Added a bunch of tests from ScaLBL
This commit is contained in:
@@ -37,6 +37,15 @@ ADD_LBPM_TEST( pmmc_cylinder )
|
||||
ADD_LBPM_TEST( TestTorus )
|
||||
ADD_LBPM_TEST( TestFluxBC )
|
||||
ADD_LBPM_TEST( TestMap )
|
||||
ADD_LBPM_TEST( TestMRT )
|
||||
ADD_LBPM_TEST( TestColorGrad )
|
||||
ADD_LBPM_TEST( TestColorMassBounceback )
|
||||
ADD_LBPM_TEST( TestPressVel )
|
||||
ADD_LBPM_TEST( TestPoiseuille )
|
||||
ADD_LBPM_TEST( TestForceMoments )
|
||||
ADD_LBPM_TEST( TestForceD3Q19 )
|
||||
ADD_LBPM_TEST( TestMomentsD3Q19 )
|
||||
|
||||
ADD_LBPM_TEST( TestInterfaceSpeed )
|
||||
ADD_LBPM_TEST( TestSphereCurvature )
|
||||
#ADD_LBPM_TEST_1_2_4( TestTwoPhase )
|
||||
@@ -57,6 +66,9 @@ ENDIF()
|
||||
|
||||
# Sample test that will run with 1, 2, and 4 processors, failing with 4 or more procs
|
||||
ADD_LBPM_TEST_1_2_4( hello_world )
|
||||
ADD_LBPM_TEST_1_2_4( TestColorBubble )
|
||||
ADD_LBPM_TEST_1_2_4( TestColorSquareTube )
|
||||
|
||||
SET_TESTS_PROPERTIES( hello_world PROPERTIES ENVIRONMENT "MPICH_RDMA_ENABLED_CUDA=0")
|
||||
IF ( USE_MPI )
|
||||
SET_TESTS_PROPERTIES( hello_world_2procs PROPERTIES ENVIRONMENT "MPICH_RDMA_ENABLED_CUDA=0")
|
||||
|
||||
577
tests/TestColorBubble.cpp
Normal file
577
tests/TestColorBubble.cpp
Normal file
@@ -0,0 +1,577 @@
|
||||
|
||||
//*************************************************************************
|
||||
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
|
||||
// James E. McCLure
|
||||
//*************************************************************************
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include "common/ScaLBL.h"
|
||||
#include "common/MPI_Helpers.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
inline void AssignComponentLabels(char *id, double *phase, int Nx, int Ny, int Nz, int rank, MPI_Comm comm)
|
||||
{
|
||||
int NLABELS=0;
|
||||
char VALUE=0;
|
||||
double AFFINITY=0.f;
|
||||
|
||||
vector <char> Label;
|
||||
vector <double> Affinity;
|
||||
// Read the labels
|
||||
if (rank==0){
|
||||
printf("Component labels:\n");
|
||||
ifstream iFILE("ComponentLabels.csv");\
|
||||
if (iFILE.good()){
|
||||
while (!iFILE.eof()){
|
||||
iFILE>>VALUE;
|
||||
iFILE>>AFFINITY;
|
||||
Label.push_back(VALUE);
|
||||
Affinity.push_back(AFFINITY);
|
||||
NLABELS++;
|
||||
printf("%i %f\n",VALUE,AFFINITY);
|
||||
}
|
||||
}
|
||||
else{
|
||||
printf("Using default labels: Solid (0 --> -1.0), NWP (1 --> 1.0), WP (2 --> -1.0)\n");
|
||||
// Set default values
|
||||
VALUE=0; AFFINITY=-1.0;
|
||||
Label.push_back(VALUE);
|
||||
Affinity.push_back(AFFINITY);
|
||||
NLABELS++;
|
||||
printf("%i %f\n",VALUE,AFFINITY);
|
||||
VALUE=1; AFFINITY=1.0;
|
||||
Label.push_back(VALUE);
|
||||
Affinity.push_back(AFFINITY);
|
||||
NLABELS++;
|
||||
printf("%i %f\n",VALUE,AFFINITY);
|
||||
VALUE=2; AFFINITY=-1.0;
|
||||
Label.push_back(VALUE);
|
||||
Affinity.push_back(AFFINITY);
|
||||
NLABELS++;
|
||||
printf("%i %f\n",VALUE,AFFINITY);
|
||||
}
|
||||
}
|
||||
// Broadcast the list
|
||||
MPI_Bcast(&NLABELS,1,MPI_INT,0,comm);
|
||||
|
||||
// Copy into contiguous buffers
|
||||
char *LabelList;
|
||||
double * AffinityList;
|
||||
LabelList=new char[NLABELS];
|
||||
AffinityList=new double[NLABELS];
|
||||
MPI_Bcast(&LabelList,NLABELS,MPI_CHAR,0,comm);
|
||||
MPI_Bcast(&AffinityList,NLABELS,MPI_DOUBLE,0,comm);
|
||||
|
||||
// Assign the labels
|
||||
for (int k=0;k<Nz;k++){
|
||||
for (int j=0;j<Ny;j++){
|
||||
for (int i=0;i<Nx;i++){
|
||||
int n = k*Nx*Ny+j*Nx+i;
|
||||
VALUE=id[n];
|
||||
// Assign the affinity from the paired list
|
||||
for (int idx=0; idx < NLABELS; idx++){
|
||||
if (VALUE == LabelList[idx]){
|
||||
AFFINITY=AffinityList[idx];
|
||||
idx = NLABELS;
|
||||
}
|
||||
}
|
||||
phase[n] = AFFINITY;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//***************************************************************************************
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//*****************************************
|
||||
// ***** MPI STUFF ****************
|
||||
//*****************************************
|
||||
// Initialize MPI
|
||||
int rank,nprocs;
|
||||
MPI_Init(&argc,&argv);
|
||||
MPI_Comm comm = MPI_COMM_WORLD;
|
||||
MPI_Comm_rank(comm,&rank);
|
||||
MPI_Comm_size(comm,&nprocs);
|
||||
int check;
|
||||
{
|
||||
// parallel domain size (# of sub-domains)
|
||||
int nprocx,nprocy,nprocz;
|
||||
int iproc,jproc,kproc;
|
||||
|
||||
|
||||
if (rank == 0){
|
||||
printf("********************************************************\n");
|
||||
printf("Running Color Model: TestColor \n");
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
// BGK Model parameters
|
||||
string FILENAME;
|
||||
unsigned int nBlocks, nthreads;
|
||||
int timestepMax, interval;
|
||||
double Fx,Fy,Fz,tol;
|
||||
// Domain variables
|
||||
double Lx,Ly,Lz;
|
||||
int nspheres;
|
||||
int Nx,Ny,Nz;
|
||||
int i,j,k,n;
|
||||
int dim = 50;
|
||||
//if (rank == 0) printf("dim=%d\n",dim);
|
||||
int timestep = 0;
|
||||
int timesteps = 100;
|
||||
int centralNode = 2;
|
||||
|
||||
double tauA = 1.0;
|
||||
double tauB = 1.0;
|
||||
double rhoA = 1.0;
|
||||
double rhoB = 1.0;
|
||||
double alpha = 0.001;
|
||||
double beta = 0.95;
|
||||
|
||||
double tau = 1.0;
|
||||
double mu=(tau-0.5)/3.0;
|
||||
double rlx_setA=1.0/tau;
|
||||
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
||||
|
||||
Fx = Fy = 0.f;
|
||||
Fz = 0.f;
|
||||
|
||||
if (rank==0){
|
||||
//.......................................................................
|
||||
// Reading the domain information file
|
||||
//.......................................................................
|
||||
ifstream domain("Domain.in");
|
||||
if (domain.good()){
|
||||
domain >> nprocx;
|
||||
domain >> nprocy;
|
||||
domain >> nprocz;
|
||||
domain >> Nx;
|
||||
domain >> Ny;
|
||||
domain >> Nz;
|
||||
domain >> nspheres;
|
||||
domain >> Lx;
|
||||
domain >> Ly;
|
||||
domain >> Lz;
|
||||
}
|
||||
else if (nprocs==1){
|
||||
nprocx=nprocy=nprocz=1;
|
||||
Nx=3; Ny = 1;
|
||||
Nz = 1;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==2){
|
||||
nprocx=2; nprocy=1;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
Nx = dim; Ny = dim; Nz = dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==4){
|
||||
nprocx=nprocy=2;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==8){
|
||||
nprocx=nprocy=nprocz=2;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
//.......................................................................
|
||||
}
|
||||
// **************************************************************
|
||||
// Broadcast simulation parameters from rank 0 to all other procs
|
||||
MPI_Barrier(comm);
|
||||
//.................................................
|
||||
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
||||
//.................................................
|
||||
MPI_Barrier(comm);
|
||||
// **************************************************************
|
||||
// **************************************************************
|
||||
|
||||
if (nprocs != nprocx*nprocy*nprocz){
|
||||
printf("nprocx = %i \n",nprocx);
|
||||
printf("nprocy = %i \n",nprocy);
|
||||
printf("nprocz = %i \n",nprocz);
|
||||
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
|
||||
}
|
||||
|
||||
if (rank==0){
|
||||
printf("********************************************************\n");
|
||||
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
MPI_Barrier(comm);
|
||||
|
||||
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
|
||||
int BoundaryCondition=0;
|
||||
|
||||
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
|
||||
|
||||
Nx += 2;
|
||||
Ny += 2;
|
||||
Nz += 2;
|
||||
int N = Nx*Ny*Nz;
|
||||
|
||||
//.......................................................................
|
||||
// Assign the phase ID field
|
||||
//.......................................................................
|
||||
char LocalRankString[8];
|
||||
sprintf(LocalRankString,"%05d",rank);
|
||||
char LocalRankFilename[40];
|
||||
sprintf(LocalRankFilename,"ID.%05i",rank);
|
||||
|
||||
for (k=0;k<Nz;k++){
|
||||
for (j=0;j<Ny;j++){
|
||||
for (i=0;i<Nx;i++){
|
||||
n = k*Nx*Ny + j*Nx + i;
|
||||
Dm.id[n]=1;
|
||||
}
|
||||
}
|
||||
}
|
||||
Dm.CommInit(comm);
|
||||
|
||||
|
||||
for (k=0;k<Nz;k++){
|
||||
for (j=0;j<Ny;j++){
|
||||
for (i=0;i<Nx;i++){
|
||||
n = k*Nx*Ny + j*Nx + i;
|
||||
Dm.id[n]=0;
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("rank=%i, %i,%i,%i \n",rank,Dm.iproc,Dm.jproc,Dm.jproc);
|
||||
// Initialize a bubble
|
||||
int BubbleRadius=Nx/3;
|
||||
int center_x = (Nx-2)*nprocx/2;
|
||||
int center_y = (Ny-2)*nprocy/2;
|
||||
int center_z = (Nz-2)*nprocz/2;
|
||||
if (rank==0) printf("Bubble radius = %i, center=%i,%i,%i \n",BubbleRadius,center_x,center_y,center_z);
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny + j*Nx + i;
|
||||
int iglobal= i+(Nx-2)*Dm.iproc;
|
||||
int jglobal= j+(Ny-2)*Dm.jproc;
|
||||
int kglobal= k+(Nz-2)*Dm.kproc;
|
||||
|
||||
// Initialize phase position field for parallel bubble test
|
||||
if ((iglobal-center_x)*(iglobal-center_x)
|
||||
+(jglobal-center_y)*(jglobal-center_y)
|
||||
+(kglobal-center_z)*(kglobal-center_z) < BubbleRadius*BubbleRadius){
|
||||
Dm.id[n] = 2;
|
||||
}
|
||||
else{
|
||||
Dm.id[n]=1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//.......................................................................
|
||||
// Compute the media porosity, assign phase labels and solid composition
|
||||
//.......................................................................
|
||||
double sum;
|
||||
double sum_local=0.0, porosity;
|
||||
int Np=0; // number of local pore nodes
|
||||
double *PhaseLabel;
|
||||
PhaseLabel = new double[N];
|
||||
Dm.AssignComponentLabels(PhaseLabel);
|
||||
//.......................................................................
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
sum_local+=1.0;
|
||||
Np++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
|
||||
porosity = sum*iVol_global;
|
||||
if (rank==0) printf("Media porosity = %f \n",porosity);
|
||||
if (rank==0) printf ("Create ScaLBL_Communicator \n");
|
||||
MPI_Barrier(comm);
|
||||
|
||||
// Create a communicator for the device (will use optimized layout)
|
||||
ScaLBL_Communicator ScaLBL_Comm(Dm);
|
||||
//Create a second communicator based on the regular data layout
|
||||
ScaLBL_Communicator ScaLBL_Comm_Regular(Dm);
|
||||
|
||||
//...........device phase ID.................................................
|
||||
if (rank==0) printf ("Copying phase ID to device \n");
|
||||
char *ID;
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
|
||||
// Copy to the device
|
||||
ScaLBL_CopyToDevice(ID, Dm.id, N);
|
||||
//...........................................................................
|
||||
|
||||
if (rank==0){
|
||||
printf("Total domain size = %i \n",N);
|
||||
printf("Reduced domain size = %i \n",Np);
|
||||
}
|
||||
|
||||
// LBM variables
|
||||
if (rank==0) printf ("Set up the neighborlist \n");
|
||||
|
||||
int neighborSize=18*Np*sizeof(int);
|
||||
int *neighborList;
|
||||
IntArray Map(Nx,Ny,Nz);
|
||||
neighborList= new int[18*Np];
|
||||
|
||||
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
|
||||
MPI_Barrier(comm);
|
||||
|
||||
//......................device distributions.................................
|
||||
int dist_mem_size = Np*sizeof(double);
|
||||
if (rank==0) printf ("Allocating distributions \n");
|
||||
|
||||
int *NeighborList;
|
||||
int *dvcMap;
|
||||
// double *f_even,*f_odd;
|
||||
double *fq, *Aq, *Bq;
|
||||
double *Den, *Phi;
|
||||
double *ColorGrad;
|
||||
double *Vel;
|
||||
double *Pressure;
|
||||
|
||||
//...........................................................................
|
||||
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
|
||||
|
||||
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Vel, 3*sizeof(double)*Np);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
|
||||
|
||||
//...........................................................................
|
||||
// Update GPU data structures
|
||||
if (rank==0) printf ("Setting up device map and neighbor list \n");
|
||||
int *TmpMap;
|
||||
TmpMap=new int[Np];
|
||||
for (k=1; k<Nz-1; k++){
|
||||
for (j=1; j<Ny-1; j++){
|
||||
for (i=1; i<Nx-1; i++){
|
||||
int idx=Map(i,j,k);
|
||||
if (!(idx < 0))
|
||||
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
|
||||
}
|
||||
}
|
||||
}
|
||||
//for (int idx=0; idx<Np; idx++) printf("Map=%i\n",TmpMap[idx]);
|
||||
|
||||
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
|
||||
ScaLBL_DeviceBarrier();
|
||||
delete [] TmpMap;
|
||||
|
||||
// copy the neighbor list
|
||||
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
|
||||
// initialize phi based on PhaseLabel (include solid component labels)
|
||||
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
|
||||
//...........................................................................
|
||||
|
||||
if (rank==0) printf ("Initializing distributions \n");
|
||||
// Initialize the phase field and variables
|
||||
ScaLBL_D3Q19_Init(fq, Np);
|
||||
if (rank==0) printf ("Initializing phase field \n");
|
||||
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, Np);
|
||||
|
||||
//************ MAIN ITERATION LOOP (timing communications)***************************************
|
||||
|
||||
if (rank==0) printf("Beginning AA timesteps...\n");
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
if (rank==0) printf("No. of timesteps for timing: %i \n", timesteps);
|
||||
|
||||
//.......create and start timer............
|
||||
double starttime,stoptime,cputime;
|
||||
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
starttime = MPI_Wtime();
|
||||
//timesteps=4;
|
||||
while (timestep < timesteps) {
|
||||
|
||||
// ODD TIMESTEP
|
||||
// Compute the Phase indicator field
|
||||
// Read for Aq, Bq happens in this routine (requires communication)
|
||||
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
|
||||
|
||||
// Compute the Color Gradient
|
||||
ScaLBL_Comm_Regular.SendHalo(Phi);
|
||||
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, ScaLBL_Comm.next, Np, Np, Nx, Ny, Nz);
|
||||
ScaLBL_Comm_Regular.RecvHalo(Phi);
|
||||
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, 0,ScaLBL_Comm.next, Np, Nx, Ny, Nz);
|
||||
|
||||
// Perform the collision operation
|
||||
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
|
||||
// ScaLBL_D3Q19_AAodd_ColorMomentum(NeighborList, fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
|
||||
// alpha, beta, Fx, Fy, Fz,ScaLBL_Comm.next, Np, Np);
|
||||
// ScaLBL_D3Q19_AAodd_ColorMass(NeighborList, Aq, Bq, Den, Vel, ColorGrad, beta, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
|
||||
// ScaLBL_D3Q19_AAodd_ColorMomentum(NeighborList, fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
|
||||
// alpha, beta, Fx, Fy, Fz, 0, ScaLBL_Comm.next, Np);
|
||||
// ScaLBL_D3Q19_AAodd_ColorMass(NeighborList, Aq, Bq, Den, Vel, ColorGrad, beta, 0, ScaLBL_Comm.next, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
|
||||
// EVEN TIMESTEP
|
||||
// Compute the Phase indicator field
|
||||
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
|
||||
|
||||
// Compute the Color Gradient
|
||||
ScaLBL_Comm_Regular.SendHalo(Phi);
|
||||
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, ScaLBL_Comm.next, Np, Np, Nx, Ny, Nz);
|
||||
ScaLBL_Comm_Regular.RecvHalo(Phi);
|
||||
//ScaLBL_D3Q19_ColorGrad(dvcMap, Phi, ColorGrad, 0, ScaLBL_Comm.next, Np, Nx, Ny, Nz);
|
||||
|
||||
// Perform the collision operation
|
||||
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
|
||||
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
|
||||
// ScaLBL_D3Q19_AAeven_ColorMomentum(fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
|
||||
// alpha, beta, Fx, Fy, Fz, ScaLBL_Comm.next, Np, Np);
|
||||
// ScaLBL_D3Q19_AAeven_ColorMass(Aq, Bq, Den, Vel, ColorGrad, beta, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
|
||||
// ScaLBL_D3Q19_AAeven_ColorMomentum(fq, Den, Vel, ColorGrad, rhoA, rhoB, tauA, tauB,
|
||||
// alpha, beta, Fx, Fy, Fz, 0, ScaLBL_Comm.next, Np);
|
||||
// ScaLBL_D3Q19_AAeven_ColorMass(Aq, Bq, Den, Vel, ColorGrad, beta, 0, ScaLBL_Comm.next, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
//************************************************************************
|
||||
|
||||
}
|
||||
//************************************************************************
|
||||
stoptime = MPI_Wtime();
|
||||
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
|
||||
cputime = stoptime - starttime;
|
||||
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
|
||||
double MLUPS = double(Np*timestep)/cputime/1000000;
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
if (rank==0) printf("CPU time = %f \n", cputime);
|
||||
if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
|
||||
MLUPS *= nprocs;
|
||||
if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
|
||||
// Number of memory references for color model
|
||||
double MemoryRefs = double(Np)*(77*8+(9+7+7)*4); // extra memory refs to read from neighborlist (every other timestep)
|
||||
// number of memory references for the swap algorithm - GigaBytes / second
|
||||
if (rank==0) printf("DRAM bandwidth (per process)= %f GB/sec \n",MemoryRefs*timestep/1e9/cputime);
|
||||
// Report bandwidth in Gigabits per second
|
||||
// communication bandwidth includes both send and recieve
|
||||
if (rank==0) printf("Communication bandwidth (per process)= %f Gbit/sec \n",ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
|
||||
if (rank==0) printf("Aggregated communication bandwidth = %f Gbit/sec \n",nprocs*ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
|
||||
|
||||
double *VEL;
|
||||
VEL= new double [3*Np];
|
||||
int SIZE=3*Np*sizeof(double);
|
||||
ScaLBL_D3Q19_Momentum(fq,Vel,Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
ScaLBL_CopyToHost(&VEL[0],&Vel[0],SIZE);
|
||||
|
||||
sum_local=0.f;
|
||||
sum = 0.f;
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
int idx = Map(i,j,k);
|
||||
sum_local+=VEL[2*Np+idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
|
||||
double PoreVel = sum*iVol_global;
|
||||
if (rank==0) printf("Velocity = %f \n",PoreVel);
|
||||
|
||||
double *PHASE;
|
||||
PHASE= new double [Nx*Ny*Nz];
|
||||
SIZE=Nx*Ny*Nz*sizeof(double);
|
||||
ScaLBL_CopyToHost(&PHASE[0],&Phi[0],SIZE);
|
||||
|
||||
FILE *OUTFILE;
|
||||
OUTFILE = fopen("Phase.raw","wb");
|
||||
fwrite(PHASE,8,N,OUTFILE);
|
||||
fclose(OUTFILE);
|
||||
|
||||
double *DENA, *DENB, *TMPDAT;
|
||||
SIZE=Np*sizeof(double);
|
||||
TMPDAT = new double [Np];
|
||||
DENA= new double [Nx*Ny*Nz];
|
||||
DENB= new double [Nx*Ny*Nz];
|
||||
ScaLBL_CopyToHost(&TMPDAT[0],&Den[0],SIZE);
|
||||
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENA);
|
||||
ScaLBL_CopyToHost(&TMPDAT[0],&Den[Np],SIZE);
|
||||
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENB);
|
||||
|
||||
FILE *AFILE;
|
||||
sprintf(LocalRankFilename,"na.%05i.raw",rank);
|
||||
AFILE = fopen(LocalRankFilename,"wb");
|
||||
fwrite(DENA,8,N,AFILE);
|
||||
fclose(AFILE);
|
||||
|
||||
FILE *BFILE;
|
||||
BFILE = fopen("nB.raw","wb");
|
||||
fwrite(DENB,8,N,BFILE);
|
||||
fclose(BFILE);
|
||||
|
||||
double *CG;
|
||||
CG= new double [3*Np];
|
||||
ScaLBL_CopyToHost(&CG[0],&ColorGrad[0],3*SIZE);
|
||||
for (int idx=0; idx<Np; idx++){
|
||||
double C=CG[idx]*CG[idx]+CG[Np+idx]*CG[Np+idx]+CG[2*Np+idx]*CG[2*Np+idx];
|
||||
TMPDAT[idx]=C;
|
||||
}
|
||||
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENB);
|
||||
FILE *CGFILE;
|
||||
CGFILE = fopen("cgrad.raw","wb");
|
||||
fwrite(DENB,8,N,CGFILE);
|
||||
fclose(CGFILE);
|
||||
|
||||
|
||||
}
|
||||
// ****************************************************
|
||||
MPI_Barrier(comm);
|
||||
MPI_Finalize();
|
||||
// ****************************************************
|
||||
|
||||
return check;
|
||||
}
|
||||
|
||||
269
tests/TestColorGrad.cpp
Normal file
269
tests/TestColorGrad.cpp
Normal file
@@ -0,0 +1,269 @@
|
||||
|
||||
//*************************************************************************
|
||||
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
|
||||
// James E. McCLure
|
||||
//*************************************************************************
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include "common/ScaLBL.h"
|
||||
#include "common/MPI_Helpers.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
||||
//***************************************************************************************
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//*****************************************
|
||||
// ***** MPI STUFF ****************
|
||||
//*****************************************
|
||||
// Initialize MPI
|
||||
int rank,nprocs;
|
||||
MPI_Init(&argc,&argv);
|
||||
MPI_Comm comm = MPI_COMM_WORLD;
|
||||
MPI_Comm_rank(comm,&rank);
|
||||
MPI_Comm_size(comm,&nprocs);
|
||||
int check;
|
||||
{
|
||||
// parallel domain size (# of sub-domains)
|
||||
int nprocx,nprocy,nprocz;
|
||||
int iproc,jproc,kproc;
|
||||
|
||||
|
||||
if (rank == 0){
|
||||
printf("********************************************************\n");
|
||||
printf("Running Color Model: TestColor \n");
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
// BGK Model parameters
|
||||
string FILENAME;
|
||||
unsigned int nBlocks, nthreads;
|
||||
int timestepMax, interval;
|
||||
double Fx,Fy,Fz,tol;
|
||||
// Domain variables
|
||||
double Lx,Ly,Lz;
|
||||
int nspheres;
|
||||
int Nx,Ny,Nz;
|
||||
int i,j,k,n;
|
||||
int dim = 3;
|
||||
//if (rank == 0) printf("dim=%d\n",dim);
|
||||
int timestep = 0;
|
||||
int timesteps = 100;
|
||||
int centralNode = 2;
|
||||
|
||||
double tauA = 1.0;
|
||||
double tauB = 1.0;
|
||||
double rhoA = 1.0;
|
||||
double rhoB = 1.0;
|
||||
double alpha = 0.005;
|
||||
double beta = 0.95;
|
||||
|
||||
double tau = 1.0;
|
||||
double mu=(tau-0.5)/3.0;
|
||||
double rlx_setA=1.0/tau;
|
||||
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
||||
|
||||
Fx = Fy = 0.f;
|
||||
Fz = 0.f;
|
||||
|
||||
if (rank==0){
|
||||
//.......................................................................
