int check;
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
if (rank == 0){
printf("********************************************************\n");
printf("Running Color Model: TestColor \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
unsigned int nBlocks, nthreads;
int timestepMax, interval;
double Fx,Fy,Fz,tol;
// Domain variables
double Lx,Ly,Lz;
int nspheres;
int Nx,Ny,Nz;
int i,j,k,n;
int dim = 50;
//if (rank == 0) printf("dim=%d\n",dim);
int timestep = 1;
int timesteps = 100;
int centralNode = 2;
double tauA = 1.0;
double tauB = 1.0;
double rhoA = 1.0;
double rhoB = 1.0;
double alpha = 0.001;
double beta = 0.95;
double tau = 1.0;
double mu=(tau-0.5)/3.0;
double rlx_setA=1.0/tau;
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
Fx = Fy = 0.f;
Fz = 0.f;
int typeBC;
double din, dout, flux;
double inletA,inletB,outletA,outletB;
inletA=1.f;
inletB=0.f;
outletA=0.f;
outletB=1.f;
typeBC=4;
flux = 10.f;
dout=1.f;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
if (domain.good()){
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
}
else if (nprocs==1){
nprocx=nprocy=nprocz=1;
Nx=3; Ny = 1;
Nz = 1;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==2){
nprocx=2; nprocy=1;
nprocz=1;
Nx=Ny=Nz=dim;
Nx = dim; Ny = dim; Nz = dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==4){
nprocx=nprocy=2;
nprocz=1;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==8){
nprocx=nprocy=nprocz=2;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
//.......................................................................
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// **************************************************************
// **************************************************************
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
MPI_Barrier(comm);
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
int BoundaryCondition=0;
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
//.......................................................................
// Assign the phase ID field
//.......................................................................
char LocalRankString[8];
sprintf(LocalRankString,"%05d",rank);
char LocalRankFilename[40];
sprintf(LocalRankFilename,"ID.%05i",rank);
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny + j*Nx + i;
Dm.id[n]=0;
}
}
}
kproc = rank/(nprocx*nprocy);
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
iproc = rank-nprocx*nprocy*kproc-nprocx*jproc;
printf("rank=%i, %i,%i,%i \n",rank,iproc,jproc,kproc);
// Initialize a square tube
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny + j*Nx + i;
int iglobal= i+(Nx-2)*iproc;
int jglobal= j+(Ny-2)*jproc;
int kglobal= k+(Nz-2)*kproc;
// Initialize phase position field for parallel bubble test
if (iglobal < 2) Dm.id[n]=0;
else if (iglobal > (Nx-2)*nprocx-2) Dm.id[n]=0;
else if (jglobal < 2) Dm.id[n]=0;
else if (jglobal > (Ny-2)*nprocy-2) Dm.id[n]=0;
else if (kglobal < 20) Dm.id[n]=1;
else Dm.id[n]=2;
}
}
}
Dm.CommInit(comm);
//.......................................................................
// Compute the media porosity, assign phase labels and solid composition
//.......................................................................
double sum;
double sum_local=0.0, porosity;
int Np=0; // number of local pore nodes
double *PhaseLabel;
PhaseLabel = new double[N];
Dm.AssignComponentLabels(PhaseLabel);
//.......................................................................
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
sum_local+=1.0;
Np++;
}
}
}
}
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
porosity = sum*iVol_global;
if (rank==0) printf("Media porosity = %f \n",porosity);
if (rank==0) printf ("Create ScaLBL_Communicator \n");
MPI_Barrier(comm);
// Create a communicator for the device (will use optimized layout)
ScaLBL_Communicator ScaLBL_Comm(Dm);
//Create a second communicator based on the regular data layout
ScaLBL_Communicator ScaLBL_Comm_Regular(Dm);
//...........device phase ID.................................................
if (rank==0) printf ("Copying phase ID to device \n");
char *ID;
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
// Copy to the device
ScaLBL_CopyToDevice(ID, Dm.id, N);
//...........................................................................
if (rank==0){
printf("Total domain size = %i \n",N);
printf("Reduced domain size = %i \n",Np);
}
// LBM variables
if (rank==0) printf ("Set up the neighborlist \n");
int neighborSize=18*Np*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Np];
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
MPI_Barrier(comm);
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
if (rank==0) printf ("Allocating distributions \n");
int *NeighborList;
int *dvcMap;
// double *f_even,*f_odd;
double *fq, *Aq, *Bq;
double *Den, *Phi;
double *ColorGrad;
double *Vel;
double *Pressure;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Vel, 3*sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
int *TmpMap;
TmpMap=new int[Np];
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
//for (int idx=0; idx<Np; idx++) printf("Map=%i\n",TmpMap[idx]);
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
// initialize phi based on PhaseLabel (include solid component labels)
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
//...........................................................................
if (rank==0) printf ("Initializing distributions \n");
// Initialize the phase field and variables
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, Np);
if (Dm.kproc==0){
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,0);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,1);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,2);
}
if (Dm.kproc == nprocz-1){
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-1);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-2);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-3);
}
//************ MAIN ITERATION LOOP (timing communications)***************************************
if (rank==0) printf("Beginning AA timesteps...\n");
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("No. of timesteps for timing: %i \n", timesteps);
//.......create and start timer............
double starttime,stoptime,cputime;
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
starttime = MPI_Wtime();
//timesteps=20;
//timestep=1;
while (timestep < timesteps) {
// *************ODD TIMESTEP*************
// Compute the Phase indicator field
// Read for Aq, Bq happens in this routine (requires communication)
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_Comm_Regular.RecvHalo(Phi);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
// Set BCs
if (typeBC > 0){
ScaLBL_Comm.Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm.Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
}
if (typeBC == 3){
ScaLBL_Comm.D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
if (typeBC == 4){
din = ScaLBL_Comm.D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
// *************EVEN TIMESTEP*************
// Compute the Phase indicator field
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_Comm_Regular.RecvHalo(Phi);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
// Set boundary conditions
if (typeBC > 0){
ScaLBL_Comm.Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm.Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
}
if (typeBC == 3){
ScaLBL_Comm.D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
else if (typeBC == 4){
din = ScaLBL_Comm.D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
//************************************************************************
}
//************************************************************************
stoptime = MPI_Wtime();
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
cputime = stoptime - starttime;
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
double MLUPS = double(Np*timestep)/cputime/1000000;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
if (rank==0) printf("********************************************************\n");
// Number of memory references for color model
double MemoryRefs = double(Np)*(77*8+(9+7+7)*4); // extra memory refs to read from neighborlist (every other timestep)
// number of memory references for the swap algorithm - GigaBytes / second
if (rank==0) printf("DRAM bandwidth (per process)= %f GB/sec \n",MemoryRefs*timestep/1e9/cputime);
// Report bandwidth in Gigabits per second
// communication bandwidth includes both send and recieve
if (rank==0) printf("Communication bandwidth (per process)= %f Gbit/sec \n",ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
if (rank==0) printf("Aggregated communication bandwidth = %f Gbit/sec \n",nprocs*ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
double *VEL;
VEL= new double [3*Np];
int SIZE=3*Np*sizeof(double);
ScaLBL_D3Q19_Momentum(fq,Vel,Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
ScaLBL_CopyToHost(&VEL[0],&Vel[0],SIZE);
sum_local=0.f;
sum = 0.f;
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
sum_local+=VEL[2*Np+idx];
}
}
}
}
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
double PoreVel = sum*iVol_global;
if (rank==0) printf("Average velocity = %f \n",PoreVel);
if (rank==0){
printf("Printing inlet velocity for rank=0 \n");
k=1;
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
double vz = VEL[2*Np+idx];
printf("%f ",vz);
}
}
printf("\n");
}
}
double *PHASE;
PHASE= new double [Nx*Ny*Nz];
SIZE=Nx*Ny*Nz*sizeof(double);
ScaLBL_CopyToHost(&PHASE[0],&Phi[0],SIZE);
FILE *OUTFILE;
sprintf(LocalRankFilename,"Phase.%05i.raw",rank);
OUTFILE = fopen(LocalRankFilename,"wb");
fwrite(PHASE,8,N,OUTFILE);
fclose(OUTFILE);
double *DENA, *DENB, *TMPDAT;
SIZE=Np*sizeof(double);
TMPDAT = new double [Np];
DENA= new double [Nx*Ny*Nz];
DENB= new double [Nx*Ny*Nz];
ScaLBL_CopyToHost(&TMPDAT[0],&Den[0],SIZE);
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENA);
ScaLBL_CopyToHost(&TMPDAT[0],&Den[Np],SIZE);
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENB);
FILE *AFILE;
sprintf(LocalRankFilename,"na.%05i.raw",rank);
AFILE = fopen(LocalRankFilename,"wb");
fwrite(DENA,8,N,AFILE);
fclose(AFILE);
FILE *BFILE;
sprintf(LocalRankFilename,"nb.%05i.raw",rank);
BFILE = fopen(LocalRankFilename,"wb");
fwrite(DENB,8,N,BFILE);
fclose(BFILE);
double *CG;
CG= new double [3*Np];
ScaLBL_D3Q19_Gradient(dvcMap, Phi, ColorGrad, 0, Np, Np, Nx, Ny, Nz);
ScaLBL_CopyToHost(&CG[0],&ColorGrad[0],3*SIZE);
for (int idx=0; idx<Np; idx++){
double C=CG[idx]*CG[idx]+CG[Np+idx]*CG[Np+idx]+CG[2*Np+idx]*CG[2*Np+idx];
TMPDAT[idx]=C;
}
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENB);
FILE *CGFILE;
sprintf(LocalRankFilename,"cgrad.%05i.raw",rank);
CGFILE = fopen(LocalRankFilename,"wb");
fwrite(DENB,8,N,CGFILE);
fclose(CGFILE);
}
// ****************************************************
MPI_Barrier(comm);
MPI_Finalize();
// ****************************************************
return check;
}

552
tests/TestForceD3Q19.cpp Normal file
View File

@@ -0,0 +1,552 @@
#include <iostream>
#include "common/MPI_Helpers.h"
#include "common/Utilities.h"
#include <math.h>
double mrt_V1=0.05263157894736842;
double mrt_V2=0.012531328320802;
double mrt_V3=0.04761904761904762;
double mrt_V4=0.004594820384294068;
double mrt_V5=0.01587301587301587;
double mrt_V6=0.0555555555555555555555555;
double mrt_V7=0.02777777777777778;
double mrt_V8=0.08333333333333333;
double mrt_V9=0.003341687552213868;
double mrt_V10=0.003968253968253968;
double mrt_V11=0.01388888888888889;
double mrt_V12=0.04166666666666666;
/*
# Rcode to check the moments
f=c(1.0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18)
rho=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
jx=c(0,1,-1,0,0,0,0,1,-1,1,-1,1,-1,1,-1,0,0,0,0)
jy=c(0,0,0,1,-1,0,0,1,-1,-1,1,0,0,0,0,1,-1,1,-1)
jz=c(0,0,0,0,0,1,-1,0,0,0,0,1,-1,-1,1,1,-1,-1,1)
M1=c(-30,-11,-11,-11,-11,-11,-11,8,8,8,8,8,8,8,8,8,8,8,8)
M2=c(12,-4,-4,-4,-4,-4,-4,1,1,1,1,1,1,1,1,1,1,1,1)
M4=c(0,-4,4,0,0,0,0,1,-1,1,-1,1,-1,1,-1,0,0,0,0)
M6=c(0,0,0,-4,4,0,0,1,-1,-1,1,0,0,0,0,1,-1,1,-1)
M8=c(0,0,0,0,0,-4,4,0,0,0,0,1,-1,-1,1,1,-1,-1,1)
M9=c(0,2,2,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-2,-2,-2,-2)
M10=c(0,-4,-4,2,2,2,2,1,1,1,1,1,1,1,1,-2,-2,-2,-2)
M11=c(0,0,0,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,0,0,0,0)
M12=c(0,0,0,-2,-2,2,2,1,1,1,1,-1,-1,-1,-1,0,0,0,0)
M13=c(0,0,0,0,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0)
M14=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1)
M15=c(0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,0,0,0,0)
M16=c(0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,1,0,0,0,0)
M17=c(0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,1,-1,1,-1)
M18=c(0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,1,1,-1)
*/
inline void MRT_Transform(double *dist, int Np, double Fx, double Fy, double Fz) {
double fq,fp;
// conserved momemnts
double rho,jx,jy,jz;
// non-conserved moments
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
for (int n=0; n<Np; n++){
//........................................................................
// READ THE DISTRIBUTIONS
// (read from opposite array due to previous swap operation)
//........................................................................
fq = dist[n];
//printf("q=0: %f\n",fq);
rho = fq;
m1 = -30.0*fq;
m2 = 12.0*fq;
// q=1
fp = dist[10*Np+n];
//printf("q=1: %f\n",fp);
rho += fp;
m1 -= 11.0*fp;
m2 -= 4.0*fp;
jx = fp;
m4 = -4.0*fp;
m9 = 2.0*fp;
m10 = -4.0*fp;
// f2 = dist[10*Np+n];
fq = dist[Np+n];
//printf("q=2: %f\n",fq);
rho += fq;
m1 -= 11.0*(fq);
m2 -= 4.0*(fq);
jx -= fq;
m4 += 4.0*(fq);
m9 += 2.0*(fq);
m10 -= 4.0*(fq);
// q=3
fq = dist[11*Np+n];
//printf("q=3: %f\n",fq);
rho += fq;
m1 -= 11.0*fq;
m2 -= 4.0*fq;
jy = fq;
m6 = -4.0*fq;
m9 -= fq;
m10 += 2.0*fq;
m11 = fq;
m12 = -2.0*fq;
// q = 4
fq = dist[2*Np+n];
rho+= fq;
m1 -= 11.0*fq;
m2 -= 4.0*fq;
jy -= fq;
m6 += 4.0*fq;
m9 -= fq;
m10 += 2.0*fq;
m11 += fq;
m12 -= 2.0*fq;
// q=5
fq = dist[12*Np+n];
rho += fq;
m1 -= 11.0*fq;
m2 -= 4.0*fq;
jz = fq;
m8 = -4.0*fq;
m9 -= fq;
m10 += 2.0*fq;
m11 -= fq;
m12 += 2.0*fq;
// q = 6
fq = dist[3*Np+n];
rho+= fq;
m1 -= 11.0*fq;
m2 -= 4.0*fq;
jz -= fq;
m8 += 4.0*fq;
m9 -= fq;
m10 += 2.0*fq;
m11 -= fq;
m12 += 2.0*fq;
// q=7
fq = dist[13*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx += fq;
m4 += fq;
jy += fq;
m6 += fq;
m9 += fq;
m10 += fq;
m11 += fq;
m12 += fq;
m13 = fq;
m16 = fq;
m17 = -fq;
// q = 8
fq = dist[4*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx -= fq;
m4 -= fq;
jy -= fq;
m6 -= fq;
m9 += fq;
m10 += fq;
m11 += fq;
m12 += fq;
m13 += fq;
m16 -= fq;
m17 += fq;
// q=9
fq = dist[14*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx += fq;
m4 += fq;
jy -= fq;
m6 -= fq;
m9 += fq;
m10 += fq;
m11 += fq;
m12 += fq;
m13 -= fq;
m16 += fq;
m17 += fq;
// q = 10
fq = dist[5*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx -= fq;
m4 -= fq;
jy += fq;
m6 += fq;
m9 += fq;
m10 += fq;
m11 += fq;
m12 += fq;
m13 -= fq;
m16 -= fq;
m17 -= fq;
// q=11
fq = dist[15*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx += fq;
m4 += fq;
jz += fq;
m8 += fq;
m9 += fq;
m10 += fq;
m11 -= fq;
m12 -= fq;
m15 = fq;
m16 -= fq;
m18 = fq;
// q=12
fq = dist[6*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx -= fq;
m4 -= fq;
jz -= fq;
m8 -= fq;
m9 += fq;
m10 += fq;
m11 -= fq;
m12 -= fq;
m15 += fq;
m16 += fq;
m18 -= fq;
// q=13
fq = dist[16*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx += fq;
m4 += fq;
jz -= fq;
m8 -= fq;
m9 += fq;
m10 += fq;
m11 -= fq;
m12 -= fq;
m15 -= fq;
m16 -= fq;
m18 -= fq;
// q=14
fq = dist[7*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx -= fq;
m4 -= fq;
jz += fq;
m8 += fq;
m9 += fq;
m10 += fq;
m11 -= fq;
m12 -= fq;
m15 -= fq;
m16 += fq;
m18 += fq;
// q=15
fq = dist[17*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jy += fq;
m6 += fq;
jz += fq;
m8 += fq;
m9 -= 2.0*fq;
m10 -= 2.0*fq;
m14 = fq;
m17 += fq;
m18 -= fq;
// q=16
fq = dist[8*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jy -= fq;
m6 -= fq;
jz -= fq;
m8 -= fq;
m9 -= 2.0*fq;
m10 -= 2.0*fq;
m14 += fq;
m17 -= fq;
m18 += fq;
// q=18
fq = dist[9*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jy -= fq;
m6 -= fq;
jz += fq;
m8 += fq;
m9 -= 2.0*fq;
m10 -= 2.0*fq;
m14 -= fq;
m17 -= fq;
m18 -= fq;
// q=17
fq = dist[18*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jy += fq;
m6 += fq;
jz -= fq;
m8 -= fq;
m9 -= 2.0*fq;
m10 -= 2.0*fq;
m14 -= fq;
m17 += fq;
m18 += fq;
//.................inverse transformation......................................................