|
||||
// Reading the domain information file
|
||||
//.......................................................................
|
||||
ifstream domain("Domain.in");
|
||||
if (domain.good()){
|
||||
domain >> nprocx;
|
||||
domain >> nprocy;
|
||||
domain >> nprocz;
|
||||
domain >> Nx;
|
||||
domain >> Ny;
|
||||
domain >> Nz;
|
||||
domain >> nspheres;
|
||||
domain >> Lx;
|
||||
domain >> Ly;
|
||||
domain >> Lz;
|
||||
}
|
||||
else if (nprocs==1){
|
||||
nprocx=nprocy=nprocz=1;
|
||||
Nx=Ny=Nz=3;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==2){
|
||||
nprocx=2; nprocy=1;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
Nx = dim; Ny = dim; Nz = dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==4){
|
||||
nprocx=nprocy=2;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==8){
|
||||
nprocx=nprocy=nprocz=2;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
//.......................................................................
|
||||
}
|
||||
// **************************************************************
|
||||
// Broadcast simulation parameters from rank 0 to all other procs
|
||||
MPI_Barrier(comm);
|
||||
//.................................................
|
||||
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
||||
//.................................................
|
||||
MPI_Barrier(comm);
|
||||
// **************************************************************
|
||||
// **************************************************************
|
||||
|
||||
if (nprocs != nprocx*nprocy*nprocz){
|
||||
printf("nprocx = %i \n",nprocx);
|
||||
printf("nprocy = %i \n",nprocy);
|
||||
printf("nprocz = %i \n",nprocz);
|
||||
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
|
||||
}
|
||||
|
||||
if (rank==0){
|
||||
printf("********************************************************\n");
|
||||
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
MPI_Barrier(comm);
|
||||
|
||||
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
|
||||
int BoundaryCondition=0;
|
||||
|
||||
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
|
||||
|
||||
Nx += 2;
|
||||
Ny += 2;
|
||||
Nz += 2;
|
||||
int N = Nx*Ny*Nz;
|
||||
|
||||
int Np=0; // number of local pore nodes
|
||||
double *PhaseLabel;
|
||||
PhaseLabel = new double[N];
|
||||
//.......................................................................
|
||||
for (k=0;k<Nz;k++){
|
||||
for (j=0;j<Ny;j++){
|
||||
for (i=0;i<Nx;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
Dm.id[n]=1;
|
||||
Np++;
|
||||
// Initialize gradient ColorGrad = (1,2,3)
|
||||
double value=double(3*k+2*j+i);
|
||||
PhaseLabel[n]= value;
|
||||
}
|
||||
}
|
||||
}
|
||||
Dm.CommInit(comm);
|
||||
MPI_Barrier(comm);
|
||||
if (rank == 0) cout << "Domain set." << endl;
|
||||
if (rank==0) printf ("Create ScaLBL_Communicator \n");
|
||||
|
||||
//Create a second communicator based on the regular data layout
|
||||
ScaLBL_Communicator ScaLBL_Comm_Regular(Dm);
|
||||
ScaLBL_Communicator ScaLBL_Comm(Dm);
|
||||
|
||||
// LBM variables
|
||||
if (rank==0) printf ("Set up the neighborlist \n");
|
||||
|
||||
int neighborSize=18*Np*sizeof(int);
|
||||
int *neighborList;
|
||||
IntArray Map(Nx,Ny,Nz);
|
||||
neighborList= new int[18*Np];
|
||||
|
||||
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
|
||||
MPI_Barrier(comm);
|
||||
|
||||
//......................device distributions.................................
|
||||
int dist_mem_size = Np*sizeof(double);
|
||||
if (rank==0) printf ("Allocating distributions \n");
|
||||
|
||||
int *NeighborList;
|
||||
int *dvcMap;
|
||||
double *Phi;
|
||||
double *ColorGrad;
|
||||
//...........................................................................
|
||||
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
|
||||
|
||||
//...........................................................................
|
||||
// Update GPU data structures
|
||||
if (rank==0) printf ("Setting up device map and neighbor list \n");
|
||||
int *TmpMap;
|
||||
TmpMap=new int[Np*sizeof(int)];
|
||||
for (k=1; k<Nz-1; k++){
|
||||
for (j=1; j<Ny-1; j++){
|
||||
for (i=1; i<Nx-1; i++){
|
||||
int idx=Map(i,j,k);
|
||||
if (!(idx < 0))
|
||||
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
|
||||
}
|
||||
}
|
||||
}
|
||||
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
|
||||
ScaLBL_DeviceBarrier();
|
||||
delete [] TmpMap;
|
||||
|
||||
// copy the neighbor list
|
||||
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
|
||||
// initialize phi based on PhaseLabel (include solid component labels)
|
||||
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
|
||||
//...........................................................................
|
||||
|
||||
ScaLBL_D3Q19_Gradient(dvcMap, Phi, ColorGrad, 0, Np, Np, Nx, Ny, Nz);
|
||||
|
||||
double *COLORGRAD;
|
||||
COLORGRAD= new double [3*Np];
|
||||
int SIZE=3*Np*sizeof(double);
|
||||
ScaLBL_CopyToHost(&COLORGRAD[0],&ColorGrad[0],SIZE);
|
||||
|
||||
|
||||
double CX,CY,CZ;
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
int idx = Map(i,j,k);
|
||||
CX=COLORGRAD[idx];
|
||||
CY=COLORGRAD[Np+idx];
|
||||
CZ=COLORGRAD[2*Np+idx];
|
||||
double error=sqrt((CX-1.0)*(CX-1.0)+(CY-2.0)*(CY-2.0)+ (CZ-3.0)*(CZ-3.0));
|
||||
if (error > 1e-8)
|
||||
printf("i,j,k=%i,%i,%i: Color gradient=%f,%f,%f \n",i,j,k,CX,CY,CZ);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
// ****************************************************
|
||||
MPI_Barrier(comm);
|
||||
MPI_Finalize();
|
||||
// ****************************************************
|
||||
|
||||
return check;
|
||||
}
|
||||
|
||||
557
tests/TestColorMassBounceback.cpp
Normal file
557
tests/TestColorMassBounceback.cpp
Normal file
@@ -0,0 +1,557 @@
|
||||
|
||||
//*************************************************************************
|
||||
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
|
||||
// James E. McCLure
|
||||
//*************************************************************************
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include "common/ScaLBL.h"
|
||||
#include "common/MPI_Helpers.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
||||
//***************************************************************************************
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//*****************************************
|
||||
// ***** MPI STUFF ****************
|
||||
//*****************************************
|
||||
// Initialize MPI
|
||||
int rank,nprocs;
|
||||
MPI_Init(&argc,&argv);
|
||||
MPI_Comm comm = MPI_COMM_WORLD;
|
||||
MPI_Comm_rank(comm,&rank);
|
||||
MPI_Comm_size(comm,&nprocs);
|
||||
int check;
|
||||
{
|
||||
// parallel domain size (# of sub-domains)
|
||||
int nprocx,nprocy,nprocz;
|
||||
int iproc,jproc,kproc;
|
||||
|
||||
|
||||
if (rank == 0){
|
||||
printf("********************************************************\n");
|
||||
printf("Running Color Model: TestColor \n");
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
// BGK Model parameters
|
||||
string FILENAME;
|
||||
unsigned int nBlocks, nthreads;
|
||||
int timestepMax, interval;
|
||||
double Fx,Fy,Fz,tol;
|
||||
// Domain variables
|
||||
double Lx,Ly,Lz;
|
||||
int nspheres;
|
||||
int Nx,Ny,Nz;
|
||||
int i,j,k,n;
|
||||
int dim = 3;
|
||||
//if (rank == 0) printf("dim=%d\n",dim);
|
||||
int timestep = 0;
|
||||
int timesteps = 100;
|
||||
int centralNode = 2;
|
||||
|
||||
double tauA = 1.0;
|
||||
double tauB = 1.0;
|
||||
double rhoA = 1.0;
|
||||
double rhoB = 1.0;
|
||||
double alpha = 0.005;
|
||||
double beta = 0.95;
|
||||
|
||||
double tau = 1.0;
|
||||
double mu=(tau-0.5)/3.0;
|
||||
double rlx_setA=1.0/tau;
|
||||
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
||||
|
||||
Fx = Fy = 0.f;
|
||||
Fz = 0.f;
|
||||
|
||||
if (rank==0){
|
||||
//.......................................................................
|
||||
// Reading the domain information file
|
||||
//.......................................................................
|
||||
ifstream domain("Domain.in");
|
||||
if (domain.good()){
|
||||
domain >> nprocx;
|
||||
domain >> nprocy;
|
||||
domain >> nprocz;
|
||||
domain >> Nx;
|
||||
domain >> Ny;
|
||||
domain >> Nz;
|
||||
domain >> nspheres;
|
||||
domain >> Lx;
|
||||
domain >> Ly;
|
||||
domain >> Lz;
|
||||
}
|
||||
else if (nprocs==1){
|
||||
nprocx=nprocy=nprocz=1;
|
||||
Nx=Ny=Nz=3;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==2){
|
||||
nprocx=2; nprocy=1;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
Nx = dim; Ny = dim; Nz = dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==4){
|
||||
nprocx=nprocy=2;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==8){
|
||||
nprocx=nprocy=nprocz=2;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
//.......................................................................
|
||||
}
|
||||
// **************************************************************
|
||||
// Broadcast simulation parameters from rank 0 to all other procs
|
||||
MPI_Barrier(comm);
|
||||
//.................................................
|
||||
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
||||
//.................................................
|
||||
MPI_Barrier(comm);
|
||||
// **************************************************************
|
||||
// **************************************************************
|
||||
|
||||
if (nprocs != nprocx*nprocy*nprocz){
|
||||
printf("nprocx = %i \n",nprocx);
|
||||
printf("nprocy = %i \n",nprocy);
|
||||
printf("nprocz = %i \n",nprocz);
|
||||
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
|
||||
}
|
||||
|
||||
if (rank==0){
|
||||
printf("********************************************************\n");
|
||||
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
MPI_Barrier(comm);
|
||||
|
||||
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
|
||||
int BoundaryCondition=0;
|
||||
|
||||
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
|
||||
|
||||
Nx += 2;
|
||||
Ny += 2;
|
||||
Nz += 2;
|
||||
int N = Nx*Ny*Nz;
|
||||
|
||||
int Np=0; // number of local pore nodes
|
||||
double *PhaseLabel;
|
||||
PhaseLabel = new double[N];
|
||||
//.......................................................................
|
||||
for (k=0;k<Nz;k++){
|
||||
for (j=0;j<Ny;j++){
|
||||
for (i=0;i<Nx;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
Dm.id[n]=0;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
Dm.id[n]=1;
|
||||
Np++;
|
||||
// constant color
|
||||
PhaseLabel[n]= -1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
Dm.CommInit(comm);
|
||||
MPI_Barrier(comm);
|
||||
if (rank == 0) cout << "Domain set." << endl;
|
||||
if (rank==0) printf ("Create ScaLBL_Communicator \n");
|
||||
|
||||
//Create a second communicator based on the regular data layout
|
||||
ScaLBL_Communicator ScaLBL_Comm_Regular(Dm);
|
||||
ScaLBL_Communicator ScaLBL_Comm(Dm);
|
||||
|
||||
// LBM variables
|
||||
if (rank==0) printf ("Set up the neighborlist \n");
|
||||
|
||||
int neighborSize=18*Np*sizeof(int);
|
||||
int *neighborList;
|
||||
IntArray Map(Nx,Ny,Nz);
|
||||
neighborList= new int[18*Np];
|
||||
|
||||
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
|
||||
MPI_Barrier(comm);
|
||||
|
||||
//......................device distributions.................................
|
||||
int dist_mem_size = Np*sizeof(double);
|
||||
if (rank==0) printf ("Allocating distributions \n");
|
||||
|
||||
|
||||
int *NeighborList;
|
||||
int *dvcMap;
|
||||
// double *f_even,*f_odd;
|
||||
double *fq, *Aq, *Bq;
|
||||
double *Den, *Phi;
|
||||
double *ColorGrad;
|
||||
double *Vel;
|
||||
double *Pressure;
|
||||
|
||||
//...........................................................................
|
||||
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
|
||||
|
||||
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Vel, 3*sizeof(double)*Np);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
|
||||
|
||||
//...........................................................................
|
||||
// Update GPU data structures
|
||||
if (rank==0) printf ("Setting up device map and neighbor list \n");
|
||||
int *TmpMap;
|
||||
TmpMap=new int[Np*sizeof(int)];
|
||||
for (k=1; k<Nz-1; k++){
|
||||
for (j=1; j<Ny-1; j++){
|
||||
for (i=1; i<Nx-1; i++){
|
||||
int idx=Map(i,j,k);
|
||||
if (!(idx < 0))
|
||||
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
|
||||
}
|
||||
}
|
||||
}
|
||||
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
|
||||
ScaLBL_DeviceBarrier();
|
||||
delete [] TmpMap;
|
||||
|
||||
// copy the neighbor list
|
||||
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
|
||||
//...........................................................................