// q=0
fq = mrt_V1*rho-mrt_V2*m1+mrt_V3*m2;
dist[n] = fq;
// q = 1
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10)+0.16666666*Fx;
dist[10*Np+n] = fq;
// q=2
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10) - 0.16666666*Fx;
dist[Np+n] = fq;
// q = 3
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) + 0.16666666*Fy;
dist[11*Np+n] = fq;
// q = 4
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) - 0.16666666*Fy;
dist[2*Np+n] = fq;
// q = 5
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) + 0.16666666*Fz;
dist[12*Np+n] = fq;
// q = 6
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) - 0.16666666*Fz;
dist[3*Np+n] = fq;
// q = 7
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
+mrt_V12*m12+0.25*m13+0.125*(m16-m17) + 0.08333333333*(Fx+Fy);
dist[13*Np+n] = fq;
// q = 8
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
+mrt_V12*m12+0.25*m13+0.125*(m17-m16) - 0.08333333333*(Fx+Fy);
dist[4*Np+n] = fq;
// q = 9
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
+mrt_V12*m12-0.25*m13+0.125*(m16+m17) + 0.08333333333*(Fx-Fy);
dist[14*Np+n] = fq;
// q = 10
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
+mrt_V12*m12-0.25*m13-0.125*(m16+m17)- 0.08333333333*(Fx-Fy);
dist[5*Np+n] = fq;
// q = 11
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
-mrt_V12*m12+0.25*m15+0.125*(m18-m16) + 0.08333333333*(Fx+Fz);
dist[15*Np+n] = fq;
// q = 12
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
-mrt_V12*m12+0.25*m15+0.125*(m16-m18) - 0.08333333333*(Fx+Fz);
dist[6*Np+n] = fq;
// q = 13
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
-mrt_V12*m12-0.25*m15-0.125*(m16+m18) + 0.08333333333*(Fx-Fz);
dist[16*Np+n] = fq;
// q= 14
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
-mrt_V12*m12-0.25*m15+0.125*(m16+m18) - 0.08333333333*(Fx-Fz);
dist[7*Np+n] = fq;
// q = 15
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18) + 0.08333333333*(Fy+Fz);
dist[17*Np+n] = fq;
// q = 16
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17)- 0.08333333333*(Fy+Fz);
dist[8*Np+n] = fq;
// q = 17
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)
-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18) + 0.08333333333*(Fy-Fz);
dist[18*Np+n] = fq;
// q = 18
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)
-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18) - 0.08333333333*(Fy-Fz);
dist[9*Np+n] = fq;
}
}
int main (int argc, char **argv)
{
MPI_Init(&argc,&argv);
int rank = MPI_WORLD_RANK();
int nprocs = MPI_WORLD_SIZE();
for (int i=0; i<nprocs; i++) {
if ( rank==i )
printf("%i of %i: Testing force term \n",rank,nprocs);
MPI_Barrier(MPI_COMM_WORLD);
}
// Create a memory leak for valgrind to find
if ( nprocs==1 ) {
double *x = new double[1];
ASSERT(x!=NULL);
}
// set the error code
// Note: the error code should be consistent across all processors
int error = 0;
int Np = 1;
int Q = 9;
double Fx = 1.0;
double Fy = 1.0;
double Fz = 1.0;
double *dist;
double * Velocity;
dist = new double [19*Np];
Velocity = new double [3*Np];
for (int n=0; n<Np; n++){
dist[n] = 0.3333333333333333;
dist[10*Np+n] = 0.055555555555555555; //double(100*n)+1.f;
dist[Np+n] = 0.055555555555555555; //double(100*n)+2.f;
dist[11*Np+n] = 0.055555555555555555; //double(100*n)+3.f;
dist[2*Np+n] = 0.055555555555555555; //double(100*n)+4.f;
dist[12*Np+n] = 0.055555555555555555; //double(100*n)+5.f;
dist[3*Np+n] = 0.055555555555555555; //double(100*n)+6.f;
dist[13*Np+n] = 0.0277777777777778; //double(100*n)+7.f;
dist[4*Np+n] = 0.0277777777777778; //double(100*n)+8.f;
dist[14*Np+n] = 0.0277777777777778; //double(100*n)+9.f;
dist[5*Np+n] = 0.0277777777777778; //double(100*n)+10.f;
dist[15*Np+n] = 0.0277777777777778; //double(100*n)+11.f;
dist[6*Np+n] = 0.0277777777777778; //double(100*n)+12.f;
dist[16*Np+n] = 0.0277777777777778; //double(100*n)+13.f;
dist[7*Np+n] = 0.0277777777777778; //double(100*n)+14.f;
dist[17*Np+n] = 0.0277777777777778; //double(100*n)+15.f;
dist[8*Np+n] = 0.0277777777777778; //double(100*n)+16.f;
dist[18*Np+n] = 0.0277777777777778; //double(100*n)+17.f;
dist[9*Np+n] = 0.0277777777777778; //double(100*n)+18.f;
}
MRT_Transform(dist,Np,Fx,Fy,Fz);
double *vel;
vel= new double [3*Np];
// distributions
double f1,f2,f3,f4,f5,f6,f7,f8,f9;
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
double vx,vy,vz;
for (int n=0; n<Np; n++){
//........................................................................
// Registers to store the distributions
//........................................................................
f2 = dist[Np+n];
f4 = dist[2*Np+n];
f6 = dist[3*Np+n];
f8 = dist[4*Np+n];
f10 = dist[5*Np+n];
f12 = dist[6*Np+n];
f14 = dist[7*Np+n];
f16 = dist[8*Np+n];
f18 = dist[9*Np+n];
//........................................................................
f1 = dist[10*Np+n];
f3 = dist[11*Np+n];
f5 = dist[12*Np+n];
f7 = dist[13*Np+n];
f9 = dist[14*Np+n];
f11 = dist[15*Np+n];
f13 = dist[16*Np+n];
f15 = dist[17*Np+n];
f17 = dist[18*Np+n];
//.................Compute the velocity...................................
vx = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
vy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
vz = f5-f6+f11-f12-f13+f14+f15-f16-f17+f18;
//..................Write the velocity.....................................
vel[n] = vx;
vel[Np+n] = vy;
vel[2*Np+n] = vz;
printf("vx=%f, vy=%f, vz=%f \n",vx,vy,vz);
//........................................................................
}
printf("Fx = %f; Computed vx=%f \n",Fx,vel[0]);
printf("Fy = %f; Computed vy=%f \n",Fy,vel[Np+0]);
printf("Fz = %f; Computed vz=%f \n",Fz,vel[2*Np+0]);
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
}

412
tests/TestForceMoments.cpp Normal file
View File

@@ -0,0 +1,412 @@
//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI_Helpers.h"
using namespace std;
extern void PrintNeighborList(int * neighborList, int Np, int rank) {
if (rank == 0) {
int n;
int neighbor;
for (int i = 0; i < Np; i++) {
printf("idx=%d: ",i);
for (int l = 0; l < 10; l++) { // was 18
neighbor = neighborList[l*Np + i];
printf("%d ",neighbor);
}
printf("\n");
}
printf("\n\n");
}
}
//***************************************************************************************
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
int check;
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
if (rank == 0){
printf("********************************************************\n");
printf("Running Unit Test: TestForceMoments \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
unsigned int nBlocks, nthreads;
int timestepMax, interval;
double tau,Fx,Fy,Fz,tol;
// Domain variables
double Lx,Ly,Lz;
int nspheres;
int Nx,Ny,Nz;
int i,j,k,n;
int dim = 3; if (rank == 0) printf("dim=%d\n",dim);
int timestep = 0;
int timesteps = 2;
tau =1.0;
double mu=(tau-0.5)/3.0;
double rlx_setA=1.0/tau;
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
Fx = Fy = 1.0;
Fz = 1.0;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
if (domain.good()){
printf("domain.good == true \n");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
}
else if (nprocs==1){
nprocx=nprocy=nprocz=1;
Nx=3; Ny = 3;
Nz = 3;
nspheres=0;
Lx=Ly=Lz=1;
}
//.......................................................................
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// **************************************************************
// **************************************************************
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
MPI_Barrier(comm);
kproc = rank/(nprocx*nprocy);
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
iproc = rank-nprocx*nprocy*kproc-nprocz*jproc;
if (rank == 0) {
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
}
MPI_Barrier(comm);
if (rank == 1){
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
printf("\n\n");
}
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
int BoundaryCondition=0;
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
//.......................................................................
// Assign the phase ID field
//.......................................................................
char LocalRankString[8];
sprintf(LocalRankString,"%05d",rank);
char LocalRankFilename[40];
sprintf(LocalRankFilename,"ID.%05i",rank);
/*
FILE *IDFILE = fopen(LocalRankFilename,"rb");
if (IDFILE==NULL) ERROR("Error opening file: ID.xxxxx");
fread(Dm.id,1,N,IDFILE);
fclose(IDFILE);
*/
// initialize empty domain
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
Dm.id[n]=1;
}
}
}
Dm.CommInit(comm);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
int Np=0; // number of local pore nodes
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
Np++;
}
}
}
}
if (rank==0) printf ("Create ScaLBL_Communicator \n");
// Create a communicator for the device
ScaLBL_Communicator ScaLBL_Comm(Dm);
//...........device phase ID.................................................
if (rank==0) printf ("Copying phase ID to device \n");
char *ID;
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
// Copy to the device
ScaLBL_CopyToDevice(ID, Dm.id, N);
//...........................................................................
if (rank==0){
printf("Total domain size = %i \n",N);
printf("Reduced domain size = %i \n",Np);
}
// LBM variables
if (rank==0) printf ("Allocating distributions \n");
int neighborSize=18*Np*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Np];
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
if (rank == 0) PrintNeighborList(neighborList,Np, rank);
MPI_Barrier(comm);
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
int *NeighborList;
// double *f_even,*f_odd;
double * dist;
double * Velocity;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &dist, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
//...........................................................................
/*
* AA Algorithm begins here
*
*/
ScaLBL_D3Q19_Init(dist, Np);
//.......create and start timer............