|
||||
|
||||
// Distributions / densities for checking
|
||||
double nA,nB;
|
||||
double *DIST;
|
||||
DIST= new double [7*Np];
|
||||
double *DENSITY;
|
||||
DENSITY= new double [2*Np];
|
||||
int SIZE;
|
||||
|
||||
int errc_odd_a=0;
|
||||
int errc_even_a=0;
|
||||
int errc_odd_b=0;
|
||||
int errc_even_b=0;
|
||||
|
||||
//*******************Component A*******************
|
||||
// initialize phi based on PhaseLabel (include solid component labels)
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
// constant color
|
||||
PhaseLabel[n]= 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
|
||||
|
||||
if (rank==0) printf ("Initializing distributions \n");
|
||||
// Initialize the phase field and variables
|
||||
ScaLBL_D3Q19_Init(fq, Np);
|
||||
if (rank==0) printf ("Initializing phase field \n");
|
||||
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, Np);
|
||||
|
||||
// *************ODD TIMESTEP*************
|
||||
// Compute the Phase indicator field
|
||||
// Read for Aq, Bq happens in this routine (requires communication)
|
||||
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
|
||||
|
||||
// Halo exchange for phase field
|
||||
ScaLBL_Comm_Regular.SendHalo(Phi);
|
||||
ScaLBL_Comm_Regular.RecvHalo(Phi);
|
||||
|
||||
// Perform the collision operation
|
||||
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
|
||||
|
||||
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
|
||||
printf("Check after odd time \n");
|
||||
SIZE=2*Np*sizeof(double);
|
||||
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
|
||||
|
||||
// Check the distributions
|
||||
SIZE=7*Np*sizeof(double);
|
||||
ScaLBL_CopyToHost(&DIST[0],&Aq[0],SIZE);
|
||||
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
int idx = Map(i,j,k);
|
||||
nA=DENSITY[idx];
|
||||
nB=DENSITY[Np+idx];
|
||||
//printf("i,j,k=%i,%i,%i \n",i,j,k);
|
||||
//printf(" nA=%f, nB=%f \n",nA,nB);
|
||||
double val=DIST[idx];
|
||||
double error = fabs(val - 0.3333333333333333*nA);
|
||||
if (error > 1.0e-12) {
|
||||
printf(" q=0, Aq=%f \n",val);
|
||||
errc_odd_b++;
|
||||
}
|
||||
for (int q=1; q<7; q++){
|
||||
val=DIST[q*Np+idx];
|
||||
error = fabs(val - 0.1111111111111111*nA);
|
||||
if (error > 1.0e-12) {
|
||||
printf(" q=%i, Aq=%f \n",q,val);
|
||||
errc_odd_b++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// *************EVEN TIMESTEP*************
|
||||
// Compute the Phase indicator field
|
||||
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
|
||||
|
||||
// Halo exchange for phase field
|
||||
ScaLBL_Comm_Regular.SendHalo(Phi);
|
||||
ScaLBL_Comm_Regular.RecvHalo(Phi);
|
||||
|
||||
// Perform the collision operation
|
||||
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
|
||||
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
|
||||
|
||||
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
|
||||
printf("Check after even time \n");
|
||||
|
||||
SIZE=2*Np*sizeof(double);
|
||||
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
|
||||
|
||||
// Check the distributions
|
||||
SIZE=7*Np*sizeof(double);
|
||||
ScaLBL_CopyToHost(&DIST[0],&Aq[0],SIZE);
|
||||
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
int idx = Map(i,j,k);
|
||||
nA=DENSITY[idx];
|
||||
nB=DENSITY[Np+idx];
|
||||
//printf("i,j,k=%i,%i,%i \n",i,j,k);
|
||||
//printf(" nA=%f, nB=%f \n",nA,nB);
|
||||
double val=DIST[idx];
|
||||
double error = fabs(val - 0.3333333333333333*nA);
|
||||
if (error > 1.0e-12) {
|
||||
printf(" q=0, Aq=%f \n",val);
|
||||
errc_even_b++;
|
||||
}
|
||||
for (int q=1; q<7; q++){
|
||||
val=DIST[q*Np+idx];
|
||||
error = fabs(val - 0.1111111111111111*nA);
|
||||
if (error > 1.0e-12) {
|
||||
printf(" q=%i, Aq=%f \n",q,val);
|
||||
errc_even_b++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//*******************Component B*******************
|
||||
// initialize phi based on PhaseLabel (include solid component labels)
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
// constant color
|
||||
PhaseLabel[n]= -1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
|
||||
|
||||
if (rank==0) printf ("Initializing distributions \n");
|
||||
// Initialize the phase field and variables
|
||||
ScaLBL_D3Q19_Init(fq, Np);
|
||||
if (rank==0) printf ("Initializing phase field \n");
|
||||
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, Np);
|
||||
|
||||
// *************ODD TIMESTEP*************
|
||||
// Compute the Phase indicator field
|
||||
// Read for Aq, Bq happens in this routine (requires communication)
|
||||
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
|
||||
|
||||
// Halo exchange for phase field
|
||||
ScaLBL_Comm_Regular.SendHalo(Phi);
|
||||
ScaLBL_Comm_Regular.RecvHalo(Phi);
|
||||
|
||||
// Perform the collision operation
|
||||
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
|
||||
|
||||
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
|
||||
|
||||
printf("Check after odd time \n");
|
||||
SIZE=2*Np*sizeof(double);
|
||||
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
|
||||
|
||||
// Check the distributions
|
||||
SIZE=7*Np*sizeof(double);
|
||||
ScaLBL_CopyToHost(&DIST[0],&Bq[0],SIZE);
|
||||
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
int idx = Map(i,j,k);
|
||||
nA=DENSITY[idx];
|
||||
nB=DENSITY[Np+idx];
|
||||
//printf("i,j,k=%i,%i,%i \n",i,j,k);
|
||||
//printf(" nA=%f, nB=%f \n",nA,nB);
|
||||
double val=DIST[idx];
|
||||
double error = fabs(val - 0.3333333333333333*nB);
|
||||
if (error > 1.0e-12) {
|
||||
printf(" q=0, Bq=%f \n",val);
|
||||
errc_odd_b++;
|
||||
}
|
||||
for (int q=1; q<7; q++){
|
||||
val=DIST[q*Np+idx];
|
||||
error = fabs(val - 0.1111111111111111*nB);
|
||||
if (error > 1.0e-12) {
|
||||
printf(" q=%i, Bq=%f \n",q,val);
|
||||
errc_odd_b++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// *************EVEN TIMESTEP*************
|
||||
// Compute the Phase indicator field
|
||||
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
|
||||
|
||||
// Halo exchange for phase field
|
||||
ScaLBL_Comm_Regular.SendHalo(Phi);
|
||||
ScaLBL_Comm_Regular.RecvHalo(Phi);
|
||||
|
||||
// Perform the collision operation
|
||||
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
|
||||
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
|
||||
|
||||
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
printf("Check after even time \n");
|
||||
|
||||
SIZE=2*Np*sizeof(double);
|
||||
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
|
||||
|
||||
// Check the distributions
|
||||
SIZE=7*Np*sizeof(double);
|
||||
ScaLBL_CopyToHost(&DIST[0],&Bq[0],SIZE);
|
||||
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
int idx = Map(i,j,k);
|
||||
nA=DENSITY[idx];
|
||||
nB=DENSITY[Np+idx];
|
||||
//printf("i,j,k=%i,%i,%i \n",i,j,k);
|
||||
//printf(" nA=%f, nB=%f \n",nA,nB);
|
||||
double val=DIST[idx];
|
||||
double error = fabs(val - 0.3333333333333333*nB);
|
||||
if (error > 1.0e-12) {
|
||||
printf(" q=0, Bq=%f \n",val);
|
||||
errc_even_b++;
|
||||
}
|
||||
for (int q=1; q<7; q++){
|
||||
val=DIST[q*Np+idx];
|
||||
error = fabs(val - 0.1111111111111111*nB);
|
||||
if (error > 1.0e-12) {
|
||||
printf(" q=%i, Bq=%f \n",q,val);
|
||||
errc_even_b++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("Error counts: A even=%i, A odd=%i, B even=%i, B odd=%i \n",errc_even_a,errc_odd_a,errc_even_b,errc_odd_b);
|
||||
int errc_total=errc_even_a+errc_odd_a+errc_even_b+errc_odd_b;
|
||||
if (errc_total>0) check=1;
|
||||
else check=0;
|
||||
|
||||
}
|
||||
// ****************************************************
|
||||
MPI_Barrier(comm);
|
||||
MPI_Finalize();
|
||||
// ****************************************************
|
||||
|
||||
return check;
|
||||
}
|
||||
|
||||
544
tests/TestColorSquareTube.cpp
Normal file
544
tests/TestColorSquareTube.cpp
Normal file
@@ -0,0 +1,544 @@
|
||||
|
||||
//*************************************************************************
|
||||
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
|
||||
// James E. McCLure
|
||||
//*************************************************************************
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include "common/ScaLBL.h"
|
||||
#include "common/MPI_Helpers.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
||||
//***************************************************************************************
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//*****************************************
|
||||
// ***** MPI STUFF ****************
|
||||
//*****************************************
|
||||
// Initialize MPI
|
||||
int rank,nprocs;
|
||||
MPI_Init(&argc,&argv);
|
||||
MPI_Comm comm = MPI_COMM_WORLD;
|
||||
MPI_Comm_rank(comm,&rank);
|
||||
MPI_Comm_size(comm,&nprocs);
|
||||
int check;
|
||||
{
|
||||
// parallel domain size (# of sub-domains)
|
||||
int nprocx,nprocy,nprocz;
|
||||
int iproc,jproc,kproc;
|
||||
|
||||
|
||||
if (rank == 0){
|
||||
printf("********************************************************\n");
|
||||
printf("Running Color Model: TestColor \n");
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
// BGK Model parameters
|
||||
string FILENAME;
|
||||
unsigned int nBlocks, nthreads;
|
||||
int timestepMax, interval;
|
||||
double Fx,Fy,Fz,tol;
|
||||
// Domain variables
|
||||
double Lx,Ly,Lz;
|
||||
int nspheres;
|
||||
int Nx,Ny,Nz;
|
||||
int i,j,k,n;
|
||||
int dim = 50;
|
||||
//if (rank == 0) printf("dim=%d\n",dim);
|
||||
int timestep = 1;
|
||||
int timesteps = 100;
|
||||
int centralNode = 2;
|
||||
|
||||
double tauA = 1.0;
|
||||
double tauB = 1.0;
|
||||
double rhoA = 1.0;
|
||||
double rhoB = 1.0;
|
||||
double alpha = 0.001;
|
||||
double beta = 0.95;
|
||||
double tau = 1.0;
|
||||
double mu=(tau-0.5)/3.0;
|
||||
double rlx_setA=1.0/tau;
|
||||
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
||||
|
||||
Fx = Fy = 0.f;
|
||||
Fz = 0.f;
|
||||
|
||||
int typeBC;
|
||||
double din, dout, flux;
|
||||
double inletA,inletB,outletA,outletB;
|
||||
inletA=1.f;
|
||||
inletB=0.f;
|
||||
outletA=0.f;
|
||||
outletB=1.f;
|
||||
typeBC=4;
|
||||
flux = 10.f;
|
||||
dout=1.f;
|
||||
|
||||
if (rank==0){
|
||||
//.......................................................................
|
||||
// Reading the domain information file
|
||||
//.......................................................................
|
||||
ifstream domain("Domain.in");
|
||||
if (domain.good()){
|
||||
domain >> nprocx;
|
||||
domain >> nprocy;
|
||||
domain >> nprocz;
|
||||
domain >> Nx;
|
||||
domain >> Ny;
|
||||
domain >> Nz;
|
||||
domain >> nspheres;
|
||||
domain >> Lx;
|
||||
domain >> Ly;
|
||||
domain >> Lz;
|
||||
}
|
||||
else if (nprocs==1){
|
||||
nprocx=nprocy=nprocz=1;
|
||||
Nx=3; Ny = 1;
|
||||
Nz = 1;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==2){
|
||||
nprocx=2; nprocy=1;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
Nx = dim; Ny = dim; Nz = dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==4){
|
||||
nprocx=nprocy=2;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==8){
|
||||
nprocx=nprocy=nprocz=2;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
//.......................................................................
|
||||
}
|
||||
// **************************************************************
|
||||
// Broadcast simulation parameters from rank 0 to all other procs
|
||||
MPI_Barrier(comm);
|
||||
//.................................................
|
||||
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
||||
//.................................................
|
||||
MPI_Barrier(comm);
|
||||
// **************************************************************
|
||||
// **************************************************************
|
||||
|
||||
if (nprocs != nprocx*nprocy*nprocz){
|
||||
printf("nprocx = %i \n",nprocx);
|
||||
printf("nprocy = %i \n",nprocy);
|
||||
printf("nprocz = %i \n",nprocz);
|
||||
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
|
||||
}
|
||||
|
||||
if (rank==0){
|
||||
printf("********************************************************\n");
|
||||
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
MPI_Barrier(comm);
|
||||
|
||||
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
|
||||
int BoundaryCondition=0;
|
||||
|
||||
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
|
||||
|
||||
Nx += 2;
|
||||
Ny += 2;
|
||||
Nz += 2;
|
||||
int N = Nx*Ny*Nz;
|
||||
|
||||
//.......................................................................
|
||||
// Assign the phase ID field
|
||||
//.......................................................................
|
||||
char LocalRankString[8];
|
||||
sprintf(LocalRankString,"%05d",rank);
|
||||
char LocalRankFilename[40];
|
||||
sprintf(LocalRankFilename,"ID.%05i",rank);
|
||||
|
||||
|
||||
for (k=0;k<Nz;k++){
|
||||
for (j=0;j<Ny;j++){
|
||||
for (i=0;i<Nx;i++){
|
||||
n = k*Nx*Ny + j*Nx + i;
|
||||
Dm.id[n]=0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kproc = rank/(nprocx*nprocy);
|
||||
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
|
||||
iproc = rank-nprocx*nprocy*kproc-nprocx*jproc;
|
||||
printf("rank=%i, %i,%i,%i \n",rank,iproc,jproc,kproc);
|
||||
// Initialize a square tube
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny + j*Nx + i;
|
||||
int iglobal= i+(Nx-2)*iproc;
|
||||
int jglobal= j+(Ny-2)*jproc;
|
||||
int kglobal= k+(Nz-2)*kproc;
|
||||
|
||||
// Initialize phase position field for parallel bubble test
|
||||
if (iglobal < 2) Dm.id[n]=0;
|
||||
else if (iglobal > (Nx-2)*nprocx-2) Dm.id[n]=0;
|
||||
else if (jglobal < 2) Dm.id[n]=0;
|
||||
else if (jglobal > (Ny-2)*nprocy-2) Dm.id[n]=0;
|
||||
else if (kglobal < 20) Dm.id[n]=1;
|
||||
else Dm.id[n]=2;
|
||||
}
|
||||
}
|
||||
}
|
||||
Dm.CommInit(comm);
|
||||
|
||||
//.......................................................................
|
||||
// Compute the media porosity, assign phase labels and solid composition
|
||||
//.......................................................................
|
||||
double sum;
|
||||
double sum_local=0.0, porosity;
|
||||
int Np=0; // number of local pore nodes
|
||||
double *PhaseLabel;
|
||||
PhaseLabel = new double[N];
|
||||
Dm.AssignComponentLabels(PhaseLabel);
|
||||
//.......................................................................
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
sum_local+=1.0;
|
||||
Np++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
|
||||
porosity = sum*iVol_global;
|
||||
if (rank==0) printf("Media porosity = %f \n",porosity);
|
||||
if (rank==0) printf ("Create ScaLBL_Communicator \n");
|
||||
MPI_Barrier(comm);
|
||||
|
||||
// Create a communicator for the device (will use optimized layout)
|
||||
ScaLBL_Communicator ScaLBL_Comm(Dm);
|
||||
//Create a second communicator based on the regular data layout
|
||||
ScaLBL_Communicator ScaLBL_Comm_Regular(Dm);
|
||||
|
||||
//...........device phase ID.................................................
|
||||
if (rank==0) printf ("Copying phase ID to device \n");
|
||||
char *ID;
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
|
||||
// Copy to the device
|
||||
ScaLBL_CopyToDevice(ID, Dm.id, N);
|
||||
//...........................................................................
|
||||
|
||||
if (rank==0){
|
||||
printf("Total domain size = %i \n",N);
|
||||
printf("Reduced domain size = %i \n",Np);
|
||||
}
|
||||
|
||||
// LBM variables
|
||||
if (rank==0) printf ("Set up the neighborlist \n");
|
||||
|
||||
int neighborSize=18*Np*sizeof(int);
|
||||
int *neighborList;
|
||||
IntArray Map(Nx,Ny,Nz);
|
||||
neighborList= new int[18*Np];
|
||||
|
||||
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
|
||||
MPI_Barrier(comm);
|
||||
|
||||
//......................device distributions.................................
|
||||
int dist_mem_size = Np*sizeof(double);
|
||||
if (rank==0) printf ("Allocating distributions \n");
|
||||
|
||||
int *NeighborList;
|
||||
int *dvcMap;
|
||||
// double *f_even,*f_odd;
|
||||
double *fq, *Aq, *Bq;
|
||||
double *Den, *Phi;
|
||||
double *ColorGrad;
|
||||
double *Vel;
|
||||
double *Pressure;
|
||||
|
||||
//...........................................................................
|
||||
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
|
||||
|
||||
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Vel, 3*sizeof(double)*Np);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
|
||||
|
||||
//...........................................................................
|
||||
// Update GPU data structures
|
||||
if (rank==0) printf ("Setting up device map and neighbor list \n");
|
||||
int *TmpMap;
|
||||
TmpMap=new int[Np];
|
||||
for (k=1; k<Nz-1; k++){
|
||||
for (j=1; j<Ny-1; j++){
|
||||
for (i=1; i<Nx-1; i++){
|
||||
int idx=Map(i,j,k);
|
||||
if (!(idx < 0))
|
||||
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
|
||||
}
|
||||
}
|
||||
}
|
||||
//for (int idx=0; idx<Np; idx++) printf("Map=%i\n",TmpMap[idx]);
|
||||
|
||||
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
|
||||
ScaLBL_DeviceBarrier();
|
||||
delete [] TmpMap;
|
||||
|
||||
// copy the neighbor list
|
||||
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
|
||||
// initialize phi based on PhaseLabel (include solid component labels)
|
||||
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
|
||||
//...........................................................................
|
||||
|
||||
if (rank==0) printf ("Initializing distributions \n");
|
||||
// Initialize the phase field and variables
|
||||
ScaLBL_D3Q19_Init(fq, Np);
|
||||
if (rank==0) printf ("Initializing phase field \n");
|
||||
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, Np);
|
||||
if (Dm.kproc==0){
|
||||
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,0);
|
||||
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,1);
|
||||
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,2);
|
||||
}
|
||||
if (Dm.kproc == nprocz-1){
|
||||
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-1);
|
||||
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-2);
|
||||
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-3);
|
||||
}
|
||||
|
||||
//************ MAIN ITERATION LOOP (timing communications)***************************************
|
||||
|
||||
if (rank==0) printf("Beginning AA timesteps...\n");
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
if (rank==0) printf("No. of timesteps for timing: %i \n", timesteps);
|
||||
|
||||
//.......create and start timer............