double starttime,stoptime,cputime;
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
starttime = MPI_Wtime();
/************ MAIN ITERATION LOOP (timing communications)***************************************/
//ScaLBL_Comm.SendD3Q19(dist, &dist[10*Np]);
//ScaLBL_Comm.RecvD3Q19(dist, &dist[10*Np]);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
if (rank==0) printf("Beginning AA timesteps...\n");
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("No. of timesteps for timing: %i \n", timesteps);
while (timestep < 2) {
ScaLBL_D3Q19_AAeven_MRT(dist, 0, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
ScaLBL_Comm.SendD3Q19AA(dist); //READ FROM NORMAL
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
ScaLBL_D3Q19_AAodd_MRT(NeighborList, dist, 0, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
ScaLBL_Comm.SendD3Q19AA(dist); //READ FROM NORMAL
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
}
//************************************************************************/
stoptime = MPI_Wtime();
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
cputime = stoptime - starttime;
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
double MLUPS = double(Np*timestep)/cputime/1000000;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
if (rank==0) printf("********************************************************\n");
// Number of memory references from the swap algorithm (per timestep)
// 18 reads and 18 writes for each lattice site
double MemoryRefs = Np*38;
int SIZE=Np*sizeof(double);
/*
double *Vz;
Vz= new double [Np];
double *Vx;
Vx= new double [Np];
double *Vy;
Vy= new double [Np];
ScaLBL_D3Q19_AA_Velocity(dist, &dist[10*Np],Velocity, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
ScaLBL_CopyToHost(&Vx[0],&Velocity[0],SIZE);
ScaLBL_CopyToHost(&Vy[0],&Velocity[Np],SIZE);
ScaLBL_CopyToHost(&Vz[0],&Velocity[2*Np],SIZE);
printf("Force: %f,%f,%f \n",Fx,Fy,Fz);
double vz;
double W = 1.f*Nx-4;
j=Ny/2; k=Nz/2;
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
//printf("%i ",Dm.id[n]);
n = Map(i,j,k);
//printf("%i,%i,%i; %i :",i,j,k,n);
if (n<0) vz =0.f;
else vz=Vz[n];
printf("%f ",vz);
}
printf("\n");
}
*/
double *DIST;
DIST= new double [19*Np];
ScaLBL_CopyToHost(&DIST[0],&dist[0],19*SIZE);
i=Nx/2;
printf("x = constant \n");
for (int q=0; q<9; q++){
int a = 2*q+1;
int b = 2*(q+1);
printf("************* \n");
printf("print slice for distribution pair %i,%i \n",a,b);
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
n = k*Nx*Ny+j*Nx+i;
//printf("%i ",Dm.id[n]);
n = Map(i,j,k);
double fa = DIST[(2*q+1)*Np+n];
double fb = DIST[2*(q+1)*Np+n];
printf("%f,%f ",fa,fb);
}
printf("\n");
}
printf("************* \n");
}
printf("y = constant \n");
j=Ny/2;
for (int q=0; q<9; q++){
int a = 2*q+1;
int b = 2*(q+1);
printf("************* \n");
printf("print slice for distribution pair %i,%i \n",a,b);
for (k=1;k<Nz-1;k++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
//printf("%i ",Dm.id[n]);
n = Map(i,j,k);
double fa = DIST[(2*q+1)*Np+n];
double fb = DIST[2*(q+1)*Np+n];
printf("%f,%f ",fa,fb);
}
printf("\n");
}
printf("************* \n");
}
k=Nz/2;
printf("z = constant \n");
for (int q=0; q<9; q++){
int a = 2*q+1;
int b = 2*(q+1);
printf("************* \n");
printf("print slice for distribution pair %i,%i \n",a,b);
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
//printf("%i ",Dm.id[n]);
n = Map(i,j,k);
double fa = DIST[(2*q+1)*Np+n];
double fb = DIST[2*(q+1)*Np+n];
printf("%f,%f ",fa,fb);
}
printf("\n");
}
printf("************* \n");
}
}
// ****************************************************
MPI_Barrier(comm);
MPI_Finalize();
// ****************************************************
return check;
}

811
tests/TestMRT.cpp Normal file
View File

@@ -0,0 +1,811 @@
//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI_Helpers.h"
using namespace std;
extern void AA1_ScaLBL_D3Q19_Init(double *dist_even, double *dist_odd, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
{
// Set of Discrete velocities for the D3Q19 Model
static int D3Q19[18][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1},
{1,1,0},{-1,-1,0},{1,-1,0},{-1,1,0},
{1,0,1},{-1,0,-1},{1,0,-1},{-1,0,1},
{0,1,1},{0,-1,-1},{0,1,-1},{0,-1,1}};
int q,i,j,k,n,N;
int Cqx,Cqy,Cqz; // Discrete velocity
int x,y,z; // Global indices
int xn,yn,zn; // Global indices of neighbor
int X,Y,Z; // Global size
X = Nx*nprocx;
Y = Ny*nprocy;
Z = Nz*nprocz;
NULL_USE(Z);
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
n = (k+1)*(Nx+2)*(Ny+2) + (j+1)*(Nx+2) + i+1;
// Get the 'global' index
x = iproc*Nx+i;
y = jproc*Ny+j;
z = kproc*Nz+k;
for (q=0; q<9; q++){
// Even distribution
Cqx = D3Q19[2*q][0];
Cqy = D3Q19[2*q][1];
Cqz = D3Q19[2*q][2];
// xn = x - Cqx;
// yn = y - Cqy;
// zn = z - Cqz;
xn = x;
yn = y;
zn = z;
if (xn < 0) xn += nprocx*Nx;
if (yn < 0) yn += nprocy*Ny;
if (zn < 0) zn += nprocz*Nz;
if (!(xn < nprocx*Nx)) xn -= nprocx*Nx;
if (!(yn < nprocy*Ny)) yn -= nprocy*Ny;
if (!(zn < nprocz*Nz)) zn -= nprocz*Nz;
dist_even[(q+1)*N+n] = (zn*X*Y+yn*X+xn) + (2*q+1)*0.01;
// Odd distribution
// xn = x + Cqx;
// yn = y + Cqy;
// zn = z + Cqz;
xn = x;
yn = y;
zn = z;
if (xn < 0) xn += nprocx*Nx;
if (yn < 0) yn += nprocy*Ny;
if (zn < 0) zn += nprocz*Nz;
if (!(xn < nprocx*Nx)) xn -= nprocx*Nx;
if (!(yn < nprocy*Ny)) yn -= nprocy*Ny;
if (!(zn < nprocz*Nz)) zn -= nprocz*Nz;
dist_odd[q*N+n] = (zn*X*Y+yn*X+xn) + 2*(q+1)*0.01;
}
}
}
}
}
extern void GlobalFlipScaLBL_D3Q19_Init(double *dist_even, double *dist_odd, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
{
// Set of Discrete velocities for the D3Q19 Model
static int D3Q19[18][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1},
{1,1,0},{-1,-1,0},{1,-1,0},{-1,1,0},
{1,0,1},{-1,0,-1},{1,0,-1},{-1,0,1},
{0,1,1},{0,-1,-1},{0,1,-1},{0,-1,1}};
int q,i,j,k,n,N;
int Cqx,Cqy,Cqz; // Discrete velocity
int x,y,z; // Global indices
int xn,yn,zn; // Global indices of neighbor
int X,Y,Z; // Global size
X = Nx*nprocx;
Y = Ny*nprocy;
Z = Nz*nprocz;
NULL_USE(Z);
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
n = (k+1)*(Nx+2)*(Ny+2) + (j+1)*(Nx+2) + i+1;
// Get the 'global' index
x = iproc*Nx+i;
y = jproc*Ny+j;
z = kproc*Nz+k;
for (q=0; q<9; q++){
// Even distribution
Cqx = D3Q19[2*q][0];
Cqy = D3Q19[2*q][1];
Cqz = D3Q19[2*q][2];
// xn = x - Cqx;
// yn = y - Cqy;
// zn = z - Cqz;
xn = x;
yn = y;
zn = z;
if (xn < 0) xn += nprocx*Nx;
if (yn < 0) yn += nprocy*Ny;
if (zn < 0) zn += nprocz*Nz;
if (!(xn < nprocx*Nx)) xn -= nprocx*Nx;
if (!(yn < nprocy*Ny)) yn -= nprocy*Ny;
if (!(zn < nprocz*Nz)) zn -= nprocz*Nz;
dist_even[(q+1)*N+n] = (zn*X*Y+yn*X+xn) + (2*q+1)*0.01;
// Odd distribution
// xn = x + Cqx;
// yn = y + Cqy;
// zn = z + Cqz;
xn = x;
yn = y;
zn = z;
if (xn < 0) xn += nprocx*Nx;
if (yn < 0) yn += nprocy*Ny;
if (zn < 0) zn += nprocz*Nz;
if (!(xn < nprocx*Nx)) xn -= nprocx*Nx;
if (!(yn < nprocy*Ny)) yn -= nprocy*Ny;
if (!(zn < nprocz*Nz)) zn -= nprocz*Nz;
dist_odd[q*N+n] = (zn*X*Y+yn*X+xn) + 2*(q+1)*0.01;
}
}
}
}
}
extern int GlobalCheckDebugDistInterior(double *dist_even, double *dist_odd, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
{
int returnValue = 0;
int q,i,j,k,n,N;
int Cqx,Cqy,Cqz; // Discrete velocity
int x,y,z; // Global indices
int xn,yn,zn; // Global indices of neighbor
int X,Y,Z; // Global size
X = Nx*nprocx;
Y = Ny*nprocy;
Z = Nz*nprocz;
NULL_USE(Z);
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
n = (k+1)*(Nx+2)*(Ny+2) + (j+1)*(Nx+2) + i+1;
// Get the 'global' index
x = iproc*Nx+i;
y = jproc*Ny+j;
z = kproc*Nz+k;
for (q=0; q<9; q++){
if (dist_even[(q+1)*N+n] != (z*X*Y+y*X+x) + 2*(q+1)*0.01){
printf("******************************************\n");
printf("error in even distribution q = %i \n", 2*(q+1));
printf("i,j,k= %i, %i, %i \n", x,y,z);
printf("dist = %5.2f, expect %5.2f \n", dist_even[(q+1)*N+n], (z*X*Y+y*X+x) + 2*(q+1)*0.01);
printf("n= %i \n",z*X*Y+y*X+x);
returnValue++;
}
if (dist_odd[q*N+n] != (z*X*Y+y*X+x) + (2*q+1)*0.01){
printf("******************************************\n");
printf("error in odd distribution q = %i \n", 2*q+1);
printf("i,j,k= %i, %i, %i \n", x,y,z);
printf("dist = %5.2f, expect %5.2f \n", dist_odd[q*N+n],(z*X*Y+y*X+x) + (2*q+1)*0.01);
printf("n= %i \n",z*X*Y+y*X+x);
returnValue++;
}
}
}
}
}
return returnValue;
}
extern void HostToGold(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_gold,
double * f_odd_gold, int Nx, int Ny, int Nz,int Np,int N) {
int n;
for (int k=1;k<Nz-1;k++){
for (int j=1;j<Ny-1;j++){
for (int i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
int idx = Map(i,j,k);
if (!(idx < 0)){
for (int q=0; q<9; q++){
f_even_gold[(q+1)*N + n] = f_even_host[(q+1)*Np + idx];
f_odd_gold[q*N + n] = f_odd_host[q*Np + idx];
}
}
}
}
}
}
extern void GoldToHost(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_gold,
double * f_odd_gold, int Nx, int Ny, int Nz,int Np,int N) {
int n;
for (int k=1;k<Nz-1;k++){
for (int j=1;j<Ny-1;j++){
for (int i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
int idx = Map(i,j,k);
if (!(idx < 0)){
for (int q=0; q<9; q++){
f_even_host[(q+1)*Np + idx] = f_even_gold[(q+1)*N + n];
f_odd_host[q*Np + idx] = f_odd_gold[q*N + n];
}
}
}
}
}
}
extern void PrintSpecificHost(int centralNode, IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_gold,
double * f_odd_gold, int Nx, int Ny, int Nz,int Np,int N) {
int n;
for (int k=1;k<Nz-1;k++){
for (int j=1;j<Ny-1;j++){
for (int i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
int idx = Map(i,j,k);
if (!(idx < 0)){
if ( i == centralNode && (j == centralNode && k == centralNode)) {
printf("%i: ",idx);
}
for (int q=0; q<2; q++){
if ( i == centralNode && (j == centralNode && k == centralNode)) {
printf("%.02f,",f_odd_host[(q*Np+idx)]);
printf("%.02f,",f_even_host[(q+1)*Np + idx]);
}
}
}
}
}
}
printf("\n\n");
}
extern void PrintFullHost(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_gold,
double * f_odd_gold, int Nx, int Ny, int Nz,int Np,int N) {
int n;
for (int k=1;k<Nz-1;k++){
for (int j=1;j<Ny-1;j++){
for (int i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
int idx = Map(i,j,k);
if (!(idx < 0)){
//printf("%i: ",idx);
for (int q=0; q<1; q++){
printf(" %.02f <%d> ",f_even_host[(q+1)*Np + idx],idx);
printf("%.02f |",f_odd_host[(q*Np+idx)]);
}
}
}
}
}
printf("\n");
}
extern void HostToUnobtainium(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_unobtainium,
double * f_odd_unobtainium, int Nx, int Ny, int Nz,int Np,int N) {
int n;
for (int k=1;k<Nz-1;k++){
for (int j=1;j<Ny-1;j++){
for (int i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
int idx = Map(i,j,k);
if (!(idx < 0)){
for (int q=0; q<9; q++){
f_odd_unobtainium[(q*Np+idx)] = f_odd_host[(q*Np+idx)];
f_even_unobtainium[(q+1)*Np + idx] = f_even_host[(q+1)*Np + idx];
}
}
}
}
}
}
extern void CheckDistrMatch(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_unobtainium,
double * f_odd_unobtainium, int Nx, int Ny, int Nz,int Np,int N) {
int n; int err = 0;
for (int k=1;k<Nz-1;k++){
for (int j=1;j<Ny-1;j++){
for (int i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
int idx = Map(i,j,k);
if (!(idx < 0)){
for (int q=0; q<9; q++){
if (f_odd_unobtainium[(q*Np+idx)] != f_odd_host[(q*Np+idx)]) {
err++;
}
if (f_even_unobtainium[(q+1)*Np + idx] != f_even_host[(q+1)*Np + idx]) {
err++;
}
}
}
}
}
}
if (err == 0) {
printf("CORRECT");
} else {
printf("DIFF=%d",err);
}
printf("\n\n");
}
extern double CheckDistrMatchDouble(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_unobtainium,
double * f_odd_unobtainium, int Nx, int Ny, int Nz,int Np,int N) {
int n; int err = 0;
for (int k=1;k<Nz-1;k++){
for (int j=1;j<Ny-1;j++){
for (int i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
int idx = Map(i,j,k);
if (!(idx < 0)){
for (int q=0; q<9; q++){
if (f_odd_unobtainium[(q*Np+idx)] != f_odd_host[(q*Np+idx)]) {
err++;
}
if (f_even_unobtainium[(q+1)*Np + idx] != f_even_host[(q+1)*Np + idx]) {
err++;
}
}
}
}
}
}
return err;
}
extern void PrintNeighborList(int * neighborList, int Np, int rank) {
if (rank == 0) {
int n;
int neighbor;
for (int i = 0; i < Np; i++) {
printf("idx=%d: ",i);
for (int l = 0; l < 10; l++) { // was 18
neighbor = neighborList[l*Np + i];
printf("%d ",neighbor);
}
printf("\n");
}
printf("\n\n");
}
}
extern void PrintSpecificNeighborList(int specificNode, int * neighborList, int Np, int rank) {
if (rank == 0) {
int n;
int neighbor;
for (int i = 0; i < Np; i++) {
if ( i == specificNode) {
printf("idx=%d: ",i);
}
for (int l = 0; l < 10; l++) { // was 18
neighbor = neighborList[l*Np + i];
if (i == specificNode) {
printf("%d ",neighbor);
}
}
}
printf("\n\n");
}
}
extern int GlobalCheckDebugDist(double *dist_even, double *dist_odd, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz) {
int returnValue = 0;
int q,i,j,k,n,N;
int Cqx,Cqy,Cqz; // Discrete velocity
int x,y,z; // Global indices
int xn,yn,zn; // Global indices of neighbor
int X,Y,Z; // Global size
X = Nx*nprocx;
Y = Ny*nprocy;
Z = Nz*nprocz;
NULL_USE(Z);
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
n = (k+1)*(Nx+2)*(Ny+2) + (j+1)*(Nx+2) + i+1;
// Get the 'global' index
x = iproc*Nx+i;
y = jproc*Ny+j;
z = kproc*Nz+k;
for (q=0; q<9; q++){
if (dist_even[(q+1)*N+n] != (z*X*Y+y*X+x) + 2*(q+1)*0.01){
printf("******************************************\n");
printf("error in even distribution q = %i \n", 2*(q+1));
printf("i,j,k= %i, %i, %i \n", x,y,z);
printf("dist = %5.2f, expect %5.2f \n", dist_even[(q+1)*N+n], (z*X*Y+y*X+x) + 2*(q+1)*0.01);
printf("n= %i \n",z*X*Y+y*X+x);
returnValue++;
}
if (dist_odd[q*N+n] != (z*X*Y+y*X+x) + (2*q+1)*0.01){
printf("******************************************\n");
printf("error in odd distribution q = %i \n", 2*q+1);
printf("i,j,k= %i, %i, %i \n", x,y,z);
printf("dist = %5.2f, expect %5.2f \n", dist_odd[q*N+n],(z*X*Y+y*X+x) + (2*q+1)*0.01);
printf("n= %i \n",z*X*Y+y*X+x);
returnValue++;
}
}
}
}
}
return returnValue;
}
inline void PackID(int *list, int count, char *sendbuf, char *ID){
// Fill in the phase ID values from neighboring processors
// This packs up the values that need to be sent from one processor to another
int idx,n;
for (idx=0; idx<count; idx++){
n = list[idx];
sendbuf[idx] = ID[n];
}
}
//***************************************************************************************
inline void UnpackID(int *list, int count, char *recvbuf, char *ID){
// Fill in the phase ID values from neighboring processors
// This unpacks the values once they have been recieved from neighbors
int idx,n;
for (idx=0; idx<count; idx++){
n = list[idx];
ID[n] = recvbuf[idx];
}
}
//***************************************************************************************
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
int check;
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
if (rank == 0){
printf("********************************************************\n");
printf("Running Permeability Test: TestMRT \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
unsigned int nBlocks, nthreads;
int timestepMax, interval;
double Fx,Fy,Fz,tol;
// Domain variables
double Lx,Ly,Lz;
int nspheres;
int Nx,Ny,Nz;
int i,j,k,n;
int dim = 50;
//if (rank == 0) printf("dim=%d\n",dim);
int timestep = 1;
int timesteps = 100;
int centralNode = 2;
double tau = 1.0;
double rlx_setA = 1.f/tau;
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
Fx = Fy = 0.f;
Fz = 1.0e-6;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
if (domain.good()){
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
}
else if (nprocs==1){
nprocx=nprocy=nprocz=1;
Nx=3; Ny = 1;
Nz = 1;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==2){
nprocx=2; nprocy=1;
nprocz=1;
Nx=Ny=Nz=dim;
Nx = dim; Ny = dim; Nz = dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==4){
nprocx=nprocy=2;
nprocz=1;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==8){
nprocx=nprocy=nprocz=2;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
//.......................................................................
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// **************************************************************
// **************************************************************
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
MPI_Barrier(comm);
kproc = rank/(nprocx*nprocy);
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
iproc = rank-nprocx*nprocy*kproc-nprocz*jproc;
if (rank == 0) {
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
}
MPI_Barrier(comm);
if (rank == 1){
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
printf("\n\n");
}
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
int BoundaryCondition=0;
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
//.......................................................................
// Assign the phase ID field
//.......................................................................
char LocalRankString[8];
sprintf(LocalRankString,"%05d",rank);
char LocalRankFilename[40];
sprintf(LocalRankFilename,"ID.%05i",rank);
FILE *IDFILE = fopen(LocalRankFilename,"rb");
if (IDFILE==NULL) ERROR("Error opening file: ID.xxxxx");
fread(Dm.id,1,N,IDFILE);
fclose(IDFILE);
Dm.CommInit(comm);
//.......................................................................
// Compute the media porosity
//.......................................................................
double sum;
double sum_local=0.0, porosity;
int Np=0; // number of local pore nodes
//.......................................................................