|
||||
double starttime,stoptime,cputime;
|
||||
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
starttime = MPI_Wtime();
|
||||
//timesteps=20;
|
||||
//timestep=1;
|
||||
while (timestep < timesteps) {
|
||||
|
||||
// *************ODD TIMESTEP*************
|
||||
// Compute the Phase indicator field
|
||||
// Read for Aq, Bq happens in this routine (requires communication)
|
||||
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
|
||||
|
||||
// Halo exchange for phase field
|
||||
ScaLBL_Comm_Regular.SendHalo(Phi);
|
||||
ScaLBL_Comm_Regular.RecvHalo(Phi);
|
||||
|
||||
// Perform the collision operation
|
||||
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
|
||||
// Set BCs
|
||||
if (typeBC > 0){
|
||||
ScaLBL_Comm.Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
|
||||
ScaLBL_Comm.Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
|
||||
}
|
||||
if (typeBC == 3){
|
||||
ScaLBL_Comm.D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
|
||||
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
|
||||
}
|
||||
if (typeBC == 4){
|
||||
din = ScaLBL_Comm.D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
|
||||
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
|
||||
}
|
||||
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
|
||||
// *************EVEN TIMESTEP*************
|
||||
// Compute the Phase indicator field
|
||||
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
|
||||
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
|
||||
|
||||
// Halo exchange for phase field
|
||||
ScaLBL_Comm_Regular.SendHalo(Phi);
|
||||
ScaLBL_Comm_Regular.RecvHalo(Phi);
|
||||
|
||||
// Perform the collision operation
|
||||
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
|
||||
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
|
||||
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
|
||||
// Set boundary conditions
|
||||
if (typeBC > 0){
|
||||
ScaLBL_Comm.Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
|
||||
ScaLBL_Comm.Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
|
||||
}
|
||||
if (typeBC == 3){
|
||||
ScaLBL_Comm.D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
|
||||
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
|
||||
}
|
||||
else if (typeBC == 4){
|
||||
din = ScaLBL_Comm.D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
|
||||
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
|
||||
}
|
||||
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
|
||||
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
//************************************************************************
|
||||
|
||||
}
|
||||
//************************************************************************
|
||||
stoptime = MPI_Wtime();
|
||||
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
|
||||
cputime = stoptime - starttime;
|
||||
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
|
||||
double MLUPS = double(Np*timestep)/cputime/1000000;
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
if (rank==0) printf("CPU time = %f \n", cputime);
|
||||
if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
|
||||
MLUPS *= nprocs;
|
||||
if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
|
||||
// Number of memory references for color model
|
||||
double MemoryRefs = double(Np)*(77*8+(9+7+7)*4); // extra memory refs to read from neighborlist (every other timestep)
|
||||
// number of memory references for the swap algorithm - GigaBytes / second
|
||||
if (rank==0) printf("DRAM bandwidth (per process)= %f GB/sec \n",MemoryRefs*timestep/1e9/cputime);
|
||||
// Report bandwidth in Gigabits per second
|
||||
// communication bandwidth includes both send and recieve
|
||||
if (rank==0) printf("Communication bandwidth (per process)= %f Gbit/sec \n",ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
|
||||
if (rank==0) printf("Aggregated communication bandwidth = %f Gbit/sec \n",nprocs*ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
|
||||
|
||||
double *VEL;
|
||||
VEL= new double [3*Np];
|
||||
int SIZE=3*Np*sizeof(double);
|
||||
ScaLBL_D3Q19_Momentum(fq,Vel,Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
ScaLBL_CopyToHost(&VEL[0],&Vel[0],SIZE);
|
||||
|
||||
sum_local=0.f;
|
||||
sum = 0.f;
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
int idx = Map(i,j,k);
|
||||
sum_local+=VEL[2*Np+idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
|
||||
double PoreVel = sum*iVol_global;
|
||||
if (rank==0) printf("Average velocity = %f \n",PoreVel);
|
||||
|
||||
if (rank==0){
|
||||
printf("Printing inlet velocity for rank=0 \n");
|
||||
k=1;
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
int idx = Map(i,j,k);
|
||||
double vz = VEL[2*Np+idx];
|
||||
printf("%f ",vz);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
double *PHASE;
|
||||
PHASE= new double [Nx*Ny*Nz];
|
||||
SIZE=Nx*Ny*Nz*sizeof(double);
|
||||
ScaLBL_CopyToHost(&PHASE[0],&Phi[0],SIZE);
|
||||
|
||||
FILE *OUTFILE;
|
||||
sprintf(LocalRankFilename,"Phase.%05i.raw",rank);
|
||||
OUTFILE = fopen(LocalRankFilename,"wb");
|
||||
fwrite(PHASE,8,N,OUTFILE);
|
||||
fclose(OUTFILE);
|
||||
|
||||
double *DENA, *DENB, *TMPDAT;
|
||||
SIZE=Np*sizeof(double);
|
||||
TMPDAT = new double [Np];
|
||||
DENA= new double [Nx*Ny*Nz];
|
||||
DENB= new double [Nx*Ny*Nz];
|
||||
ScaLBL_CopyToHost(&TMPDAT[0],&Den[0],SIZE);
|
||||
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENA);
|
||||
ScaLBL_CopyToHost(&TMPDAT[0],&Den[Np],SIZE);
|
||||
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENB);
|
||||
|
||||
FILE *AFILE;
|
||||
sprintf(LocalRankFilename,"na.%05i.raw",rank);
|
||||
AFILE = fopen(LocalRankFilename,"wb");
|
||||
fwrite(DENA,8,N,AFILE);
|
||||
fclose(AFILE);
|
||||
|
||||
FILE *BFILE;
|
||||
sprintf(LocalRankFilename,"nb.%05i.raw",rank);
|
||||
BFILE = fopen(LocalRankFilename,"wb");
|
||||
fwrite(DENB,8,N,BFILE);
|
||||
fclose(BFILE);
|
||||
|
||||
double *CG;
|
||||
CG= new double [3*Np];
|
||||
ScaLBL_D3Q19_Gradient(dvcMap, Phi, ColorGrad, 0, Np, Np, Nx, Ny, Nz);
|
||||
|
||||
ScaLBL_CopyToHost(&CG[0],&ColorGrad[0],3*SIZE);
|
||||
for (int idx=0; idx<Np; idx++){
|
||||
double C=CG[idx]*CG[idx]+CG[Np+idx]*CG[Np+idx]+CG[2*Np+idx]*CG[2*Np+idx];
|
||||
TMPDAT[idx]=C;
|
||||
}
|
||||
ScaLBL_Comm.RegularLayout(Map,TMPDAT,DENB);
|
||||
FILE *CGFILE;
|
||||
sprintf(LocalRankFilename,"cgrad.%05i.raw",rank);
|
||||
CGFILE = fopen(LocalRankFilename,"wb");
|
||||
fwrite(DENB,8,N,CGFILE);
|
||||
fclose(CGFILE);
|
||||
|
||||
|
||||
}
|
||||
// ****************************************************
|
||||
MPI_Barrier(comm);
|
||||
MPI_Finalize();
|
||||
// ****************************************************
|
||||
|
||||
return check;
|
||||
}
|
||||
|
||||
552
tests/TestForceD3Q19.cpp
Normal file
552
tests/TestForceD3Q19.cpp
Normal file
@@ -0,0 +1,552 @@
|
||||
#include <iostream>
|
||||
#include "common/MPI_Helpers.h"
|
||||
#include "common/Utilities.h"
|
||||
#include <math.h>
|
||||
|
||||
|
||||
double mrt_V1=0.05263157894736842;
|
||||
double mrt_V2=0.012531328320802;
|
||||
double mrt_V3=0.04761904761904762;
|
||||
double mrt_V4=0.004594820384294068;
|
||||
double mrt_V5=0.01587301587301587;
|
||||
double mrt_V6=0.0555555555555555555555555;
|
||||
double mrt_V7=0.02777777777777778;
|
||||
double mrt_V8=0.08333333333333333;
|
||||
double mrt_V9=0.003341687552213868;
|
||||
double mrt_V10=0.003968253968253968;
|
||||
double mrt_V11=0.01388888888888889;
|
||||
double mrt_V12=0.04166666666666666;
|
||||
|
||||
/*
|
||||
# Rcode to check the moments
|
||||
|
||||
f=c(1.0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18)
|
||||
|
||||
rho=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
|
||||
jx=c(0,1,-1,0,0,0,0,1,-1,1,-1,1,-1,1,-1,0,0,0,0)
|
||||
jy=c(0,0,0,1,-1,0,0,1,-1,-1,1,0,0,0,0,1,-1,1,-1)
|
||||
jz=c(0,0,0,0,0,1,-1,0,0,0,0,1,-1,-1,1,1,-1,-1,1)
|
||||
|
||||
M1=c(-30,-11,-11,-11,-11,-11,-11,8,8,8,8,8,8,8,8,8,8,8,8)
|
||||
M2=c(12,-4,-4,-4,-4,-4,-4,1,1,1,1,1,1,1,1,1,1,1,1)
|
||||
M4=c(0,-4,4,0,0,0,0,1,-1,1,-1,1,-1,1,-1,0,0,0,0)
|
||||
M6=c(0,0,0,-4,4,0,0,1,-1,-1,1,0,0,0,0,1,-1,1,-1)
|
||||
M8=c(0,0,0,0,0,-4,4,0,0,0,0,1,-1,-1,1,1,-1,-1,1)
|
||||
M9=c(0,2,2,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-2,-2,-2,-2)
|
||||
M10=c(0,-4,-4,2,2,2,2,1,1,1,1,1,1,1,1,-2,-2,-2,-2)
|
||||
M11=c(0,0,0,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,0,0,0,0)
|
||||
M12=c(0,0,0,-2,-2,2,2,1,1,1,1,-1,-1,-1,-1,0,0,0,0)
|
||||
M13=c(0,0,0,0,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0)
|
||||
M14=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1)
|
||||
M15=c(0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,0,0,0,0)
|
||||
M16=c(0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,1,0,0,0,0)
|
||||
M17=c(0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,1,-1,1,-1)
|
||||
M18=c(0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,1,1,-1)
|
||||
*/
|
||||
inline void MRT_Transform(double *dist, int Np, double Fx, double Fy, double Fz) {
|
||||
|
||||
double fq,fp;
|
||||
// conserved momemnts
|
||||
double rho,jx,jy,jz;
|
||||
|
||||
// non-conserved moments
|
||||
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
||||
for (int n=0; n<Np; n++){
|
||||
|
||||
//........................................................................
|
||||
// READ THE DISTRIBUTIONS
|
||||
// (read from opposite array due to previous swap operation)
|
||||
//........................................................................
|
||||
fq = dist[n];
|
||||
//printf("q=0: %f\n",fq);
|
||||
rho = fq;
|
||||
m1 = -30.0*fq;
|
||||
m2 = 12.0*fq;
|
||||
|
||||
// q=1
|
||||
fp = dist[10*Np+n];
|
||||
//printf("q=1: %f\n",fp);
|
||||
rho += fp;
|
||||
m1 -= 11.0*fp;
|
||||
m2 -= 4.0*fp;
|
||||
jx = fp;
|
||||
m4 = -4.0*fp;
|
||||
m9 = 2.0*fp;
|
||||
m10 = -4.0*fp;
|
||||
|
||||
// f2 = dist[10*Np+n];
|
||||
fq = dist[Np+n];
|
||||
//printf("q=2: %f\n",fq);
|
||||
rho += fq;
|
||||
m1 -= 11.0*(fq);
|
||||
m2 -= 4.0*(fq);
|
||||
jx -= fq;
|
||||
m4 += 4.0*(fq);
|
||||
m9 += 2.0*(fq);
|
||||
m10 -= 4.0*(fq);
|
||||
|
||||
// q=3
|
||||
fq = dist[11*Np+n];
|
||||
//printf("q=3: %f\n",fq);
|
||||
rho += fq;
|
||||
m1 -= 11.0*fq;
|
||||
m2 -= 4.0*fq;
|
||||
jy = fq;
|
||||
m6 = -4.0*fq;
|
||||
m9 -= fq;
|
||||
m10 += 2.0*fq;
|
||||
m11 = fq;
|
||||
m12 = -2.0*fq;
|
||||
|
||||
// q = 4
|
||||
fq = dist[2*Np+n];
|
||||
rho+= fq;
|
||||
m1 -= 11.0*fq;
|
||||
m2 -= 4.0*fq;
|
||||
jy -= fq;
|
||||
m6 += 4.0*fq;
|
||||
m9 -= fq;
|
||||
m10 += 2.0*fq;
|
||||
m11 += fq;
|
||||
m12 -= 2.0*fq;
|
||||
|
||||
// q=5
|
||||
fq = dist[12*Np+n];
|
||||
rho += fq;
|
||||
m1 -= 11.0*fq;
|
||||
m2 -= 4.0*fq;
|
||||
jz = fq;
|
||||
m8 = -4.0*fq;
|
||||
m9 -= fq;
|
||||
m10 += 2.0*fq;
|
||||
m11 -= fq;
|
||||
m12 += 2.0*fq;
|
||||
|
||||
// q = 6
|
||||
fq = dist[3*Np+n];
|
||||
rho+= fq;
|
||||
m1 -= 11.0*fq;
|
||||
m2 -= 4.0*fq;
|
||||
jz -= fq;
|
||||
m8 += 4.0*fq;
|
||||
m9 -= fq;
|
||||
m10 += 2.0*fq;
|
||||
m11 -= fq;
|
||||
m12 += 2.0*fq;
|
||||
|
||||
// q=7
|
||||
fq = dist[13*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx += fq;
|
||||
m4 += fq;
|
||||
jy += fq;
|
||||
m6 += fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 += fq;
|
||||
m12 += fq;
|
||||
m13 = fq;
|
||||
m16 = fq;
|
||||
m17 = -fq;
|
||||
|
||||
// q = 8
|
||||
fq = dist[4*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx -= fq;
|
||||
m4 -= fq;
|
||||
jy -= fq;
|
||||
m6 -= fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 += fq;
|
||||
m12 += fq;
|
||||
m13 += fq;
|
||||
m16 -= fq;
|
||||
m17 += fq;
|
||||
|
||||
// q=9
|
||||
fq = dist[14*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx += fq;
|
||||
m4 += fq;
|
||||
jy -= fq;
|
||||
m6 -= fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 += fq;
|
||||
m12 += fq;
|
||||
m13 -= fq;
|
||||
m16 += fq;
|
||||
m17 += fq;
|
||||
|
||||
// q = 10
|
||||
fq = dist[5*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx -= fq;
|
||||
m4 -= fq;
|
||||
jy += fq;
|
||||
m6 += fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 += fq;
|
||||
m12 += fq;
|
||||
m13 -= fq;
|
||||
m16 -= fq;
|
||||
m17 -= fq;
|
||||
|
||||
|
||||
// q=11
|
||||
fq = dist[15*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx += fq;
|
||||
m4 += fq;
|
||||
jz += fq;
|
||||
m8 += fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 -= fq;
|
||||
m12 -= fq;
|
||||
m15 = fq;
|
||||
m16 -= fq;
|
||||
m18 = fq;
|
||||
|
||||
// q=12
|
||||
fq = dist[6*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx -= fq;
|
||||
m4 -= fq;
|
||||
jz -= fq;
|
||||
m8 -= fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 -= fq;
|
||||
m12 -= fq;
|
||||
m15 += fq;
|
||||
m16 += fq;
|
||||
m18 -= fq;
|
||||
|
||||
// q=13
|
||||
fq = dist[16*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx += fq;
|
||||
m4 += fq;
|
||||
jz -= fq;
|
||||
m8 -= fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 -= fq;
|
||||
m12 -= fq;
|
||||
m15 -= fq;
|
||||
m16 -= fq;
|
||||
m18 -= fq;
|
||||
|
||||
// q=14
|
||||
fq = dist[7*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx -= fq;
|
||||
m4 -= fq;
|
||||
jz += fq;
|
||||
m8 += fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 -= fq;
|
||||
m12 -= fq;
|
||||
m15 -= fq;
|
||||
m16 += fq;
|
||||
m18 += fq;
|
||||
|
||||
// q=15
|
||||
fq = dist[17*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jy += fq;
|
||||
m6 += fq;
|
||||
jz += fq;
|
||||
m8 += fq;
|
||||
m9 -= 2.0*fq;
|
||||
m10 -= 2.0*fq;
|
||||
m14 = fq;
|
||||
m17 += fq;
|
||||
m18 -= fq;
|
||||
|
||||
|
||||
// q=16
|
||||
fq = dist[8*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jy -= fq;
|
||||
m6 -= fq;
|
||||
jz -= fq;
|
||||
m8 -= fq;
|
||||
m9 -= 2.0*fq;
|
||||
m10 -= 2.0*fq;
|
||||
m14 += fq;
|
||||
m17 -= fq;
|
||||
m18 += fq;
|
||||
|
||||
// q=18
|
||||
fq = dist[9*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jy -= fq;
|
||||
m6 -= fq;
|
||||
jz += fq;
|
||||
m8 += fq;
|
||||
m9 -= 2.0*fq;
|
||||
m10 -= 2.0*fq;
|
||||
m14 -= fq;
|
||||
m17 -= fq;
|
||||
m18 -= fq;
|
||||
|
||||
// q=17
|
||||
fq = dist[18*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jy += fq;
|
||||
m6 += fq;
|
||||
jz -= fq;
|
||||
m8 -= fq;
|
||||
m9 -= 2.0*fq;
|
||||
m10 -= 2.0*fq;
|
||||
m14 -= fq;
|
||||
m17 += fq;
|
||||
m18 += fq;
|
||||
|
||||
//.................inverse transformation......................................................
|
||||
// q=0
|
||||
fq = mrt_V1*rho-mrt_V2*m1+mrt_V3*m2;
|
||||
dist[n] = fq;
|
||||
|
||||
// q = 1
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10)+0.16666666*Fx;
|
||||
dist[10*Np+n] = fq;
|
||||
|
||||
// q=2
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10) - 0.16666666*Fx;
|
||||
dist[Np+n] = fq;
|
||||
|
||||
// q = 3
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) + 0.16666666*Fy;
|
||||
dist[11*Np+n] = fq;
|
||||
|
||||
// q = 4
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) - 0.16666666*Fy;
|
||||
dist[2*Np+n] = fq;
|
||||
|
||||
// q = 5
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) + 0.16666666*Fz;
|
||||
dist[12*Np+n] = fq;
|
||||
|
||||
// q = 6
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) - 0.16666666*Fz;
|
||||
dist[3*Np+n] = fq;
|
||||
|
||||
// q = 7
|
||||
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)
|
||||
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
||||
+mrt_V12*m12+0.25*m13+0.125*(m16-m17) + 0.08333333333*(Fx+Fy);
|
||||
dist[13*Np+n] = fq;
|
||||
|
||||
|
||||
// q = 8
|
||||
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
||||
+mrt_V12*m12+0.25*m13+0.125*(m17-m16) - 0.08333333333*(Fx+Fy);
|
||||
dist[4*Np+n] = fq;
|
||||
|
||||
// q = 9
|
||||
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)
|
||||
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
||||
+mrt_V12*m12-0.25*m13+0.125*(m16+m17) + 0.08333333333*(Fx-Fy);
|
||||
dist[14*Np+n] = fq;
|
||||
|
||||
// q = 10
|
||||
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)
|
||||
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
||||
+mrt_V12*m12-0.25*m13-0.125*(m16+m17)- 0.08333333333*(Fx-Fy);
|
||||
dist[5*Np+n] = fq;
|
||||
|
||||
// q = 11
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)
|
||||
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
||||
-mrt_V12*m12+0.25*m15+0.125*(m18-m16) + 0.08333333333*(Fx+Fz);
|
||||
dist[15*Np+n] = fq;
|
||||
|
||||
// q = 12
|
||||
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)
|
||||
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
||||
-mrt_V12*m12+0.25*m15+0.125*(m16-m18) - 0.08333333333*(Fx+Fz);
|
||||
dist[6*Np+n] = fq;
|
||||
|
||||
// q = 13
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)
|
||||
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
||||
-mrt_V12*m12-0.25*m15-0.125*(m16+m18) + 0.08333333333*(Fx-Fz);
|
||||
dist[16*Np+n] = fq;
|
||||
|
||||
// q= 14
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)
|
||||
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
||||
-mrt_V12*m12-0.25*m15+0.125*(m16+m18) - 0.08333333333*(Fx-Fz);
|
||||
dist[7*Np+n] = fq;
|
||||
|
||||
// q = 15
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)
|
||||
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18) + 0.08333333333*(Fy+Fz);
|
||||
dist[17*Np+n] = fq;
|
||||
|
||||
// q = 16
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)
|
||||
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17)- 0.08333333333*(Fy+Fz);
|
||||
dist[8*Np+n] = fq;
|
||||
|
||||
// q = 17
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)
|
||||
-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18) + 0.08333333333*(Fy-Fz);
|
||||
dist[18*Np+n] = fq;
|
||||
|
||||
// q = 18
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)
|
||||
-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18) - 0.08333333333*(Fy-Fz);
|
||||
dist[9*Np+n] = fq;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main (int argc, char **argv)
|
||||
{
|
||||
MPI_Init(&argc,&argv);
|
||||
int rank = MPI_WORLD_RANK();
|
||||
int nprocs = MPI_WORLD_SIZE();
|
||||
|
||||
for (int i=0; i<nprocs; i++) {
|
||||
if ( rank==i )
|
||||
printf("%i of %i: Testing force term \n",rank,nprocs);
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
}
|
||||
|
||||
// Create a memory leak for valgrind to find
|
||||
if ( nprocs==1 ) {
|
||||
double *x = new double[1];
|
||||
ASSERT(x!=NULL);
|
||||
}
|
||||
|
||||
// set the error code
|
||||
// Note: the error code should be consistent across all processors
|
||||
int error = 0;
|
||||
|
||||
int Np = 1;
|
||||
int Q = 9;
|
||||
|
||||
double Fx = 1.0;
|
||||
double Fy = 1.0;
|
||||
double Fz = 1.0;
|
||||
|
||||
double *dist;
|
||||
double * Velocity;
|
||||
|
||||
dist = new double [19*Np];
|
||||
Velocity = new double [3*Np];
|
||||
|
||||
|
||||
for (int n=0; n<Np; n++){
|
||||
dist[n] = 0.3333333333333333;
|
||||
dist[10*Np+n] = 0.055555555555555555; //double(100*n)+1.f;
|
||||
dist[Np+n] = 0.055555555555555555; //double(100*n)+2.f;
|
||||
dist[11*Np+n] = 0.055555555555555555; //double(100*n)+3.f;
|
||||
dist[2*Np+n] = 0.055555555555555555; //double(100*n)+4.f;
|
||||
dist[12*Np+n] = 0.055555555555555555; //double(100*n)+5.f;
|
||||
dist[3*Np+n] = 0.055555555555555555; //double(100*n)+6.f;
|
||||
dist[13*Np+n] = 0.0277777777777778; //double(100*n)+7.f;
|
||||
dist[4*Np+n] = 0.0277777777777778; //double(100*n)+8.f;
|
||||
dist[14*Np+n] = 0.0277777777777778; //double(100*n)+9.f;
|
||||
dist[5*Np+n] = 0.0277777777777778; //double(100*n)+10.f;
|
||||
dist[15*Np+n] = 0.0277777777777778; //double(100*n)+11.f;
|
||||
dist[6*Np+n] = 0.0277777777777778; //double(100*n)+12.f;
|
||||
dist[16*Np+n] = 0.0277777777777778; //double(100*n)+13.f;
|
||||
dist[7*Np+n] = 0.0277777777777778; //double(100*n)+14.f;
|
||||
dist[17*Np+n] = 0.0277777777777778; //double(100*n)+15.f;
|
||||
dist[8*Np+n] = 0.0277777777777778; //double(100*n)+16.f;
|
||||
dist[18*Np+n] = 0.0277777777777778; //double(100*n)+17.f;
|
||||
dist[9*Np+n] = 0.0277777777777778; //double(100*n)+18.f;
|
||||
}
|
||||
|
||||
MRT_Transform(dist,Np,Fx,Fy,Fz);
|
||||
|
||||
double *vel;
|
||||
vel= new double [3*Np];
|
||||
// distributions
|
||||
double f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
||||
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
||||
double vx,vy,vz;
|
||||
|
||||
for (int n=0; n<Np; n++){
|
||||
//........................................................................
|
||||
// Registers to store the distributions
|
||||
//........................................................................
|
||||
f2 = dist[Np+n];
|
||||
f4 = dist[2*Np+n];
|
||||
f6 = dist[3*Np+n];
|
||||
f8 = dist[4*Np+n];
|
||||
f10 = dist[5*Np+n];
|
||||
f12 = dist[6*Np+n];
|
||||
f14 = dist[7*Np+n];
|
||||
f16 = dist[8*Np+n];
|
||||
f18 = dist[9*Np+n];
|
||||
//........................................................................