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
sum_local+=1.0;
Np++;
}
}
}
}
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
porosity = sum*iVol_global;
if (rank==0) printf("Media porosity = %f \n",porosity);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
if (rank==0) printf ("Create ScaLBL_Communicator \n");
// Create a communicator for the device
ScaLBL_Communicator ScaLBL_Comm(Dm);
//...........device phase ID.................................................
if (rank==0) printf ("Copying phase ID to device \n");
char *ID;
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
// Copy to the device
ScaLBL_CopyToDevice(ID, Dm.id, N);
//...........................................................................
if (rank==0){
printf("Total domain size = %i \n",N);
printf("Reduced domain size = %i \n",Np);
}
// LBM variables
if (rank==0) printf ("Set up the neighborlist \n");
int neighborSize=18*Np*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Np];
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
MPI_Barrier(comm);
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
if (rank==0) printf ("Allocating distributions \n");
int *NeighborList;
// double *f_even,*f_odd;
double * dist;
double * Velocity;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &dist, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
//...........................................................................
ScaLBL_D3Q19_Init(dist, Np);
/************ MAIN ITERATION LOOP (timing communications)***************************************/
if (rank==0) printf("Beginning AA timesteps...\n");
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("No. of timesteps for timing: %i \n", timesteps);
//.......create and start timer............
double starttime,stoptime,cputime;
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
starttime = MPI_Wtime();
while (timestep < timesteps) {
ScaLBL_Comm.SendD3Q19AA(dist); //READ FROM NORMAL
ScaLBL_D3Q19_AAodd_MRT(NeighborList, dist, ScaLBL_Comm.next, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAodd_MRT(NeighborList, dist, 0, ScaLBL_Comm.next, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
ScaLBL_Comm.SendD3Q19AA(dist); //READ FORM NORMAL
ScaLBL_D3Q19_AAeven_MRT(dist, ScaLBL_Comm.next, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAeven_MRT(dist, 0, ScaLBL_Comm.next, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
//************************************************************************/
}
//************************************************************************/
stoptime = MPI_Wtime();
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
cputime = stoptime - starttime;
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
double MLUPS = double(Np*timestep)/cputime/1000000;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
if (rank==0) printf("********************************************************\n");
// Number of memory references from the swap algorithm (per timestep)
// 18 reads and 18 writes for each lattice site
double MemoryRefs = Np*38;
// number of memory references for the swap algorithm - GigaBytes / second
if (rank==0) printf("DRAM bandwidth (per process)= %f GB/sec \n",MemoryRefs*8*timestep/1e9/cputime);
// Report bandwidth in Gigabits per second
// communication bandwidth includes both send and recieve
if (rank==0) printf("Communication bandwidth (per process)= %f Gbit/sec \n",ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
if (rank==0) printf("Aggregated communication bandwidth = %f Gbit/sec \n",nprocs*ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
double *VEL;
VEL= new double [3*Np];
int SIZE=3*Np*sizeof(double);
ScaLBL_D3Q19_Momentum(dist,Velocity, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
ScaLBL_CopyToHost(&VEL[0],&Velocity[0],SIZE);
sum_local=0.f;
sum = 0.f;
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){\
int idx = Map(i,j,k);
sum_local+=VEL[2*Np+idx];
}
}
}
}
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
double PoreVel = sum*iVol_global;
if (rank==0) printf("Velocity = %f \n",PoreVel);
}
// ****************************************************
MPI_Barrier(comm);
MPI_Finalize();
// ****************************************************
return check;
}

544
tests/TestMomentsD3Q19.cpp Normal file
View File

@@ -0,0 +1,544 @@
#include <iostream>
#include "common/MPI_Helpers.h"
#include "common/Utilities.h"
#include <math.h>
double mrt_V1=0.05263157894736842;
double mrt_V2=0.012531328320802;
double mrt_V3=0.04761904761904762;
double mrt_V4=0.004594820384294068;
double mrt_V5=0.01587301587301587;
double mrt_V6=0.0555555555555555555555555;
double mrt_V7=0.02777777777777778;
double mrt_V8=0.08333333333333333;
double mrt_V9=0.003341687552213868;
double mrt_V10=0.003968253968253968;
double mrt_V11=0.01388888888888889;
double mrt_V12=0.04166666666666666;
/*
# Rcode to check the moments
f=c(1.0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18)
rho=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
jx=c(0,1,-1,0,0,0,0,1,-1,1,-1,1,-1,1,-1,0,0,0,0)
jy=c(0,0,0,1,-1,0,0,1,-1,-1,1,0,0,0,0,1,-1,1,-1)
jz=c(0,0,0,0,0,1,-1,0,0,0,0,1,-1,-1,1,1,-1,-1,1)
M1=c(-30,-11,-11,-11,-11,-11,-11,8,8,8,8,8,8,8,8,8,8,8,8)
M2=c(12,-4,-4,-4,-4,-4,-4,1,1,1,1,1,1,1,1,1,1,1,1)
M4=c(0,-4,4,0,0,0,0,1,-1,1,-1,1,-1,1,-1,0,0,0,0)
M6=c(0,0,0,-4,4,0,0,1,-1,-1,1,0,0,0,0,1,-1,1,-1)
M8=c(0,0,0,0,0,-4,4,0,0,0,0,1,-1,-1,1,1,-1,-1,1)
M9=c(0,2,2,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-2,-2,-2,-2)
M10=c(0,-4,-4,2,2,2,2,1,1,1,1,1,1,1,1,-2,-2,-2,-2)
M11=c(0,0,0,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,0,0,0,0)
M12=c(0,0,0,-2,-2,2,2,1,1,1,1,-1,-1,-1,-1,0,0,0,0)
M13=c(0,0,0,0,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0)
M14=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1)
M15=c(0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,0,0,0,0)
M16=c(0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,1,0,0,0,0)
M17=c(0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,1,-1,1,-1)
M18=c(0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,1,1,-1)
*/
inline void MRT_Transform(double *dist, int Np) {
double fq,fp;
// conserved momemnts
double rho,jx,jy,jz;
double Fx,Fy,Fz;
Fx=Fy=Fz=0;
// non-conserved moments
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
for (int n=0; n<Np; n++){
//........................................................................
// READ THE DISTRIBUTIONS
// (read from opposite array due to previous swap operation)
//........................................................................
fq = dist[n];
//printf("q=0: %f\n",fq);
rho = fq;
m1 = -30.0*fq;
m2 = 12.0*fq;
// q=1
fp = dist[10*Np+n];
//printf("q=1: %f\n",fp);
rho += fp;
m1 -= 11.0*fp;
m2 -= 4.0*fp;
jx = fp;
m4 = -4.0*fp;
m9 = 2.0*fp;
m10 = -4.0*fp;
// f2 = dist[10*Np+n];
fq = dist[Np+n];
//printf("q=2: %f\n",fq);
rho += fq;
m1 -= 11.0*(fq);
m2 -= 4.0*(fq);
jx -= fq;
m4 += 4.0*(fq);
m9 += 2.0*(fq);
m10 -= 4.0*(fq);
// q=3
fq = dist[11*Np+n];
//printf("q=3: %f\n",fq);
rho += fq;
m1 -= 11.0*fq;
m2 -= 4.0*fq;
jy = fq;
m6 = -4.0*fq;
m9 -= fq;
m10 += 2.0*fq;
m11 = fq;
m12 = -2.0*fq;
// q = 4
fq = dist[2*Np+n];
rho+= fq;
m1 -= 11.0*fq;
m2 -= 4.0*fq;
jy -= fq;
m6 += 4.0*fq;
m9 -= fq;
m10 += 2.0*fq;
m11 += fq;
m12 -= 2.0*fq;
// q=5
fq = dist[12*Np+n];
rho += fq;
m1 -= 11.0*fq;
m2 -= 4.0*fq;
jz = fq;
m8 = -4.0*fq;
m9 -= fq;
m10 += 2.0*fq;
m11 -= fq;
m12 += 2.0*fq;
// q = 6
fq = dist[3*Np+n];
rho+= fq;
m1 -= 11.0*fq;
m2 -= 4.0*fq;
jz -= fq;
m8 += 4.0*fq;
m9 -= fq;
m10 += 2.0*fq;
m11 -= fq;
m12 += 2.0*fq;
// q=7
fq = dist[13*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx += fq;
m4 += fq;
jy += fq;
m6 += fq;
m9 += fq;
m10 += fq;
m11 += fq;
m12 += fq;
m13 = fq;
m16 = fq;
m17 = -fq;
// q = 8
fq = dist[4*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx -= fq;
m4 -= fq;
jy -= fq;
m6 -= fq;
m9 += fq;
m10 += fq;
m11 += fq;
m12 += fq;
m13 += fq;
m16 -= fq;
m17 += fq;
// q=9
fq = dist[14*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx += fq;
m4 += fq;
jy -= fq;
m6 -= fq;
m9 += fq;
m10 += fq;
m11 += fq;
m12 += fq;
m13 -= fq;
m16 += fq;
m17 += fq;
// q = 10
fq = dist[5*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx -= fq;
m4 -= fq;
jy += fq;
m6 += fq;
m9 += fq;
m10 += fq;
m11 += fq;
m12 += fq;
m13 -= fq;
m16 -= fq;
m17 -= fq;
// q=11
fq = dist[15*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx += fq;
m4 += fq;
jz += fq;
m8 += fq;
m9 += fq;
m10 += fq;
m11 -= fq;
m12 -= fq;
m15 = fq;
m16 -= fq;
m18 = fq;
// q=12
fq = dist[6*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx -= fq;
m4 -= fq;
jz -= fq;
m8 -= fq;
m9 += fq;
m10 += fq;
m11 -= fq;
m12 -= fq;
m15 += fq;
m16 += fq;
m18 -= fq;
// q=13
fq = dist[16*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx += fq;
m4 += fq;
jz -= fq;
m8 -= fq;
m9 += fq;
m10 += fq;
m11 -= fq;
m12 -= fq;
m15 -= fq;
m16 -= fq;
m18 -= fq;
// q=14
fq = dist[7*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jx -= fq;
m4 -= fq;
jz += fq;
m8 += fq;
m9 += fq;
m10 += fq;
m11 -= fq;
m12 -= fq;
m15 -= fq;
m16 += fq;
m18 += fq;
// q=15
fq = dist[17*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jy += fq;
m6 += fq;
jz += fq;
m8 += fq;
m9 -= 2.0*fq;
m10 -= 2.0*fq;
m14 = fq;
m17 += fq;
m18 -= fq;
// q=16
fq = dist[8*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jy -= fq;
m6 -= fq;
jz -= fq;
m8 -= fq;
m9 -= 2.0*fq;
m10 -= 2.0*fq;
m14 += fq;
m17 -= fq;
m18 += fq;
// q=18
fq = dist[9*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jy -= fq;
m6 -= fq;
jz += fq;
m8 += fq;
m9 -= 2.0*fq;
m10 -= 2.0*fq;
m14 -= fq;
m17 -= fq;
m18 -= fq;
// q=17
fq = dist[18*Np+n];
rho += fq;
m1 += 8.0*fq;
m2 += fq;
jy += fq;
m6 += fq;
jz -= fq;
m8 -= fq;
m9 -= 2.0*fq;
m10 -= 2.0*fq;
m14 -= fq;
m17 += fq;
m18 += fq;
printf("rho: %f\n",rho);
printf("jx: %f\n",jx);
printf("jy: %f\n",jy);
printf("jz: %f\n",jz);
printf("m1: %f\n",m1);
printf("m2: %f\n",m2);
printf("m4: %f\n",m4);
printf("m6: %f\n",m6);
printf("m8: %f\n",m8);
printf("m9: %f\n",m9);
printf("m10: %f\n",m10);
printf("m11: %f\n",m11);
printf("m12: %f\n",m12);
printf("m13: %f\n",m13);
printf("m14: %f\n",m14);
printf("m15: %f\n",m15);
printf("m16: %f\n",m16);
printf("m17: %f\n",m17);
printf("m18: %f\n",m18);
//.................inverse transformation......................................................
// q=0
fq = mrt_V1*rho-mrt_V2*m1+mrt_V3*m2;
dist[n] = fq;
// q = 1
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10)+0.16666666*Fx;
dist[10*Np+n] = fq;
// q=2
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10) - 0.16666666*Fx;
dist[Np+n] = fq;
// q = 3
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) + 0.16666666*Fy;
dist[11*Np+n] = fq;
// q = 4
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) - 0.16666666*Fy;
dist[2*Np+n] = fq;
// q = 5
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) + 0.16666666*Fz;
dist[12*Np+n] = fq;
// q = 6
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) - 0.16666666*Fz;
dist[3*Np+n] = fq;
// q = 7
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
+mrt_V12*m12+0.25*m13+0.125*(m16-m17) + 0.08333333333*(Fx+Fy);
dist[13*Np+n] = fq;
// q = 8
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
+mrt_V12*m12+0.25*m13+0.125*(m17-m16) - 0.08333333333*(Fx+Fy);
dist[4*Np+n] = fq;
// q = 9
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
+mrt_V12*m12-0.25*m13+0.125*(m16+m17) + 0.08333333333*(Fx-Fy);
dist[14*Np+n] = fq;
// q = 10
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
+mrt_V12*m12-0.25*m13-0.125*(m16+m17)- 0.08333333333*(Fx-Fy);
dist[5*Np+n] = fq;
// q = 11
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
-mrt_V12*m12+0.25*m15+0.125*(m18-m16) + 0.08333333333*(Fx+Fz);
dist[15*Np+n] = fq;
// q = 12
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
-mrt_V12*m12+0.25*m15+0.125*(m16-m18) - 0.08333333333*(Fx+Fz);
dist[6*Np+n] = fq;
// q = 13
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
-mrt_V12*m12-0.25*m15-0.125*(m16+m18) + 0.08333333333*(Fx-Fz);
dist[16*Np+n] = fq;
// q= 14
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
-mrt_V12*m12-0.25*m15+0.125*(m16+m18) - 0.08333333333*(Fx-Fz);
dist[7*Np+n] = fq;
// q = 15
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18) + 0.08333333333*(Fy+Fz);
dist[17*Np+n] = fq;
// q = 16
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17)- 0.08333333333*(Fy+Fz);
dist[8*Np+n] = fq;
// q = 17
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)
-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18) + 0.08333333333*(Fy-Fz);
dist[18*Np+n] = fq;
// q = 18
fq = mrt_V1*rho+mrt_V9*m1
+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)
-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18) - 0.08333333333*(Fy-Fz);
dist[9*Np+n] = fq;
}
}
int main (int argc, char **argv)
{
MPI_Init(&argc,&argv);
int rank = MPI_WORLD_RANK();
int nprocs = MPI_WORLD_SIZE();
for (int i=0; i<nprocs; i++) {
if ( rank==i )
printf("%i of %i: TestMoments\n",rank,nprocs);
MPI_Barrier(MPI_COMM_WORLD);
}
// Create a memory leak for valgrind to find
if ( nprocs==1 ) {
double *x = new double[1];
ASSERT(x!=NULL);
}
// set the error code
// Note: the error code should be consistent across all processors
int error = 0;
int Np = 1;
int Q = 9;
double *dist;
dist = new double[(2*Q+1)*Np];
// create the test system
for (int n=0; n<Np; n++){
dist[n] = 1.f*Np;
}
for (int q=0; q<Q; q++){
// set up the odd distributions
int qodd=2*q+1;
int qeven=2*(q+1);
for (int n=0; n<Np; n++){
//dist[(q+1)*Np + n] = 1.f*n + 0.01*qodd;
dist[(q+1)*Np + n] = 1.f*n + 0.01*qeven;
}
// set up the even distributions
for (int n=0; n<Np; n++){
//dist[(q+10)*Np + n] = 1.f*n + 0.01*qeven;
dist[(q+10)*Np + n] = 1.f*n + 0.01*qodd;
}
}
MRT_Transform(dist,Np);
// Check the result
double *diff;
diff = new double [(2*Q+1)*Np];
for (int n=0; n<Np; n++){
diff[n] = dist[n] - 1.f*Np;
}
for (int q=0; q<Q; q++){
int qodd=2*q+1;
int qeven=2*(q+1);
for (int n=0; n<Np; n++){
diff[(q+1)*Np + n] = dist[(q+1)*Np + n] - (1.f*n + 0.01*qeven);
}
for (int n=0; n<Np; n++){
diff[(q+10)*Np + n] = dist[(q+10)*Np + n] - (1.f*n + 0.01*qodd);
}
}
double tol = 1e-13;
int count=0;
for (int idx = 0; idx<(2*Q+1)*Np; idx++){
if(fabs(diff[idx]) > tol){
printf("Error at %f, value=%f\n",dist[idx]-diff[idx],dist[idx]);
count++;
}
}
error=count;
// Finished
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
return error;
}

377
tests/TestPoiseuille.cpp Normal file
View File

@@ -0,0 +1,377 @@
//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI_Helpers.h"
using namespace std;
//***************************************************************************************
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
int check;
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
if (rank == 0){
printf("********************************************************\n");
printf("Running Unit Test: TestPoiseuille \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
unsigned int nBlocks, nthreads;
int timestepMax, interval;
double tau,Fx,Fy,Fz,tol;
// Domain variables
double Lx,Ly,Lz;
int nspheres;
int Nx,Ny,Nz;
int i,j,k,n;
int dim = 12; if (rank == 0) printf("dim=%d\n",dim);
int timestep = 0;
tau = 1.0;
double mu=(tau-0.5)/3.0;
double rlx_setA=1.0/tau;
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
Fx = 0; Fy = 0;
Fz = 1e-3; //1.f; // 1e-3;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
if (domain.good()){
printf("domain.good == true \n");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
}
else if (nprocs==1){
printf("domain.good == false - using predefined parameters \n");
nprocx=nprocy=nprocz=1;
Nx=dim; Ny = dim;
Nz = dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==2){
printf("domain.good == false - using predefined parameters \n");
nprocx=2;
nprocy=nprocz=1;
Nx=0.5*dim; Ny = 0.5*dim;
Nz = 0.5*dim;
nspheres=0;
Lx=Ly=Lz=1;
}
//.......................................................................
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// **************************************************************
// **************************************************************
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
MPI_Barrier(comm);
kproc = rank/(nprocx*nprocy);
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
iproc = rank-nprocx*nprocy*kproc-nprocz*jproc;
if (rank == 0) {
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
}
MPI_Barrier(comm);
if (rank == 1){
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
printf("\n\n");
}
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
int BoundaryCondition=0;
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
//.......................................................................
// Assign the phase ID field
//.......................................................................
char LocalRankString[8];
sprintf(LocalRankString,"%05d",rank);
char LocalRankFilename[40];
sprintf(LocalRankFilename,"ID.%05i",rank);
/*
FILE *IDFILE = fopen(LocalRankFilename,"rb");
if (IDFILE==NULL) ERROR("Error opening file: ID.xxxxx");
fread(Dm.id,1,N,IDFILE);
fclose(IDFILE);
*/
// initialize empty domain
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
if (i<2) Dm.id[n] = 0;
else if (i>Nx-3) Dm.id[n] = 0;
else Dm.id[n]=1;
}
}
}
Dm.CommInit(comm);
MPI_Barrier(comm);
//.......................................................................