|
||||
f1 = dist[10*Np+n];
|
||||
f3 = dist[11*Np+n];
|
||||
f5 = dist[12*Np+n];
|
||||
f7 = dist[13*Np+n];
|
||||
f9 = dist[14*Np+n];
|
||||
f11 = dist[15*Np+n];
|
||||
f13 = dist[16*Np+n];
|
||||
f15 = dist[17*Np+n];
|
||||
f17 = dist[18*Np+n];
|
||||
//.................Compute the velocity...................................
|
||||
vx = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
||||
vy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
||||
vz = f5-f6+f11-f12-f13+f14+f15-f16-f17+f18;
|
||||
//..................Write the velocity.....................................
|
||||
vel[n] = vx;
|
||||
vel[Np+n] = vy;
|
||||
vel[2*Np+n] = vz;
|
||||
printf("vx=%f, vy=%f, vz=%f \n",vx,vy,vz);
|
||||
//........................................................................
|
||||
}
|
||||
|
||||
|
||||
printf("Fx = %f; Computed vx=%f \n",Fx,vel[0]);
|
||||
printf("Fy = %f; Computed vy=%f \n",Fy,vel[Np+0]);
|
||||
printf("Fz = %f; Computed vz=%f \n",Fz,vel[2*Np+0]);
|
||||
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
MPI_Finalize();
|
||||
}
|
||||
412
tests/TestForceMoments.cpp
Normal file
412
tests/TestForceMoments.cpp
Normal file
@@ -0,0 +1,412 @@
|
||||
|
||||
//*************************************************************************
|
||||
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
|
||||
// James E. McCLure
|
||||
//*************************************************************************
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include "common/ScaLBL.h"
|
||||
#include "common/MPI_Helpers.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
||||
|
||||
extern void PrintNeighborList(int * neighborList, int Np, int rank) {
|
||||
if (rank == 0) {
|
||||
int n;
|
||||
int neighbor;
|
||||
|
||||
for (int i = 0; i < Np; i++) {
|
||||
printf("idx=%d: ",i);
|
||||
for (int l = 0; l < 10; l++) { // was 18
|
||||
neighbor = neighborList[l*Np + i];
|
||||
printf("%d ",neighbor);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n\n");
|
||||
}
|
||||
}
|
||||
|
||||
//***************************************************************************************
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//*****************************************
|
||||
// ***** MPI STUFF ****************
|
||||
//*****************************************
|
||||
// Initialize MPI
|
||||
int rank,nprocs;
|
||||
MPI_Init(&argc,&argv);
|
||||
MPI_Comm comm = MPI_COMM_WORLD;
|
||||
MPI_Comm_rank(comm,&rank);
|
||||
MPI_Comm_size(comm,&nprocs);
|
||||
int check;
|
||||
{
|
||||
// parallel domain size (# of sub-domains)
|
||||
int nprocx,nprocy,nprocz;
|
||||
int iproc,jproc,kproc;
|
||||
|
||||
|
||||
if (rank == 0){
|
||||
printf("********************************************************\n");
|
||||
printf("Running Unit Test: TestForceMoments \n");
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
// BGK Model parameters
|
||||
string FILENAME;
|
||||
unsigned int nBlocks, nthreads;
|
||||
int timestepMax, interval;
|
||||
double tau,Fx,Fy,Fz,tol;
|
||||
// Domain variables
|
||||
double Lx,Ly,Lz;
|
||||
int nspheres;
|
||||
int Nx,Ny,Nz;
|
||||
int i,j,k,n;
|
||||
int dim = 3; if (rank == 0) printf("dim=%d\n",dim);
|
||||
int timestep = 0;
|
||||
int timesteps = 2;
|
||||
|
||||
tau =1.0;
|
||||
double mu=(tau-0.5)/3.0;
|
||||
double rlx_setA=1.0/tau;
|
||||
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
||||
Fx = Fy = 1.0;
|
||||
Fz = 1.0;
|
||||
|
||||
if (rank==0){
|
||||
//.......................................................................
|
||||
// Reading the domain information file
|
||||
//.......................................................................
|
||||
ifstream domain("Domain.in");
|
||||
if (domain.good()){
|
||||
printf("domain.good == true \n");
|
||||
domain >> nprocx;
|
||||
domain >> nprocy;
|
||||
domain >> nprocz;
|
||||
domain >> Nx;
|
||||
domain >> Ny;
|
||||
domain >> Nz;
|
||||
domain >> nspheres;
|
||||
domain >> Lx;
|
||||
domain >> Ly;
|
||||
domain >> Lz;
|
||||
}
|
||||
else if (nprocs==1){
|
||||
nprocx=nprocy=nprocz=1;
|
||||
Nx=3; Ny = 3;
|
||||
Nz = 3;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
//.......................................................................
|
||||
}
|
||||
// **************************************************************
|
||||
// Broadcast simulation parameters from rank 0 to all other procs
|
||||
MPI_Barrier(comm);
|
||||
//.................................................
|
||||
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
||||
//.................................................
|
||||
MPI_Barrier(comm);
|
||||
// **************************************************************
|
||||
// **************************************************************
|
||||
|
||||
if (nprocs != nprocx*nprocy*nprocz){
|
||||
printf("nprocx = %i \n",nprocx);
|
||||
printf("nprocy = %i \n",nprocy);
|
||||
printf("nprocz = %i \n",nprocz);
|
||||
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
|
||||
}
|
||||
|
||||
if (rank==0){
|
||||
printf("********************************************************\n");
|
||||
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
MPI_Barrier(comm);
|
||||
kproc = rank/(nprocx*nprocy);
|
||||
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
|
||||
iproc = rank-nprocx*nprocy*kproc-nprocz*jproc;
|
||||
|
||||
if (rank == 0) {
|
||||
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
|
||||
}
|
||||
MPI_Barrier(comm);
|
||||
if (rank == 1){
|
||||
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
|
||||
printf("\n\n");
|
||||
}
|
||||
|
||||
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
|
||||
int BoundaryCondition=0;
|
||||
|
||||
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
|
||||
|
||||
Nx += 2;
|
||||
Ny += 2;
|
||||
Nz += 2;
|
||||
int N = Nx*Ny*Nz;
|
||||
|
||||
//.......................................................................
|
||||
// Assign the phase ID field
|
||||
//.......................................................................
|
||||
char LocalRankString[8];
|
||||
sprintf(LocalRankString,"%05d",rank);
|
||||
char LocalRankFilename[40];
|
||||
sprintf(LocalRankFilename,"ID.%05i",rank);
|
||||
/*
|
||||
FILE *IDFILE = fopen(LocalRankFilename,"rb");
|
||||
if (IDFILE==NULL) ERROR("Error opening file: ID.xxxxx");
|
||||
fread(Dm.id,1,N,IDFILE);
|
||||
fclose(IDFILE);
|
||||
*/
|
||||
|
||||
// initialize empty domain
|
||||
for (k=0;k<Nz;k++){
|
||||
for (j=0;j<Ny;j++){
|
||||
for (i=0;i<Nx;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
Dm.id[n]=1;
|
||||
}
|
||||
}
|
||||
}
|
||||
Dm.CommInit(comm);
|
||||
MPI_Barrier(comm);
|
||||
if (rank == 0) cout << "Domain set." << endl;
|
||||
|
||||
int Np=0; // number of local pore nodes
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
Np++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (rank==0) printf ("Create ScaLBL_Communicator \n");
|
||||
|
||||
// Create a communicator for the device
|
||||
ScaLBL_Communicator ScaLBL_Comm(Dm);
|
||||
|
||||
//...........device phase ID.................................................
|
||||
if (rank==0) printf ("Copying phase ID to device \n");
|
||||
char *ID;
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
|
||||
// Copy to the device
|
||||
ScaLBL_CopyToDevice(ID, Dm.id, N);
|
||||
//...........................................................................
|
||||
|
||||
if (rank==0){
|
||||
printf("Total domain size = %i \n",N);
|
||||
printf("Reduced domain size = %i \n",Np);
|
||||
}
|
||||
|
||||
|
||||
// LBM variables
|
||||
if (rank==0) printf ("Allocating distributions \n");
|
||||
|
||||
int neighborSize=18*Np*sizeof(int);
|
||||
int *neighborList;
|
||||
IntArray Map(Nx,Ny,Nz);
|
||||
|
||||
neighborList= new int[18*Np];
|
||||
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
|
||||
|
||||
|
||||
if (rank == 0) PrintNeighborList(neighborList,Np, rank);
|
||||
|
||||
MPI_Barrier(comm);
|
||||
|
||||
//......................device distributions.................................
|
||||
int dist_mem_size = Np*sizeof(double);
|
||||
|
||||
int *NeighborList;
|
||||
// double *f_even,*f_odd;
|
||||
double * dist;
|
||||
double * Velocity;
|
||||
//...........................................................................
|
||||
ScaLBL_AllocateDeviceMemory((void **) &dist, 19*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
|
||||
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
|
||||
//...........................................................................
|
||||
|
||||
/*
|
||||
* AA Algorithm begins here
|
||||
*
|
||||
*/
|
||||
ScaLBL_D3Q19_Init(dist, Np);
|
||||
|
||||
//.......create and start timer............
|
||||
double starttime,stoptime,cputime;
|
||||
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
starttime = MPI_Wtime();
|
||||
|
||||
/************ MAIN ITERATION LOOP (timing communications)***************************************/
|
||||
//ScaLBL_Comm.SendD3Q19(dist, &dist[10*Np]);
|
||||
//ScaLBL_Comm.RecvD3Q19(dist, &dist[10*Np]);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
|
||||
if (rank==0) printf("Beginning AA timesteps...\n");
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
if (rank==0) printf("No. of timesteps for timing: %i \n", timesteps);
|
||||
|
||||
while (timestep < 2) {
|
||||
|
||||
ScaLBL_D3Q19_AAeven_MRT(dist, 0, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
|
||||
ScaLBL_Comm.SendD3Q19AA(dist); //READ FROM NORMAL
|
||||
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
|
||||
ScaLBL_D3Q19_AAodd_MRT(NeighborList, dist, 0, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
|
||||
ScaLBL_Comm.SendD3Q19AA(dist); //READ FROM NORMAL
|
||||
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
|
||||
timestep++;
|
||||
|
||||
}
|
||||
|
||||
|
||||
//************************************************************************/
|
||||
stoptime = MPI_Wtime();
|
||||
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
|
||||
cputime = stoptime - starttime;
|
||||
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
|
||||
double MLUPS = double(Np*timestep)/cputime/1000000;
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
if (rank==0) printf("CPU time = %f \n", cputime);
|
||||
if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
|
||||
MLUPS *= nprocs;
|
||||
if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
|
||||
// Number of memory references from the swap algorithm (per timestep)
|
||||
// 18 reads and 18 writes for each lattice site
|
||||
double MemoryRefs = Np*38;
|
||||
|
||||
int SIZE=Np*sizeof(double);
|
||||
/*
|
||||
double *Vz;
|
||||
Vz= new double [Np];
|
||||
double *Vx;
|
||||
Vx= new double [Np];
|
||||
double *Vy;
|
||||
Vy= new double [Np];
|
||||
ScaLBL_D3Q19_AA_Velocity(dist, &dist[10*Np],Velocity, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
ScaLBL_CopyToHost(&Vx[0],&Velocity[0],SIZE);
|
||||
ScaLBL_CopyToHost(&Vy[0],&Velocity[Np],SIZE);
|
||||
ScaLBL_CopyToHost(&Vz[0],&Velocity[2*Np],SIZE);
|
||||
|
||||
printf("Force: %f,%f,%f \n",Fx,Fy,Fz);
|
||||
double vz;
|
||||
double W = 1.f*Nx-4;
|
||||
j=Ny/2; k=Nz/2;
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
//printf("%i ",Dm.id[n]);
|
||||
n = Map(i,j,k);
|
||||
//printf("%i,%i,%i; %i :",i,j,k,n);
|
||||
if (n<0) vz =0.f;
|
||||
else vz=Vz[n];
|
||||
printf("%f ",vz);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
*/
|
||||
|
||||
double *DIST;
|
||||
DIST= new double [19*Np];
|
||||
ScaLBL_CopyToHost(&DIST[0],&dist[0],19*SIZE);
|
||||
|
||||
i=Nx/2;
|
||||
printf("x = constant \n");
|
||||
for (int q=0; q<9; q++){
|
||||
int a = 2*q+1;
|
||||
int b = 2*(q+1);
|
||||
printf("************* \n");
|
||||
printf("print slice for distribution pair %i,%i \n",a,b);
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
//printf("%i ",Dm.id[n]);
|
||||
n = Map(i,j,k);
|
||||
double fa = DIST[(2*q+1)*Np+n];
|
||||
double fb = DIST[2*(q+1)*Np+n];
|
||||
printf("%f,%f ",fa,fb);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("************* \n");
|
||||
}
|
||||
|
||||
printf("y = constant \n");
|
||||
j=Ny/2;
|
||||
for (int q=0; q<9; q++){
|
||||
int a = 2*q+1;
|
||||
int b = 2*(q+1);
|
||||
printf("************* \n");
|
||||
printf("print slice for distribution pair %i,%i \n",a,b);
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
//printf("%i ",Dm.id[n]);
|
||||
n = Map(i,j,k);
|
||||
double fa = DIST[(2*q+1)*Np+n];
|
||||
double fb = DIST[2*(q+1)*Np+n];
|
||||
printf("%f,%f ",fa,fb);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("************* \n");
|
||||
}
|
||||
k=Nz/2;
|
||||
printf("z = constant \n");
|
||||
for (int q=0; q<9; q++){
|
||||
int a = 2*q+1;
|
||||
int b = 2*(q+1);
|
||||
printf("************* \n");
|
||||
printf("print slice for distribution pair %i,%i \n",a,b);
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
//printf("%i ",Dm.id[n]);
|
||||
n = Map(i,j,k);
|
||||
double fa = DIST[(2*q+1)*Np+n];
|
||||
double fb = DIST[2*(q+1)*Np+n];
|
||||
printf("%f,%f ",fa,fb);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("************* \n");
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
// ****************************************************
|
||||
MPI_Barrier(comm);
|
||||
MPI_Finalize();
|
||||
// ****************************************************
|
||||
|
||||
return check;
|
||||
}
|
||||
811
tests/TestMRT.cpp
Normal file
811
tests/TestMRT.cpp
Normal file
@@ -0,0 +1,811 @@
|
||||
|
||||
//*************************************************************************
|
||||
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
|
||||
// James E. McCLure
|
||||
//*************************************************************************
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include "common/ScaLBL.h"
|
||||
#include "common/MPI_Helpers.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
||||
extern void AA1_ScaLBL_D3Q19_Init(double *dist_even, double *dist_odd, int Nx, int Ny, int Nz,
|
||||
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
|
||||
{
|
||||
// Set of Discrete velocities for the D3Q19 Model
|
||||
static int D3Q19[18][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1},
|
||||
{1,1,0},{-1,-1,0},{1,-1,0},{-1,1,0},
|
||||
{1,0,1},{-1,0,-1},{1,0,-1},{-1,0,1},
|
||||
{0,1,1},{0,-1,-1},{0,1,-1},{0,-1,1}};
|
||||
|
||||
int q,i,j,k,n,N;
|
||||
int Cqx,Cqy,Cqz; // Discrete velocity
|
||||
int x,y,z; // Global indices
|
||||
int xn,yn,zn; // Global indices of neighbor
|
||||
int X,Y,Z; // Global size
|
||||
X = Nx*nprocx;
|
||||
Y = Ny*nprocy;
|
||||
Z = Nz*nprocz;
|
||||
NULL_USE(Z);
|
||||
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
|
||||
for (k=0; k<Nz; k++){
|
||||
for (j=0; j<Ny; j++){
|
||||
for (i=0; i<Nx; i++){
|
||||
|
||||
n = (k+1)*(Nx+2)*(Ny+2) + (j+1)*(Nx+2) + i+1;
|
||||
|
||||
// Get the 'global' index
|
||||
x = iproc*Nx+i;
|
||||
y = jproc*Ny+j;
|
||||
z = kproc*Nz+k;
|
||||
for (q=0; q<9; q++){
|
||||
// Even distribution
|
||||
Cqx = D3Q19[2*q][0];
|
||||
Cqy = D3Q19[2*q][1];
|
||||
Cqz = D3Q19[2*q][2];
|
||||
// xn = x - Cqx;
|
||||
// yn = y - Cqy;
|
||||
// zn = z - Cqz;
|
||||
xn = x;
|
||||
yn = y;
|
||||
zn = z;
|
||||
if (xn < 0) xn += nprocx*Nx;
|
||||
if (yn < 0) yn += nprocy*Ny;
|
||||
if (zn < 0) zn += nprocz*Nz;
|
||||
if (!(xn < nprocx*Nx)) xn -= nprocx*Nx;
|
||||
if (!(yn < nprocy*Ny)) yn -= nprocy*Ny;
|
||||
if (!(zn < nprocz*Nz)) zn -= nprocz*Nz;
|
||||
|
||||
dist_even[(q+1)*N+n] = (zn*X*Y+yn*X+xn) + (2*q+1)*0.01;
|
||||
|
||||
// Odd distribution
|
||||
// xn = x + Cqx;
|
||||
// yn = y + Cqy;
|
||||
// zn = z + Cqz;
|
||||
xn = x;
|
||||
yn = y;
|
||||
zn = z;
|
||||
if (xn < 0) xn += nprocx*Nx;
|
||||
if (yn < 0) yn += nprocy*Ny;
|
||||
if (zn < 0) zn += nprocz*Nz;
|
||||
if (!(xn < nprocx*Nx)) xn -= nprocx*Nx;
|
||||
if (!(yn < nprocy*Ny)) yn -= nprocy*Ny;
|
||||
if (!(zn < nprocz*Nz)) zn -= nprocz*Nz;
|
||||
|
||||
dist_odd[q*N+n] = (zn*X*Y+yn*X+xn) + 2*(q+1)*0.01;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
extern void GlobalFlipScaLBL_D3Q19_Init(double *dist_even, double *dist_odd, int Nx, int Ny, int Nz,
|
||||
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
|
||||
{
|
||||
// Set of Discrete velocities for the D3Q19 Model
|
||||
static int D3Q19[18][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1},
|
||||
{1,1,0},{-1,-1,0},{1,-1,0},{-1,1,0},
|
||||
{1,0,1},{-1,0,-1},{1,0,-1},{-1,0,1},
|
||||
{0,1,1},{0,-1,-1},{0,1,-1},{0,-1,1}};
|
||||
|
||||
int q,i,j,k,n,N;
|
||||