// Compute the media porosity
//.......................................................................
double sum;
double sum_local=0.0, porosity;
int Np=0; // number of local pore nodes
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
sum_local+=1.0;
Np++;
}
}
}
}
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
porosity = sum*iVol_global;
if (rank==0) printf("Media porosity = %f \n",porosity);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
if (rank==0) printf ("Create ScaLBL_Communicator \n");
// Create a communicator for the device
ScaLBL_Communicator ScaLBL_Comm(Dm);
//...........device phase ID.................................................
if (rank==0) printf ("Copying phase ID to device \n");
char *ID;
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
// Copy to the device
ScaLBL_CopyToDevice(ID, Dm.id, N);
//...........................................................................
if (rank==0){
printf("Total domain size = %i \n",N);
printf("Reduced domain size = %i \n",Np);
}
// LBM variables
if (rank==0) printf ("Allocating distributions \n");
int neighborSize=18*Np*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Np];
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
// ScaLBL_Comm.MemoryDenseLayoutFull(Map,neighborList,Dm.id,Np); // this was how I tested for correctness
MPI_Barrier(comm);
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
int *NeighborList;
// double *f_even,*f_odd;
double * dist;
double * Velocity;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &dist, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
//...........................................................................
/*
* AA Algorithm begins here
*
*/
ScaLBL_D3Q19_Init(dist, Np);
//.......create and start timer............
double starttime,stoptime,cputime;
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
starttime = MPI_Wtime();
/************ MAIN ITERATION LOOP (timing communications)***************************************/
// ScaLBL_Comm.SendD3Q19(dist, &dist[10*Np]);
// ScaLBL_Comm.RecvD3Q19(dist, &dist[10*Np]);
// ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
//
if (rank==0) printf("Beginning AA timesteps...\n");
if (rank==0) printf("********************************************************\n");
while (timestep < 2000) {
ScaLBL_Comm.SendD3Q19AA(dist); //READ FROM NORMAL
ScaLBL_D3Q19_AAodd_MRT(NeighborList, dist, ScaLBL_Comm.next, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAodd_MRT(NeighborList, dist, 0, ScaLBL_Comm.next, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
ScaLBL_Comm.SendD3Q19AA(dist); //READ FORM NORMAL
ScaLBL_D3Q19_AAeven_MRT(dist, ScaLBL_Comm.next, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAeven_MRT(dist, 0, ScaLBL_Comm.next, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
//************************************************************************/
}
//************************************************************************/
stoptime = MPI_Wtime();
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
cputime = stoptime - starttime;
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
double MLUPS = double(Np*timestep)/cputime/1000000;
// if (rank==0) printf("********************************************************\n");
// if (rank==0) printf("CPU time = %f \n", cputime);
// if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
// if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
// if (rank==0) printf("********************************************************\n");
// Number of memory references from the swap algorithm (per timestep)
// 18 reads and 18 writes for each lattice site
double MemoryRefs = Np*38;
// number of memory references for the swap algorithm - GigaBytes / second
// if (rank==0) printf("DRAM bandwidth (per process)= %f GB/sec \n",MemoryRefs*8*timestep/1e9/cputime);
// Report bandwidth in Gigabits per second
// communication bandwidth includes both send and recieve
//if (rank==0) printf("Communication bandwidth (per process)= %f Gbit/sec \n",ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
// if (rank==0) printf("Aggregated communication bandwidth = %f Gbit/sec \n",nprocs*ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
double *Vz;
Vz= new double [Np];
int SIZE=Np*sizeof(double);
ScaLBL_D3Q19_Momentum(dist,Velocity, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
ScaLBL_CopyToHost(&Vz[0],&Velocity[2*Np],SIZE);
if (rank == 0) printf("Force: %f,%f,%f \n",Fx,Fy,Fz);
double vz;
double W = 1.f*Nx-4.f;
j=Ny/2; k=Nz/2;
if (rank == 0) printf("Channel width=%f \n",W);
if (rank == 0) printf("ID flag vz analytical\n");
MPI_Barrier(comm);
if (rank == 0) {
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
printf("%i ",Dm.id[n]);
n = Map(i,j,k);
//printf("%i,%i,%i; %i :",i,j,k,n);
if (n<0) {vz =0.f; printf(" b "); }
else { vz=Vz[n]; printf(" a "); }
printf("%f ",vz);
//Analytical solution
double x=1.f*i-1.5;
if (n<0) vz=0.f;
else vz=Fz*x*(W-x)/(2.f*mu);
printf("%f\n",vz);
}
printf("\n");
}
if (rank == 1) {
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
printf("%i ",Dm.id[n]);
n = Map(i,j,k);
//printf("%i,%i,%i; %i :",i,j,k,n);
if (n<0) {vz =0.f; printf(" b "); }
else { vz=Vz[n]; printf(" a "); }
printf("%f ",vz);
//Analytical solution
double x=1.f*i-1.5;
if (n<0) vz=0.f;
else vz=Fz*x*(W-x)/(2.f*mu);
printf("%f\n",vz);
}
printf("\n");
}
}
// ****************************************************
MPI_Barrier(comm);
MPI_Finalize();
// ****************************************************
return check;
}

276
tests/TestPressVel.cpp Normal file
View File

@@ -0,0 +1,276 @@
//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI_Helpers.h"
using namespace std;
//***************************************************************************************
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
int check;
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
if (rank == 0){
printf("********************************************************\n");
printf("Running Unit Test: TestPressVel \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
unsigned int nBlocks, nthreads;
int timestepMax, interval;
double tau,Fx,Fy,Fz,tol;
// Domain variables
double Lx,Ly,Lz;
int nspheres;
int Nx,Ny,Nz;
int i,j,k,n;
int dim = 50; if (rank == 0) printf("dim=%d\n",dim);
double rlx_setA=1.0;
double rlx_setB=1.0;
Fx = Fy = 0.f;
Fz = 1.0e-4;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
if (domain.good()){
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
}
else if (nprocs==1){
nprocx=nprocy=nprocz=1;
Nx=4; Ny = 4;
Nz = 4;
nspheres=0;
Lx=Ly=Lz=1;
}
//.......................................................................
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// **************************************************************
// **************************************************************
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
MPI_Barrier(comm);
kproc = rank/(nprocx*nprocy);
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
iproc = rank-nprocx*nprocy*kproc-nprocz*jproc;
if (rank == 0) {
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
}
MPI_Barrier(comm);
if (rank == 1){
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
printf("\n\n");
}
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
int BoundaryCondition=0;
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
//.......................................................................
// Assign the phase ID field
//.......................................................................
char LocalRankString[8];
sprintf(LocalRankString,"%05d",rank);
char LocalRankFilename[40];
sprintf(LocalRankFilename,"ID.%05i",rank);
/*
FILE *IDFILE = fopen(LocalRankFilename,"rb");
if (IDFILE==NULL) ERROR("Error opening file: ID.xxxxx");
fread(Dm.id,1,N,IDFILE);
fclose(IDFILE);
*/
Dm.CommInit(comm);
//.......................................................................
// Compute the media porosity
//.......................................................................
double sum;
double sum_local=0.0, porosity;
int Np=0; // number of local pore nodes
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
Dm.id[n] = 1;
if (Dm.id[n] > 0){
sum_local+=1.0;
Np++;
}
}
}
}
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
porosity = sum*iVol_global;
if (rank==0) printf("Media porosity = %f \n",porosity);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
if (rank==0) printf ("Create ScaLBL_Communicator \n");
// Create a communicator for the device
ScaLBL_Communicator ScaLBL_Comm(Dm);
//...........device phase ID.................................................
if (rank==0) printf ("Copying phase ID to device \n");
char *ID;
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
// Copy to the device
ScaLBL_CopyToDevice(ID, Dm.id, N);
//...........................................................................
if (rank==0){
printf("Total domain size = %i \n",N);
printf("Reduced domain size = %i \n",Np);
}
// LBM variables
if (rank==0) printf ("Allocating distributions \n");
int neighborSize=18*Np*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Np];
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
// ScaLBL_Comm.MemoryDenseLayoutFull(Map,neighborList,Dm.id,Np); // this was how I tested for correctness
MPI_Barrier(comm);
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
int *NeighborList;
// double *f_even,*f_odd;
double * dist;
double * Velocity;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &dist, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
//...........................................................................
/*
* AA Algorithm begins here
*
*/
//ScaLBL_D3Q19_Init(ID, dist, &dist[10*Np], Np, 1, 1);
double *DIST;
DIST = new double [19*Np];
double VALUE=0.1;
for (int n=0; n<Np; n++){
//DIST[n]=1.0;
// even distributions
DIST[Np + n] = 1.0 - VALUE;
DIST[2*Np + n] = 1.0 - VALUE;
DIST[3*Np + n] = 1.0 - VALUE;
DIST[4*Np + n] = 1.0;
DIST[5*Np + n] = 1.0;
DIST[6*Np + n] = 1.0;
DIST[7*Np + n] = 1.0;
DIST[8*Np + n] = 1.0;
DIST[9*Np + n] = 1.0;
// odd distributions
DIST[10*Np + n] = 1.0;
DIST[11*Np + n] = 1.0;
DIST[12*Np + n] = 1.0;
DIST[13*Np + n] = 1.0;
DIST[14*Np + n] = 1.0;
DIST[15*Np + n] = 1.0;
DIST[16*Np + n] = 1.0;
DIST[17*Np + n] = 1.0;
DIST[18*Np + n] = 1.0;
}
ScaLBL_CopyToDevice(dist, DIST, 19*Np*sizeof(double));
double *Vz;
Vz= new double [Np];
size_t SIZE=Np*sizeof(double);
ScaLBL_D3Q19_Momentum(dist, Velocity, Np);
ScaLBL_CopyToHost(&Vz[0],&Velocity[2],SIZE);
//
for (int n=0; n<Np; n++){
if (Vz[n] - VALUE > 1e-8){
printf("ERROR: site %i, value=%f \n",n,Vz[n]); check = 15;
}
}
}
// ****************************************************
MPI_Barrier(comm);
MPI_Finalize();
// ****************************************************
}