int Cqx,Cqy,Cqz; // Discrete velocity
|
||||
int x,y,z; // Global indices
|
||||
int xn,yn,zn; // Global indices of neighbor
|
||||
int X,Y,Z; // Global size
|
||||
X = Nx*nprocx;
|
||||
Y = Ny*nprocy;
|
||||
Z = Nz*nprocz;
|
||||
NULL_USE(Z);
|
||||
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
|
||||
for (k=0; k<Nz; k++){
|
||||
for (j=0; j<Ny; j++){
|
||||
for (i=0; i<Nx; i++){
|
||||
|
||||
n = (k+1)*(Nx+2)*(Ny+2) + (j+1)*(Nx+2) + i+1;
|
||||
|
||||
// Get the 'global' index
|
||||
x = iproc*Nx+i;
|
||||
y = jproc*Ny+j;
|
||||
z = kproc*Nz+k;
|
||||
for (q=0; q<9; q++){
|
||||
// Even distribution
|
||||
Cqx = D3Q19[2*q][0];
|
||||
Cqy = D3Q19[2*q][1];
|
||||
Cqz = D3Q19[2*q][2];
|
||||
// xn = x - Cqx;
|
||||
// yn = y - Cqy;
|
||||
// zn = z - Cqz;
|
||||
xn = x;
|
||||
yn = y;
|
||||
zn = z;
|
||||
if (xn < 0) xn += nprocx*Nx;
|
||||
if (yn < 0) yn += nprocy*Ny;
|
||||
if (zn < 0) zn += nprocz*Nz;
|
||||
if (!(xn < nprocx*Nx)) xn -= nprocx*Nx;
|
||||
if (!(yn < nprocy*Ny)) yn -= nprocy*Ny;
|
||||
if (!(zn < nprocz*Nz)) zn -= nprocz*Nz;
|
||||
|
||||
dist_even[(q+1)*N+n] = (zn*X*Y+yn*X+xn) + (2*q+1)*0.01;
|
||||
|
||||
// Odd distribution
|
||||
// xn = x + Cqx;
|
||||
// yn = y + Cqy;
|
||||
// zn = z + Cqz;
|
||||
xn = x;
|
||||
yn = y;
|
||||
zn = z;
|
||||
if (xn < 0) xn += nprocx*Nx;
|
||||
if (yn < 0) yn += nprocy*Ny;
|
||||
if (zn < 0) zn += nprocz*Nz;
|
||||
if (!(xn < nprocx*Nx)) xn -= nprocx*Nx;
|
||||
if (!(yn < nprocy*Ny)) yn -= nprocy*Ny;
|
||||
if (!(zn < nprocz*Nz)) zn -= nprocz*Nz;
|
||||
|
||||
dist_odd[q*N+n] = (zn*X*Y+yn*X+xn) + 2*(q+1)*0.01;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
extern int GlobalCheckDebugDistInterior(double *dist_even, double *dist_odd, int Nx, int Ny, int Nz,
|
||||
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
|
||||
{
|
||||
|
||||
int returnValue = 0;
|
||||
int q,i,j,k,n,N;
|
||||
int Cqx,Cqy,Cqz; // Discrete velocity
|
||||
int x,y,z; // Global indices
|
||||
int xn,yn,zn; // Global indices of neighbor
|
||||
int X,Y,Z; // Global size
|
||||
X = Nx*nprocx;
|
||||
Y = Ny*nprocy;
|
||||
Z = Nz*nprocz;
|
||||
NULL_USE(Z);
|
||||
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
|
||||
for (k=1; k<Nz-1; k++){
|
||||
for (j=1; j<Ny-1; j++){
|
||||
for (i=1; i<Nx-1; i++){
|
||||
|
||||
n = (k+1)*(Nx+2)*(Ny+2) + (j+1)*(Nx+2) + i+1;
|
||||
|
||||
// Get the 'global' index
|
||||
x = iproc*Nx+i;
|
||||
y = jproc*Ny+j;
|
||||
z = kproc*Nz+k;
|
||||
for (q=0; q<9; q++){
|
||||
|
||||
if (dist_even[(q+1)*N+n] != (z*X*Y+y*X+x) + 2*(q+1)*0.01){
|
||||
printf("******************************************\n");
|
||||
printf("error in even distribution q = %i \n", 2*(q+1));
|
||||
printf("i,j,k= %i, %i, %i \n", x,y,z);
|
||||
printf("dist = %5.2f, expect %5.2f \n", dist_even[(q+1)*N+n], (z*X*Y+y*X+x) + 2*(q+1)*0.01);
|
||||
printf("n= %i \n",z*X*Y+y*X+x);
|
||||
returnValue++;
|
||||
}
|
||||
|
||||
|
||||
if (dist_odd[q*N+n] != (z*X*Y+y*X+x) + (2*q+1)*0.01){
|
||||
printf("******************************************\n");
|
||||
printf("error in odd distribution q = %i \n", 2*q+1);
|
||||
printf("i,j,k= %i, %i, %i \n", x,y,z);
|
||||
printf("dist = %5.2f, expect %5.2f \n", dist_odd[q*N+n],(z*X*Y+y*X+x) + (2*q+1)*0.01);
|
||||
printf("n= %i \n",z*X*Y+y*X+x);
|
||||
returnValue++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return returnValue;
|
||||
}
|
||||
|
||||
|
||||
extern void HostToGold(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_gold,
|
||||
double * f_odd_gold, int Nx, int Ny, int Nz,int Np,int N) {
|
||||
int n;
|
||||
for (int k=1;k<Nz-1;k++){
|
||||
for (int j=1;j<Ny-1;j++){
|
||||
for (int i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
int idx = Map(i,j,k);
|
||||
if (!(idx < 0)){
|
||||
for (int q=0; q<9; q++){
|
||||
f_even_gold[(q+1)*N + n] = f_even_host[(q+1)*Np + idx];
|
||||
f_odd_gold[q*N + n] = f_odd_host[q*Np + idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
extern void GoldToHost(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_gold,
|
||||
double * f_odd_gold, int Nx, int Ny, int Nz,int Np,int N) {
|
||||
int n;
|
||||
for (int k=1;k<Nz-1;k++){
|
||||
for (int j=1;j<Ny-1;j++){
|
||||
for (int i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
int idx = Map(i,j,k);
|
||||
if (!(idx < 0)){
|
||||
for (int q=0; q<9; q++){
|
||||
f_even_host[(q+1)*Np + idx] = f_even_gold[(q+1)*N + n];
|
||||
f_odd_host[q*Np + idx] = f_odd_gold[q*N + n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
extern void PrintSpecificHost(int centralNode, IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_gold,
|
||||
double * f_odd_gold, int Nx, int Ny, int Nz,int Np,int N) {
|
||||
int n;
|
||||
for (int k=1;k<Nz-1;k++){
|
||||
for (int j=1;j<Ny-1;j++){
|
||||
for (int i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
int idx = Map(i,j,k);
|
||||
if (!(idx < 0)){
|
||||
if ( i == centralNode && (j == centralNode && k == centralNode)) {
|
||||
printf("%i: ",idx);
|
||||
}
|
||||
|
||||
for (int q=0; q<2; q++){
|
||||
if ( i == centralNode && (j == centralNode && k == centralNode)) {
|
||||
printf("%.02f,",f_odd_host[(q*Np+idx)]);
|
||||
printf("%.02f,",f_even_host[(q+1)*Np + idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("\n\n");
|
||||
}
|
||||
|
||||
|
||||
|
||||
extern void PrintFullHost(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_gold,
|
||||
double * f_odd_gold, int Nx, int Ny, int Nz,int Np,int N) {
|
||||
int n;
|
||||
for (int k=1;k<Nz-1;k++){
|
||||
for (int j=1;j<Ny-1;j++){
|
||||
for (int i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
int idx = Map(i,j,k);
|
||||
if (!(idx < 0)){
|
||||
//printf("%i: ",idx);
|
||||
for (int q=0; q<1; q++){
|
||||
|
||||
printf(" %.02f <%d> ",f_even_host[(q+1)*Np + idx],idx);
|
||||
printf("%.02f |",f_odd_host[(q*Np+idx)]);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
extern void HostToUnobtainium(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_unobtainium,
|
||||
double * f_odd_unobtainium, int Nx, int Ny, int Nz,int Np,int N) {
|
||||
int n;
|
||||
for (int k=1;k<Nz-1;k++){
|
||||
for (int j=1;j<Ny-1;j++){
|
||||
for (int i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
int idx = Map(i,j,k);
|
||||
if (!(idx < 0)){
|
||||
for (int q=0; q<9; q++){
|
||||
f_odd_unobtainium[(q*Np+idx)] = f_odd_host[(q*Np+idx)];
|
||||
f_even_unobtainium[(q+1)*Np + idx] = f_even_host[(q+1)*Np + idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
extern void CheckDistrMatch(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_unobtainium,
|
||||
double * f_odd_unobtainium, int Nx, int Ny, int Nz,int Np,int N) {
|
||||
int n; int err = 0;
|
||||
for (int k=1;k<Nz-1;k++){
|
||||
for (int j=1;j<Ny-1;j++){
|
||||
for (int i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
int idx = Map(i,j,k);
|
||||
if (!(idx < 0)){
|
||||
for (int q=0; q<9; q++){
|
||||
if (f_odd_unobtainium[(q*Np+idx)] != f_odd_host[(q*Np+idx)]) {
|
||||
err++;
|
||||
}
|
||||
if (f_even_unobtainium[(q+1)*Np + idx] != f_even_host[(q+1)*Np + idx]) {
|
||||
err++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (err == 0) {
|
||||
printf("CORRECT");
|
||||
} else {
|
||||
printf("DIFF=%d",err);
|
||||
}
|
||||
printf("\n\n");
|
||||
}
|
||||
|
||||
extern double CheckDistrMatchDouble(IntArray Map, double * f_even_host, double * f_odd_host, double * f_even_unobtainium,
|
||||
double * f_odd_unobtainium, int Nx, int Ny, int Nz,int Np,int N) {
|
||||
int n; int err = 0;
|
||||
for (int k=1;k<Nz-1;k++){
|
||||
for (int j=1;j<Ny-1;j++){
|
||||
for (int i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
int idx = Map(i,j,k);
|
||||
if (!(idx < 0)){
|
||||
for (int q=0; q<9; q++){
|
||||
if (f_odd_unobtainium[(q*Np+idx)] != f_odd_host[(q*Np+idx)]) {
|
||||
err++;
|
||||
}
|
||||
if (f_even_unobtainium[(q+1)*Np + idx] != f_even_host[(q+1)*Np + idx]) {
|
||||
err++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
extern void PrintNeighborList(int * neighborList, int Np, int rank) {
|
||||
if (rank == 0) {
|
||||
int n;
|
||||
int neighbor;
|
||||
|
||||
for (int i = 0; i < Np; i++) {
|
||||
printf("idx=%d: ",i);
|
||||
for (int l = 0; l < 10; l++) { // was 18
|
||||
neighbor = neighborList[l*Np + i];
|
||||
printf("%d ",neighbor);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n\n");
|
||||
}
|
||||
}
|
||||
|
||||
extern void PrintSpecificNeighborList(int specificNode, int * neighborList, int Np, int rank) {
|
||||
|
||||
if (rank == 0) {
|
||||
int n;
|
||||
int neighbor;
|
||||
|
||||
for (int i = 0; i < Np; i++) {
|
||||
if ( i == specificNode) {
|
||||
printf("idx=%d: ",i);
|
||||
}
|
||||
for (int l = 0; l < 10; l++) { // was 18
|
||||
neighbor = neighborList[l*Np + i];
|
||||
if (i == specificNode) {
|
||||
printf("%d ",neighbor);
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("\n\n");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
extern int GlobalCheckDebugDist(double *dist_even, double *dist_odd, int Nx, int Ny, int Nz,
|
||||
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz) {
|
||||
|
||||
int returnValue = 0;
|
||||
int q,i,j,k,n,N;
|
||||
int Cqx,Cqy,Cqz; // Discrete velocity
|
||||
int x,y,z; // Global indices
|
||||
int xn,yn,zn; // Global indices of neighbor
|
||||
int X,Y,Z; // Global size
|
||||
X = Nx*nprocx;
|
||||
Y = Ny*nprocy;
|
||||
Z = Nz*nprocz;
|
||||
NULL_USE(Z);
|
||||
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
|
||||
for (k=0; k<Nz; k++){
|
||||
for (j=0; j<Ny; j++){
|
||||
for (i=0; i<Nx; i++){
|
||||
|
||||
n = (k+1)*(Nx+2)*(Ny+2) + (j+1)*(Nx+2) + i+1;
|
||||
|
||||
// Get the 'global' index
|
||||
x = iproc*Nx+i;
|
||||
y = jproc*Ny+j;
|
||||
z = kproc*Nz+k;
|
||||
for (q=0; q<9; q++){
|
||||
|
||||
if (dist_even[(q+1)*N+n] != (z*X*Y+y*X+x) + 2*(q+1)*0.01){
|
||||
printf("******************************************\n");
|
||||
printf("error in even distribution q = %i \n", 2*(q+1));
|
||||
printf("i,j,k= %i, %i, %i \n", x,y,z);
|
||||
printf("dist = %5.2f, expect %5.2f \n", dist_even[(q+1)*N+n], (z*X*Y+y*X+x) + 2*(q+1)*0.01);
|
||||
printf("n= %i \n",z*X*Y+y*X+x);
|
||||
returnValue++;
|
||||
}
|
||||
|
||||
|
||||
if (dist_odd[q*N+n] != (z*X*Y+y*X+x) + (2*q+1)*0.01){
|
||||
printf("******************************************\n");
|
||||
printf("error in odd distribution q = %i \n", 2*q+1);
|
||||
printf("i,j,k= %i, %i, %i \n", x,y,z);
|
||||
printf("dist = %5.2f, expect %5.2f \n", dist_odd[q*N+n],(z*X*Y+y*X+x) + (2*q+1)*0.01);
|
||||
printf("n= %i \n",z*X*Y+y*X+x);
|
||||
returnValue++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return returnValue;
|
||||
}
|
||||
|
||||
inline void PackID(int *list, int count, char *sendbuf, char *ID){
|
||||
// Fill in the phase ID values from neighboring processors
|
||||
// This packs up the values that need to be sent from one processor to another
|
||||
int idx,n;
|
||||
|
||||
for (idx=0; idx<count; idx++){
|
||||
n = list[idx];
|
||||
sendbuf[idx] = ID[n];
|
||||
}
|
||||
}
|
||||
//***************************************************************************************
|
||||
inline void UnpackID(int *list, int count, char *recvbuf, char *ID){
|
||||
// Fill in the phase ID values from neighboring processors
|
||||
// This unpacks the values once they have been recieved from neighbors
|
||||
int idx,n;
|
||||
|
||||
for (idx=0; idx<count; idx++){
|
||||
n = list[idx];
|
||||
ID[n] = recvbuf[idx];
|
||||
}
|
||||
}
|
||||
//***************************************************************************************
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//*****************************************
|
||||
// ***** MPI STUFF ****************
|
||||
//*****************************************
|
||||
// Initialize MPI
|
||||
int rank,nprocs;
|
||||
MPI_Init(&argc,&argv);
|
||||
MPI_Comm comm = MPI_COMM_WORLD;
|
||||
MPI_Comm_rank(comm,&rank);
|
||||
MPI_Comm_size(comm,&nprocs);
|
||||
int check;
|
||||
{
|
||||
// parallel domain size (# of sub-domains)
|
||||
int nprocx,nprocy,nprocz;
|
||||
int iproc,jproc,kproc;
|
||||
|
||||
|
||||
if (rank == 0){
|
||||
printf("********************************************************\n");
|
||||
printf("Running Permeability Test: TestMRT \n");
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
// BGK Model parameters
|
||||
string FILENAME;
|
||||
unsigned int nBlocks, nthreads;
|
||||
int timestepMax, interval;
|
||||
double Fx,Fy,Fz,tol;
|
||||
// Domain variables
|
||||
double Lx,Ly,Lz;
|
||||
int nspheres;
|
||||
int Nx,Ny,Nz;
|
||||
int i,j,k,n;
|
||||
int dim = 50;
|
||||
//if (rank == 0) printf("dim=%d\n",dim);
|
||||
int timestep = 1;
|
||||
int timesteps = 100;
|
||||
int centralNode = 2;
|
||||
|
||||
double tau = 1.0;
|
||||
double rlx_setA = 1.f/tau;
|
||||
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
||||
|
||||
Fx = Fy = 0.f;
|
||||
Fz = 1.0e-6;
|
||||
|
||||
if (rank==0){
|
||||
//.......................................................................
|
||||
// Reading the domain information file
|
||||
//.......................................................................
|
||||
ifstream domain("Domain.in");
|
||||
if (domain.good()){
|
||||
domain >> nprocx;
|
||||
domain >> nprocy;
|
||||
domain >> nprocz;
|
||||
domain >> Nx;
|
||||
domain >> Ny;
|
||||
domain >> Nz;
|
||||
domain >> nspheres;
|
||||
domain >> Lx;
|
||||
domain >> Ly;
|
||||
domain >> Lz;
|
||||
}
|
||||
else if (nprocs==1){
|
||||
nprocx=nprocy=nprocz=1;
|
||||
Nx=3; Ny = 1;
|
||||
Nz = 1;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==2){
|
||||
nprocx=2; nprocy=1;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
Nx = dim; Ny = dim; Nz = dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==4){
|
||||
nprocx=nprocy=2;
|
||||
nprocz=1;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==8){
|
||||
nprocx=nprocy=nprocz=2;
|
||||
Nx=Ny=Nz=dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
//.......................................................................
|
||||
}
|
||||
// **************************************************************
|
||||
// Broadcast simulation parameters from rank 0 to all other procs
|
||||
MPI_Barrier(comm);
|
||||
//.................................................
|
||||
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
||||
//.................................................
|
||||
MPI_Barrier(comm);
|
||||
// **************************************************************
|
||||
// **************************************************************
|
||||
|
||||
if (nprocs != nprocx*nprocy*nprocz){
|
||||
printf("nprocx = %i \n",nprocx);
|
||||
printf("nprocy = %i \n",nprocy);
|
||||
printf("nprocz = %i \n",nprocz);
|
||||
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
|
||||
}
|
||||
|
||||
if (rank==0){
|
||||
printf("********************************************************\n");
|
||||
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
MPI_Barrier(comm);
|
||||
kproc = rank/(nprocx*nprocy);
|
||||
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
|
||||
iproc = rank-nprocx*nprocy*kproc-nprocz*jproc;
|
||||
|
||||
if (rank == 0) {
|
||||
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
|
||||
}
|
||||
MPI_Barrier(comm);
|
||||
if (rank == 1){
|
||||
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
|
||||
printf("\n\n");
|
||||
}
|
||||
|
||||
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
|
||||
int BoundaryCondition=0;
|
||||
|
||||
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
|
||||
|
||||
Nx += 2;
|
||||
Ny += 2;
|
||||
Nz += 2;
|
||||
int N = Nx*Ny*Nz;
|
||||
|
||||
//.......................................................................
|
||||
// Assign the phase ID field
|
||||
//.......................................................................
|
||||
char LocalRankString[8];
|
||||
sprintf(LocalRankString,"%05d",rank);
|
||||
char LocalRankFilename[40];
|
||||
sprintf(LocalRankFilename,"ID.%05i",rank);
|
||||
|
||||
FILE *IDFILE = fopen(LocalRankFilename,"rb");
|
||||
if (IDFILE==NULL) ERROR("Error opening file: ID.xxxxx");
|
||||
fread(Dm.id,1,N,IDFILE);
|
||||
fclose(IDFILE);
|
||||
|
||||
Dm.CommInit(comm);
|
||||
|
||||
//.......................................................................
|
||||
// Compute the media porosity
|
||||
//.......................................................................
|
||||
double sum;
|
||||
double sum_local=0.0, porosity;
|
||||
int Np=0; // number of local pore nodes
|
||||
//.......................................................................
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
sum_local+=1.0;
|
||||
Np++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
|
||||
porosity = sum*iVol_global;
|
||||
if (rank==0) printf("Media porosity = %f \n",porosity);
|
||||
|
||||
MPI_Barrier(comm);
|
||||
if (rank == 0) cout << "Domain set." << endl;
|
||||
if (rank==0) printf ("Create ScaLBL_Communicator \n");
|
||||
|
||||
// Create a communicator for the device
|
||||
ScaLBL_Communicator ScaLBL_Comm(Dm);
|
||||
|
||||
//...........device phase ID.................................................
|
||||
if (rank==0) printf ("Copying phase ID to device \n");
|
||||
char *ID;
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
|
||||
// Copy to the device
|
||||
ScaLBL_CopyToDevice(ID, Dm.id, N);
|
||||
//...........................................................................
|
||||
|
||||
if (rank==0){
|
||||
printf("Total domain size = %i \n",N);
|
||||
printf("Reduced domain size = %i \n",Np);
|
||||
}
|
||||
|
||||
|
||||
// LBM variables
|
||||
if (rank==0) printf ("Set up the neighborlist \n");
|
||||
|
||||
int neighborSize=18*Np*sizeof(int);
|
||||
int *neighborList;
|
||||
IntArray Map(Nx,Ny,Nz);
|
||||
neighborList= new int[18*Np];
|
||||
|
||||
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
|
||||
MPI_Barrier(comm);
|
||||
|
||||
//......................device distributions.................................
|
||||
int dist_mem_size = Np*sizeof(double);
|
||||
if (rank==0) printf ("Allocating distributions \n");
|
||||
|
||||
int *NeighborList;
|
||||
// double *f_even,*f_odd;
|
||||
double * dist;
|
||||
double * Velocity;
|
||||
//...........................................................................
|
||||
ScaLBL_AllocateDeviceMemory((void **) &dist, 19*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
|
||||
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
|
||||
//...........................................................................
|
||||
|
||||
ScaLBL_D3Q19_Init(dist, Np);
|
||||
|
||||
/************ MAIN ITERATION LOOP (timing communications)***************************************/
|
||||
|
||||
if (rank==0) printf("Beginning AA timesteps...\n");
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
if (rank==0) printf("No. of timesteps for timing: %i \n", timesteps);
|
||||
|
||||
//.......create and start timer............
|
||||
double starttime,stoptime,cputime;
|
||||
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
starttime = MPI_Wtime();
|
||||
|
||||
while (timestep < timesteps) {
|
||||
|
||||
ScaLBL_Comm.SendD3Q19AA(dist); //READ FROM NORMAL
|
||||
ScaLBL_D3Q19_AAodd_MRT(NeighborList, dist, ScaLBL_Comm.next, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
|
||||
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q19_AAodd_MRT(NeighborList, dist, 0, ScaLBL_Comm.next, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
|
||||
ScaLBL_Comm.SendD3Q19AA(dist); //READ FORM NORMAL
|
||||
ScaLBL_D3Q19_AAeven_MRT(dist, ScaLBL_Comm.next, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
|
||||
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q19_AAeven_MRT(dist, 0, ScaLBL_Comm.next, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
//************************************************************************/
|
||||
|
||||
}
|
||||
//************************************************************************/
|
||||
stoptime = MPI_Wtime();
|
||||
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
|
||||
cputime = stoptime - starttime;
|
||||
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
|
||||
double MLUPS = double(Np*timestep)/cputime/1000000;
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
if (rank==0) printf("CPU time = %f \n", cputime);
|
||||
if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
|
||||
MLUPS *= nprocs;
|
||||
if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
|
||||
// Number of memory references from the swap algorithm (per timestep)
|
||||
// 18 reads and 18 writes for each lattice site
|
||||
double MemoryRefs = Np*38;
|
||||
// number of memory references for the swap algorithm - GigaBytes / second
|
||||
if (rank==0) printf("DRAM bandwidth (per process)= %f GB/sec \n",MemoryRefs*8*timestep/1e9/cputime);
|
||||
// Report bandwidth in Gigabits per second
|
||||
// communication bandwidth includes both send and recieve
|
||||
if (rank==0) printf("Communication bandwidth (per process)= %f Gbit/sec \n",ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
|
||||
if (rank==0) printf("Aggregated communication bandwidth = %f Gbit/sec \n",nprocs*ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
|
||||
|
||||
|
||||
double *VEL;
|
||||
VEL= new double [3*Np];
|
||||
int SIZE=3*Np*sizeof(double);
|
||||
ScaLBL_D3Q19_Momentum(dist,Velocity, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
ScaLBL_CopyToHost(&VEL[0],&Velocity[0],SIZE);
|
||||
|
||||
sum_local=0.f;
|
||||
sum = 0.f;
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){\
|
||||
int idx = Map(i,j,k);
|
||||
sum_local+=VEL[2*Np+idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
|
||||
double PoreVel = sum*iVol_global;
|
||||
if (rank==0) printf("Velocity = %f \n",PoreVel);
|
||||
|
||||
}
|
||||
// ****************************************************
|
||||
MPI_Barrier(comm);
|
||||
MPI_Finalize();
|
||||
// ****************************************************
|
||||
|
||||
return check;
|
||||
}
|
||||
|
||||
544
tests/TestMomentsD3Q19.cpp
Normal file
544
tests/TestMomentsD3Q19.cpp
Normal file
@@ -0,0 +1,544 @@
|
||||
#include <iostream>
|
||||
#include "common/MPI_Helpers.h"
|
||||
#include "common/Utilities.h"
|
||||
#include <math.h>
|
||||
|
||||
double mrt_V1=0.05263157894736842;
|
||||
double mrt_V2=0.012531328320802;
|
||||
double mrt_V3=0.04761904761904762;
|
||||
double mrt_V4=0.004594820384294068;
|
||||
double mrt_V5=0.01587301587301587;
|
||||
double mrt_V6=0.0555555555555555555555555;
|
||||
double mrt_V7=0.02777777777777778;
|
||||
double mrt_V8=0.08333333333333333;
|
||||
double mrt_V9=0.003341687552213868;
|
||||
double mrt_V10=0.003968253968253968;
|
||||
double mrt_V11=0.01388888888888889;
|
||||
double mrt_V12=0.04166666666666666;
|
||||
|
||||
/*
|
||||
# Rcode to check the moments
|
||||
|
||||
f=c(1.0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18)
|
||||
|
||||
rho=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
|
||||
jx=c(0,1,-1,0,0,0,0,1,-1,1,-1,1,-1,1,-1,0,0,0,0)
|
||||
jy=c(0,0,0,1,-1,0,0,1,-1,-1,1,0,0,0,0,1,-1,1,-1)
|
||||
jz=c(0,0,0,0,0,1,-1,0,0,0,0,1,-1,-1,1,1,-1,-1,1)
|
||||
|
||||
M1=c(-30,-11,-11,-11,-11,-11,-11,8,8,8,8,8,8,8,8,8,8,8,8)
|
||||
M2=c(12,-4,-4,-4,-4,-4,-4,1,1,1,1,1,1,1,1,1,1,1,1)
|
||||
M4=c(0,-4,4,0,0,0,0,1,-1,1,-1,1,-1,1,-1,0,0,0,0)
|
||||
M6=c(0,0,0,-4,4,0,0,1,-1,-1,1,0,0,0,0,1,-1,1,-1)
|
||||
M8=c(0,0,0,0,0,-4,4,0,0,0,0,1,-1,-1,1,1,-1,-1,1)
|
||||
M9=c(0,2,2,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-2,-2,-2,-2)
|
||||
M10=c(0,-4,-4,2,2,2,2,1,1,1,1,1,1,1,1,-2,-2,-2,-2)
|
||||
M11=c(0,0,0,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,0,0,0,0)
|
||||
M12=c(0,0,0,-2,-2,2,2,1,1,1,1,-1,-1,-1,-1,0,0,0,0)
|
||||
M13=c(0,0,0,0,0,0,0,1,1,-1,-1,0,0,0,0,0,0,0,0)
|
||||
M14=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1)
|
||||
M15=c(0,0,0,0,0,0,0,0,0,0,0,1,1,-1,-1,0,0,0,0)
|
||||
M16=c(0,0,0,0,0,0,0,1,-1,1,-1,-1,1,-1,1,0,0,0,0)
|
||||
M17=c(0,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,1,-1,1,-1)
|
||||
M18=c(0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,1,1,-1)
|
||||
*/
|
||||
inline void MRT_Transform(double *dist, int Np) {
|
||||
|
||||
double fq,fp;
|
||||
// conserved momemnts
|
||||
double rho,jx,jy,jz;
|
||||
double Fx,Fy,Fz;
|
||||
Fx=Fy=Fz=0;
|
||||
// non-conserved moments
|
||||
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
||||
for (int n=0; n<Np; n++){
|
||||
|
||||
//........................................................................
|
||||
// READ THE DISTRIBUTIONS
|
||||
// (read from opposite array due to previous swap operation)
|
||||
//........................................................................
|
||||
fq = dist[n];
|
||||
//printf("q=0: %f\n",fq);
|
||||
rho = fq;
|
||||
m1 = -30.0*fq;
|
||||
m2 = 12.0*fq;
|
||||
|
||||
// q=1
|
||||
fp = dist[10*Np+n];
|
||||
//printf("q=1: %f\n",fp);
|
||||
rho += fp;
|
||||
m1 -= 11.0*fp;
|
||||
m2 -= 4.0*fp;
|
||||
jx = fp;
|
||||
m4 = -4.0*fp;
|
||||
m9 = 2.0*fp;
|
||||
m10 = -4.0*fp;
|
||||
|
||||
// f2 = dist[10*Np+n];
|
||||
fq = dist[Np+n];
|
||||
//printf("q=2: %f\n",fq);
|
||||
rho += fq;
|
||||
m1 -= 11.0*(fq);
|
||||
m2 -= 4.0*(fq);
|
||||
jx -= fq;
|
||||
m4 += 4.0*(fq);
|
||||
m9 += 2.0*(fq);
|
||||
m10 -= 4.0*(fq);
|
||||
|
||||
// q=3
|
||||
fq = dist[11*Np+n];
|
||||
//printf("q=3: %f\n",fq);
|
||||
rho += fq;
|
||||
m1 -= 11.0*fq;
|
||||
m2 -= 4.0*fq;
|
||||
jy = fq;
|
||||
m6 = -4.0*fq;
|
||||
m9 -= fq;
|
||||
m10 += 2.0*fq;
|
||||
m11 = fq;
|
||||
m12 = -2.0*fq;
|
||||
|
||||
// q = 4
|
||||
fq = dist[2*Np+n];
|
||||
rho+= fq;
|
||||
m1 -= 11.0*fq;
|
||||
m2 -= 4.0*fq;
|
||||
jy -= fq;
|
||||
m6 += 4.0*fq;
|
||||
m9 -= fq;
|
||||
m10 += 2.0*fq;
|
||||
m11 += fq;
|
||||
m12 -= 2.0*fq;
|
||||
|
||||
// q=5
|
||||
fq = dist[12*Np+n];
|
||||
rho += fq;
|
||||
m1 -= 11.0*fq;
|
||||
m2 -= 4.0*fq;
|
||||
jz = fq;
|
||||
m8 = -4.0*fq;
|
||||
m9 -= fq;
|
||||
m10 += 2.0*fq;
|
||||
m11 -= fq;
|
||||
m12 += 2.0*fq;
|
||||
|
||||
// q = 6
|
||||
fq = dist[3*Np+n];
|
||||
rho+= fq;
|
||||
m1 -= 11.0*fq;
|
||||
m2 -= 4.0*fq;
|
||||
jz -= fq;
|
||||
m8 += 4.0*fq;
|
||||
m9 -= fq;
|
||||
m10 += 2.0*fq;
|
||||
m11 -= fq;
|
||||
m12 += 2.0*fq;
|
||||
|
||||
// q=7
|
||||
fq = dist[13*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx += fq;
|
||||
m4 += fq;
|
||||
jy += fq;
|
||||
m6 += fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 += fq;
|
||||
m12 += fq;
|
||||
m13 = fq;
|
||||
m16 = fq;
|
||||
m17 = -fq;
|
||||
|
||||
// q = 8
|
||||
fq = dist[4*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx -= fq;
|
||||
m4 -= fq;
|
||||
jy -= fq;
|
||||
m6 -= fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 += fq;
|
||||
m12 += fq;
|
||||
m13 += fq;
|
||||
m16 -= fq;
|
||||
m17 += fq;
|
||||
|
||||
// q=9
|
||||
fq = dist[14*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx += fq;
|
||||
m4 += fq;
|
||||
jy -= fq;
|
||||
m6 -= fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 += fq;
|
||||
m12 += fq;
|
||||
m13 -= fq;
|
||||
m16 += fq;
|
||||
m17 += fq;
|
||||
|
||||
// q = 10
|
||||
fq = dist[5*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx -= fq;
|
||||
m4 -= fq;
|
||||
jy += fq;
|
||||
m6 += fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 += fq;
|
||||
m12 += fq;
|
||||
m13 -= fq;
|
||||
m16 -= fq;
|
||||
m17 -= fq;
|
||||
|
||||
|
||||
// q=11
|
||||
fq = dist[15*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx += fq;
|
||||
m4 += fq;
|
||||
jz += fq;
|
||||
m8 += fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 -= fq;
|
||||
m12 -= fq;
|
||||
m15 = fq;
|
||||
m16 -= fq;
|
||||
m18 = fq;
|
||||
|
||||
// q=12
|
||||
fq = dist[6*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx -= fq;
|
||||
m4 -= fq;
|
||||
jz -= fq;
|
||||
m8 -= fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 -= fq;
|
||||
m12 -= fq;
|
||||
m15 += fq;
|
||||
m16 += fq;
|
||||
m18 -= fq;
|
||||
|
||||
// q=13
|
||||
fq = dist[16*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx += fq;
|
||||
m4 += fq;
|
||||
jz -= fq;
|
||||
m8 -= fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 -= fq;
|
||||
m12 -= fq;
|
||||
m15 -= fq;
|
||||
m16 -= fq;
|
||||
m18 -= fq;
|
||||
|
||||
// q=14
|
||||
fq = dist[7*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jx -= fq;
|
||||
m4 -= fq;
|
||||
jz += fq;
|
||||
m8 += fq;
|
||||
m9 += fq;
|
||||
m10 += fq;
|
||||
m11 -= fq;
|
||||
m12 -= fq;
|
||||
m15 -= fq;
|
||||
m16 += fq;
|
||||
m18 += fq;
|
||||
|
||||
// q=15
|
||||
fq = dist[17*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jy += fq;
|
||||
m6 += fq;
|
||||
jz += fq;
|
||||
m8 += fq;
|
||||
m9 -= 2.0*fq;
|
||||
m10 -= 2.0*fq;
|
||||
m14 = fq;
|
||||
m17 += fq;
|
||||
m18 -= fq;
|
||||
|
||||
|
||||
// q=16
|
||||
fq = dist[8*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jy -= fq;
|
||||
m6 -= fq;
|
||||
jz -= fq;
|
||||
m8 -= fq;
|
||||
m9 -= 2.0*fq;
|
||||
m10 -= 2.0*fq;
|
||||
m14 += fq;
|
||||
m17 -= fq;
|
||||
m18 += fq;
|
||||
|
||||
// q=18
|
||||
fq = dist[9*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jy -= fq;
|
||||
m6 -= fq;
|
||||
jz += fq;
|
||||
m8 += fq;
|
||||
m9 -= 2.0*fq;
|
||||
m10 -= 2.0*fq;
|
||||
m14 -= fq;
|
||||
m17 -= fq;
|
||||
m18 -= fq;
|
||||
|
||||
// q=17
|
||||
fq = dist[18*Np+n];
|
||||
rho += fq;
|
||||
m1 += 8.0*fq;
|
||||
m2 += fq;
|
||||
jy += fq;
|
||||
m6 += fq;
|
||||
jz -= fq;
|
||||
m8 -= fq;
|
||||
m9 -= 2.0*fq;
|
||||
m10 -= 2.0*fq;
|
||||
m14 -= fq;
|
||||
m17 += fq;
|
||||
m18 += fq;
|
||||
|
||||
printf("rho: %f\n",rho);
|
||||
printf("jx: %f\n",jx);
|
||||
printf("jy: %f\n",jy);
|
||||
printf("jz: %f\n",jz);
|
||||
printf("m1: %f\n",m1);
|
||||
printf("m2: %f\n",m2);
|
||||
printf("m4: %f\n",m4);
|
||||
printf("m6: %f\n",m6);
|
||||
printf("m8: %f\n",m8);
|
||||
printf("m9: %f\n",m9);
|
||||
printf("m10: %f\n",m10);
|
||||
printf("m11: %f\n",m11);
|
||||
printf("m12: %f\n",m12);
|
||||
printf("m13: %f\n",m13);
|
||||
printf("m14: %f\n",m14);
|
||||
printf("m15: %f\n",m15);
|
||||
printf("m16: %f\n",m16);
|
||||
printf("m17: %f\n",m17);
|
||||
printf("m18: %f\n",m18);
|
||||
|
||||
//.................inverse transformation......................................................
|
||||
// q=0
|
||||
fq = mrt_V1*rho-mrt_V2*m1+mrt_V3*m2;
|
||||
dist[n] = fq;
|
||||
|
||||
// q = 1
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10)+0.16666666*Fx;
|
||||
dist[10*Np+n] = fq;
|
||||
|
||||
// q=2
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10) - 0.16666666*Fx;
|
||||
dist[Np+n] = fq;
|
||||
|
||||
// q = 3
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) + 0.16666666*Fy;
|
||||
dist[11*Np+n] = fq;
|
||||
|
||||
// q = 4
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) - 0.16666666*Fy;
|
||||
dist[2*Np+n] = fq;
|
||||
|
||||
// q = 5
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) + 0.16666666*Fz;
|
||||
dist[12*Np+n] = fq;
|
||||
|
||||
// q = 6
|
||||
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) - 0.16666666*Fz;
|
||||
dist[3*Np+n] = fq;
|
||||
|
||||
// q = 7
|
||||
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)
|
||||
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
||||
+mrt_V12*m12+0.25*m13+0.125*(m16-m17) + 0.08333333333*(Fx+Fy);
|
||||
dist[13*Np+n] = fq;
|
||||
|
||||
|
||||
// q = 8
|
||||
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
||||
+mrt_V12*m12+0.25*m13+0.125*(m17-m16) - 0.08333333333*(Fx+Fy);
|
||||
dist[4*Np+n] = fq;
|
||||
|
||||
// q = 9
|
||||
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)
|
||||
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
||||
+mrt_V12*m12-0.25*m13+0.125*(m16+m17) + 0.08333333333*(Fx-Fy);
|
||||
dist[14*Np+n] = fq;
|
||||
|
||||
// q = 10
|
||||
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)
|
||||
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
||||
+mrt_V12*m12-0.25*m13-0.125*(m16+m17)- 0.08333333333*(Fx-Fy);
|
||||
dist[5*Np+n] = fq;
|
||||
|
||||
// q = 11
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)
|
||||
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
||||
-mrt_V12*m12+0.25*m15+0.125*(m18-m16) + 0.08333333333*(Fx+Fz);
|
||||
dist[15*Np+n] = fq;
|
||||
|
||||
// q = 12
|
||||
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)
|
||||
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
||||
-mrt_V12*m12+0.25*m15+0.125*(m16-m18) - 0.08333333333*(Fx+Fz);
|
||||
dist[6*Np+n] = fq;
|
||||
|
||||
// q = 13
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)
|
||||
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
||||
-mrt_V12*m12-0.25*m15-0.125*(m16+m18) + 0.08333333333*(Fx-Fz);
|
||||
dist[16*Np+n] = fq;
|
||||
|
||||
// q= 14
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)
|
||||
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
||||
-mrt_V12*m12-0.25*m15+0.125*(m16+m18) - 0.08333333333*(Fx-Fz);
|
||||
dist[7*Np+n] = fq;
|
||||
|
||||
// q = 15
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)
|
||||
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18) + 0.08333333333*(Fy+Fz);
|
||||
dist[17*Np+n] = fq;
|
||||
|
||||
// q = 16
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)
|
||||
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17)- 0.08333333333*(Fy+Fz);
|
||||
dist[8*Np+n] = fq;
|
||||
|
||||
// q = 17
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)
|
||||
-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18) + 0.08333333333*(Fy-Fz);
|
||||
dist[18*Np+n] = fq;
|
||||
|
||||
// q = 18
|
||||
fq = mrt_V1*rho+mrt_V9*m1
|
||||
+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)
|
||||
-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18) - 0.08333333333*(Fy-Fz);
|
||||
dist[9*Np+n] = fq;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main (int argc, char **argv)
|
||||
{
|
||||
MPI_Init(&argc,&argv);
|
||||
int rank = MPI_WORLD_RANK();
|
||||
int nprocs = MPI_WORLD_SIZE();
|
||||
|
||||
for (int i=0; i<nprocs; i++) {
|
||||
if ( rank==i )
|
||||
printf("%i of %i: TestMoments\n",rank,nprocs);
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
}
|
||||
|
||||
// Create a memory leak for valgrind to find
|
||||
if ( nprocs==1 ) {
|
||||
double *x = new double[1];
|
||||
ASSERT(x!=NULL);
|
||||
}
|
||||
|
||||
// set the error code
|
||||
// Note: the error code should be consistent across all processors
|
||||
int error = 0;
|
||||
|
||||
int Np = 1;
|
||||
int Q = 9;
|
||||
|
||||
double *dist;
|
||||
dist = new double[(2*Q+1)*Np];
|
||||
|
||||
// create the test system
|
||||
for (int n=0; n<Np; n++){
|
||||
dist[n] = 1.f*Np;
|
||||
}
|
||||
for (int q=0; q<Q; q++){
|
||||
// set up the odd distributions
|
||||
int qodd=2*q+1;
|
||||
int qeven=2*(q+1);
|
||||
for (int n=0; n<Np; n++){
|
||||
//dist[(q+1)*Np + n] = 1.f*n + 0.01*qodd;
|
||||
dist[(q+1)*Np + n] = 1.f*n + 0.01*qeven;
|
||||
}
|
||||
// set up the even distributions
|
||||
for (int n=0; n<Np; n++){
|
||||
//dist[(q+10)*Np + n] = 1.f*n + 0.01*qeven;
|
||||
dist[(q+10)*Np + n] = 1.f*n + 0.01*qodd;
|
||||
}
|
||||
}
|
||||
|
||||
MRT_Transform(dist,Np);
|
||||
|
||||
// Check the result
|
||||
double *diff;
|
||||
diff = new double [(2*Q+1)*Np];
|
||||
|
||||
for (int n=0; n<Np; n++){
|
||||
diff[n] = dist[n] - 1.f*Np;
|
||||
}
|
||||
for (int q=0; q<Q; q++){
|
||||
int qodd=2*q+1;
|
||||
int qeven=2*(q+1);
|
||||
for (int n=0; n<Np; n++){
|
||||
diff[(q+1)*Np + n] = dist[(q+1)*Np + n] - (1.f*n + 0.01*qeven);
|
||||
}
|
||||
for (int n=0; n<Np; n++){
|
||||
diff[(q+10)*Np + n] = dist[(q+10)*Np + n] - (1.f*n + 0.01*qodd);
|
||||
}
|
||||
}
|
||||
|
||||
double tol = 1e-13;
|
||||
int count=0;
|
||||
for (int idx = 0; idx<(2*Q+1)*Np; idx++){
|
||||
if(fabs(diff[idx]) > tol){
|
||||
printf("Error at %f, value=%f\n",dist[idx]-diff[idx],dist[idx]);
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
error=count;
|
||||
// Finished
|
||||
MPI_Barrier(MPI_COMM_WORLD);
|
||||
MPI_Finalize();
|
||||
return error;
|
||||
}
|
||||
377
tests/TestPoiseuille.cpp
Normal file
377
tests/TestPoiseuille.cpp
Normal file
@@ -0,0 +1,377 @@
|
||||
|
||||
//*************************************************************************
|
||||
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
|
||||
// James E. McCLure
|
||||
//*************************************************************************
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include "common/ScaLBL.h"
|
||||
#include "common/MPI_Helpers.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
//***************************************************************************************
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//*****************************************
|
||||
// ***** MPI STUFF ****************
|
||||
//*****************************************
|
||||
// Initialize MPI
|
||||
int rank,nprocs;
|
||||
MPI_Init(&argc,&argv);
|
||||
MPI_Comm comm = MPI_COMM_WORLD;
|
||||
MPI_Comm_rank(comm,&rank);
|
||||
MPI_Comm_size(comm,&nprocs);
|
||||
int check;
|
||||
{
|
||||
// parallel domain size (# of sub-domains)
|
||||
int nprocx,nprocy,nprocz;
|
||||
int iproc,jproc,kproc;
|
||||
|
||||
|
||||
if (rank == 0){
|
||||
printf("********************************************************\n");
|
||||
printf("Running Unit Test: TestPoiseuille \n");
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
// BGK Model parameters
|
||||
string FILENAME;
|
||||
unsigned int nBlocks, nthreads;
|
||||
int timestepMax, interval;
|
||||
double tau,Fx,Fy,Fz,tol;
|
||||
// Domain variables
|
||||
double Lx,Ly,Lz;
|
||||
int nspheres;
|
||||
int Nx,Ny,Nz;
|
||||
int i,j,k,n;
|
||||
int dim = 12; if (rank == 0) printf("dim=%d\n",dim);
|
||||
int timestep = 0;
|
||||
|
||||
|
||||
tau = 1.0;
|
||||
double mu=(tau-0.5)/3.0;
|
||||
double rlx_setA=1.0/tau;
|
||||
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
||||
Fx = 0; Fy = 0;
|
||||
Fz = 1e-3; //1.f; // 1e-3;
|
||||
if (rank==0){
|
||||
//.......................................................................
|
||||
// Reading the domain information file
|
||||
//.......................................................................
|
||||
ifstream domain("Domain.in");
|
||||
if (domain.good()){
|
||||
printf("domain.good == true \n");
|
||||
domain >> nprocx;
|
||||
domain >> nprocy;
|
||||
domain >> nprocz;
|
||||
domain >> Nx;
|
||||
domain >> Ny;
|
||||
domain >> Nz;
|
||||
domain >> nspheres;
|
||||
domain >> Lx;
|
||||
domain >> Ly;
|
||||
domain >> Lz;
|
||||
}
|
||||
else if (nprocs==1){
|
||||
printf("domain.good == false - using predefined parameters \n");
|
||||
nprocx=nprocy=nprocz=1;
|
||||
Nx=dim; Ny = dim;
|
||||
Nz = dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
else if (nprocs==2){
|
||||
printf("domain.good == false - using predefined parameters \n");
|
||||
nprocx=2;
|
||||
nprocy=nprocz=1;
|
||||
Nx=0.5*dim; Ny = 0.5*dim;
|
||||
Nz = 0.5*dim;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
//.......................................................................
|
||||
}
|
||||
// **************************************************************
|
||||
// Broadcast simulation parameters from rank 0 to all other procs
|
||||
MPI_Barrier(comm);
|
||||
//.................................................
|
||||
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
||||
//.................................................
|
||||
MPI_Barrier(comm);
|
||||
// **************************************************************
|
||||
// **************************************************************
|
||||
|
||||
if (nprocs != nprocx*nprocy*nprocz){
|
||||
printf("nprocx = %i \n",nprocx);
|
||||
printf("nprocy = %i \n",nprocy);
|
||||
printf("nprocz = %i \n",nprocz);
|
||||
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
|
||||
}
|
||||
|
||||
if (rank==0){
|
||||
printf("********************************************************\n");
|
||||
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
MPI_Barrier(comm);
|
||||
kproc = rank/(nprocx*nprocy);
|
||||
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
|
||||
iproc = rank-nprocx*nprocy*kproc-nprocz*jproc;
|
||||
|
||||
if (rank == 0) {
|
||||
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
|
||||
}
|
||||
MPI_Barrier(comm);
|
||||
if (rank == 1){
|
||||
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
|
||||
printf("\n\n");
|
||||
}
|
||||
|
||||
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
|
||||
int BoundaryCondition=0;
|
||||
|
||||
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
|
||||
|
||||
Nx += 2;
|
||||
Ny += 2;
|
||||
Nz += 2;
|
||||
int N = Nx*Ny*Nz;
|
||||
|
||||
//.......................................................................
|
||||
// Assign the phase ID field
|
||||
//.......................................................................
|
||||
char LocalRankString[8];
|
||||
sprintf(LocalRankString,"%05d",rank);
|
||||
char LocalRankFilename[40];
|
||||
sprintf(LocalRankFilename,"ID.%05i",rank);
|
||||
/*
|
||||
FILE *IDFILE = fopen(LocalRankFilename,"rb");
|
||||
if (IDFILE==NULL) ERROR("Error opening file: ID.xxxxx");
|
||||
fread(Dm.id,1,N,IDFILE);
|
||||
fclose(IDFILE);
|
||||
*/
|
||||
|
||||
// initialize empty domain
|
||||
for (k=0;k<Nz;k++){
|
||||
for (j=0;j<Ny;j++){
|
||||
for (i=0;i<Nx;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (i<2) Dm.id[n] = 0;
|
||||
else if (i>Nx-3) Dm.id[n] = 0;
|
||||
else Dm.id[n]=1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Dm.CommInit(comm);
|
||||
MPI_Barrier(comm);
|
||||
|
||||
//.......................................................................
|
||||
// Compute the media porosity
|
||||
//.......................................................................
|
||||
double sum;
|
||||
double sum_local=0.0, porosity;
|
||||
int Np=0; // number of local pore nodes
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
if (Dm.id[n] > 0){
|
||||
sum_local+=1.0;
|
||||
Np++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
|
||||
porosity = sum*iVol_global;
|
||||
if (rank==0) printf("Media porosity = %f \n",porosity);
|
||||
|
||||
MPI_Barrier(comm);
|
||||
if (rank == 0) cout << "Domain set." << endl;
|
||||
if (rank==0) printf ("Create ScaLBL_Communicator \n");
|
||||
|
||||
// Create a communicator for the device
|
||||
ScaLBL_Communicator ScaLBL_Comm(Dm);
|
||||
|
||||
//...........device phase ID.................................................
|
||||
if (rank==0) printf ("Copying phase ID to device \n");
|
||||
char *ID;
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
|
||||
// Copy to the device
|
||||
ScaLBL_CopyToDevice(ID, Dm.id, N);
|
||||
//...........................................................................
|
||||
|
||||
if (rank==0){
|
||||
printf("Total domain size = %i \n",N);
|
||||
printf("Reduced domain size = %i \n",Np);
|
||||
}
|
||||
|
||||
|
||||
// LBM variables
|
||||
if (rank==0) printf ("Allocating distributions \n");
|
||||
|
||||
int neighborSize=18*Np*sizeof(int);
|
||||
int *neighborList;
|
||||
IntArray Map(Nx,Ny,Nz);
|
||||
|
||||
neighborList= new int[18*Np];
|
||||
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
|
||||
// ScaLBL_Comm.MemoryDenseLayoutFull(Map,neighborList,Dm.id,Np); // this was how I tested for correctness
|
||||
|
||||
MPI_Barrier(comm);
|
||||
|
||||
//......................device distributions.................................
|
||||
int dist_mem_size = Np*sizeof(double);
|
||||
|
||||
int *NeighborList;
|
||||
// double *f_even,*f_odd;
|
||||
double * dist;
|
||||
double * Velocity;
|
||||
//...........................................................................
|
||||
ScaLBL_AllocateDeviceMemory((void **) &dist, 19*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
|
||||
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
|
||||
//...........................................................................
|
||||
|
||||
/*
|
||||
* AA Algorithm begins here
|
||||
*
|
||||
*/
|
||||
ScaLBL_D3Q19_Init(dist, Np);
|
||||
|
||||
//.......create and start timer............
|
||||
double starttime,stoptime,cputime;
|
||||
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
starttime = MPI_Wtime();
|
||||
|
||||
/************ MAIN ITERATION LOOP (timing communications)***************************************/
|
||||
// ScaLBL_Comm.SendD3Q19(dist, &dist[10*Np]);
|
||||
// ScaLBL_Comm.RecvD3Q19(dist, &dist[10*Np]);
|
||||
// ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
//
|
||||
|
||||
if (rank==0) printf("Beginning AA timesteps...\n");
|
||||
if (rank==0) printf("********************************************************\n");
|
||||
|
||||
while (timestep < 2000) {
|
||||
|
||||
ScaLBL_Comm.SendD3Q19AA(dist); //READ FROM NORMAL
|
||||
ScaLBL_D3Q19_AAodd_MRT(NeighborList, dist, ScaLBL_Comm.next, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
|
||||
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q19_AAodd_MRT(NeighborList, dist, 0, ScaLBL_Comm.next, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
|
||||
ScaLBL_Comm.SendD3Q19AA(dist); //READ FORM NORMAL
|
||||
ScaLBL_D3Q19_AAeven_MRT(dist, ScaLBL_Comm.next, Np, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
|
||||
ScaLBL_Comm.RecvD3Q19AA(dist); //WRITE INTO OPPOSITE
|
||||
ScaLBL_D3Q19_AAeven_MRT(dist, 0, ScaLBL_Comm.next, Np, rlx_setA, rlx_setB, Fx, Fy, Fz);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
timestep++;
|
||||
//************************************************************************/
|
||||
|
||||
}
|
||||
//************************************************************************/
|
||||
stoptime = MPI_Wtime();
|
||||
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
|
||||
cputime = stoptime - starttime;
|
||||
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
|
||||
double MLUPS = double(Np*timestep)/cputime/1000000;
|
||||
// if (rank==0) printf("********************************************************\n");
|
||||
// if (rank==0) printf("CPU time = %f \n", cputime);
|
||||
// if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
|
||||
MLUPS *= nprocs;
|
||||
// if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
|
||||
// if (rank==0) printf("********************************************************\n");
|
||||
|
||||
// Number of memory references from the swap algorithm (per timestep)
|
||||
// 18 reads and 18 writes for each lattice site
|
||||
double MemoryRefs = Np*38;
|
||||
// number of memory references for the swap algorithm - GigaBytes / second
|
||||
// if (rank==0) printf("DRAM bandwidth (per process)= %f GB/sec \n",MemoryRefs*8*timestep/1e9/cputime);
|
||||
// Report bandwidth in Gigabits per second
|
||||
// communication bandwidth includes both send and recieve
|
||||
//if (rank==0) printf("Communication bandwidth (per process)= %f Gbit/sec \n",ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
|
||||
// if (rank==0) printf("Aggregated communication bandwidth = %f Gbit/sec \n",nprocs*ScaLBL_Comm.CommunicationCount*64*timestep/1e9/cputime);
|
||||
|
||||
double *Vz;
|
||||
Vz= new double [Np];
|
||||
int SIZE=Np*sizeof(double);
|
||||
ScaLBL_D3Q19_Momentum(dist,Velocity, Np);
|
||||
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
|
||||
ScaLBL_CopyToHost(&Vz[0],&Velocity[2*Np],SIZE);
|
||||
|
||||
if (rank == 0) printf("Force: %f,%f,%f \n",Fx,Fy,Fz);
|
||||
|
||||
double vz;
|
||||
double W = 1.f*Nx-4.f;
|
||||
j=Ny/2; k=Nz/2;
|
||||
if (rank == 0) printf("Channel width=%f \n",W);
|
||||
if (rank == 0) printf("ID flag vz analytical\n");
|
||||
|
||||
MPI_Barrier(comm);
|
||||
if (rank == 0) {
|
||||
for (i=0;i<Nx;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
printf("%i ",Dm.id[n]);
|
||||
|
||||
n = Map(i,j,k);
|
||||
//printf("%i,%i,%i; %i :",i,j,k,n);
|
||||
if (n<0) {vz =0.f; printf(" b "); }
|
||||
else { vz=Vz[n]; printf(" a "); }
|
||||
printf("%f ",vz);
|
||||
//Analytical solution
|
||||
double x=1.f*i-1.5;
|
||||
if (n<0) vz=0.f;
|
||||
else vz=Fz*x*(W-x)/(2.f*mu);
|
||||
printf("%f\n",vz);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
||||
if (rank == 1) {
|
||||
for (i=0;i<Nx;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
printf("%i ",Dm.id[n]);
|
||||
|
||||
n = Map(i,j,k);
|
||||
//printf("%i,%i,%i; %i :",i,j,k,n);
|
||||
if (n<0) {vz =0.f; printf(" b "); }
|
||||
else { vz=Vz[n]; printf(" a "); }
|
||||
printf("%f ",vz);
|
||||
//Analytical solution
|
||||
double x=1.f*i-1.5;
|
||||
if (n<0) vz=0.f;
|
||||
else vz=Fz*x*(W-x)/(2.f*mu);
|
||||
printf("%f\n",vz);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
// ****************************************************
|
||||
MPI_Barrier(comm);
|
||||
MPI_Finalize();
|
||||
// ****************************************************
|
||||
|
||||
return check;
|
||||
}
|
||||
276
tests/TestPressVel.cpp
Normal file
276
tests/TestPressVel.cpp
Normal file
@@ -0,0 +1,276 @@
|
||||
|
||||
//*************************************************************************
|
||||
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
|
||||
// James E. McCLure
|
||||
//*************************************************************************
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include "common/ScaLBL.h"
|
||||
#include "common/MPI_Helpers.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
//***************************************************************************************
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//*****************************************
|
||||
// ***** MPI STUFF ****************
|
||||
//*****************************************
|
||||
// Initialize MPI
|
||||
int rank,nprocs;
|
||||
MPI_Init(&argc,&argv);
|
||||
MPI_Comm comm = MPI_COMM_WORLD;
|
||||
MPI_Comm_rank(comm,&rank);
|
||||
MPI_Comm_size(comm,&nprocs);
|
||||
int check;
|
||||
{
|
||||
// parallel domain size (# of sub-domains)
|
||||
int nprocx,nprocy,nprocz;
|
||||
int iproc,jproc,kproc;
|
||||
|
||||
|
||||
if (rank == 0){
|
||||
printf("********************************************************\n");
|
||||
printf("Running Unit Test: TestPressVel \n");
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
// BGK Model parameters
|
||||
string FILENAME;
|
||||
unsigned int nBlocks, nthreads;
|
||||
int timestepMax, interval;
|
||||
double tau,Fx,Fy,Fz,tol;
|
||||
// Domain variables
|
||||
double Lx,Ly,Lz;
|
||||
int nspheres;
|
||||
int Nx,Ny,Nz;
|
||||
int i,j,k,n;
|
||||
int dim = 50; if (rank == 0) printf("dim=%d\n",dim);
|
||||
double rlx_setA=1.0;
|
||||
double rlx_setB=1.0;
|
||||
|
||||
Fx = Fy = 0.f;
|
||||
Fz = 1.0e-4;
|
||||
if (rank==0){
|
||||
//.......................................................................
|
||||
// Reading the domain information file
|
||||
//.......................................................................
|
||||
ifstream domain("Domain.in");
|
||||
if (domain.good()){
|
||||
domain >> nprocx;
|
||||
domain >> nprocy;
|
||||
domain >> nprocz;
|
||||
domain >> Nx;
|
||||
domain >> Ny;
|
||||
domain >> Nz;
|
||||
domain >> nspheres;
|
||||
domain >> Lx;
|
||||
domain >> Ly;
|
||||
domain >> Lz;
|
||||
}
|
||||
else if (nprocs==1){
|
||||
nprocx=nprocy=nprocz=1;
|
||||
Nx=4; Ny = 4;
|
||||
Nz = 4;
|
||||
nspheres=0;
|
||||
Lx=Ly=Lz=1;
|
||||
}
|
||||
//.......................................................................
|
||||
}
|
||||
// **************************************************************
|
||||
// Broadcast simulation parameters from rank 0 to all other procs
|
||||
MPI_Barrier(comm);
|
||||
//.................................................
|
||||
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
||||
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
||||
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
||||
//.................................................
|
||||
MPI_Barrier(comm);
|
||||
// **************************************************************
|
||||
// **************************************************************
|
||||
|
||||
if (nprocs != nprocx*nprocy*nprocz){
|
||||
printf("nprocx = %i \n",nprocx);
|
||||
printf("nprocy = %i \n",nprocy);
|
||||
printf("nprocz = %i \n",nprocz);
|
||||
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
|
||||
}
|
||||
|
||||
if (rank==0){
|
||||
printf("********************************************************\n");
|
||||
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
MPI_Barrier(comm);
|
||||
kproc = rank/(nprocx*nprocy);
|
||||
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
|
||||
iproc = rank-nprocx*nprocy*kproc-nprocz*jproc;
|
||||
|
||||
if (rank == 0) {
|
||||
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
|
||||
}
|
||||
MPI_Barrier(comm);
|
||||
if (rank == 1){
|
||||
printf("i,j,k proc=%d %d %d \n",iproc,jproc,kproc);
|
||||
printf("\n\n");
|
||||
}
|
||||
|
||||
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
|
||||
int BoundaryCondition=0;
|
||||
|
||||
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
|
||||
|
||||
|
||||
Nx += 2;
|
||||
Ny += 2;
|
||||
Nz += 2;
|
||||
int N = Nx*Ny*Nz;
|
||||
|
||||
//.......................................................................
|
||||
// Assign the phase ID field
|
||||
//.......................................................................
|
||||
char LocalRankString[8];
|
||||
sprintf(LocalRankString,"%05d",rank);
|
||||
char LocalRankFilename[40];
|
||||
sprintf(LocalRankFilename,"ID.%05i",rank);
|
||||
/*
|
||||
FILE *IDFILE = fopen(LocalRankFilename,"rb");
|
||||
if (IDFILE==NULL) ERROR("Error opening file: ID.xxxxx");
|
||||
fread(Dm.id,1,N,IDFILE);
|
||||
fclose(IDFILE);
|
||||
*/
|
||||
|
||||
Dm.CommInit(comm);
|
||||
|
||||
//.......................................................................
|
||||
// Compute the media porosity
|
||||
//.......................................................................
|
||||
double sum;
|
||||
double sum_local=0.0, porosity;
|
||||
int Np=0; // number of local pore nodes
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
for (i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
Dm.id[n] = 1;
|
||||
if (Dm.id[n] > 0){
|
||||
sum_local+=1.0;
|
||||
Np++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
|
||||
porosity = sum*iVol_global;
|
||||
if (rank==0) printf("Media porosity = %f \n",porosity);
|
||||
|
||||
MPI_Barrier(comm);
|
||||
if (rank == 0) cout << "Domain set." << endl;
|
||||
if (rank==0) printf ("Create ScaLBL_Communicator \n");
|
||||
|
||||
// Create a communicator for the device
|
||||
ScaLBL_Communicator ScaLBL_Comm(Dm);
|
||||
|
||||
//...........device phase ID.................................................
|
||||
if (rank==0) printf ("Copying phase ID to device \n");
|
||||
char *ID;
|
||||
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
|
||||
// Copy to the device
|
||||
ScaLBL_CopyToDevice(ID, Dm.id, N);
|
||||
//...........................................................................
|
||||
|
||||
if (rank==0){
|
||||
printf("Total domain size = %i \n",N);
|
||||
printf("Reduced domain size = %i \n",Np);
|
||||
}
|
||||
|
||||
|
||||
// LBM variables
|
||||
if (rank==0) printf ("Allocating distributions \n");
|
||||
|
||||
int neighborSize=18*Np*sizeof(int);
|
||||
int *neighborList;
|
||||
IntArray Map(Nx,Ny,Nz);
|
||||
|
||||
neighborList= new int[18*Np];
|
||||
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
|
||||
// ScaLBL_Comm.MemoryDenseLayoutFull(Map,neighborList,Dm.id,Np); // this was how I tested for correctness
|
||||
|
||||
MPI_Barrier(comm);
|
||||
|
||||
//......................device distributions.................................
|
||||
int dist_mem_size = Np*sizeof(double);
|
||||
|
||||
int *NeighborList;
|
||||
// double *f_even,*f_odd;
|
||||
double * dist;
|
||||
double * Velocity;
|
||||
//...........................................................................
|
||||
ScaLBL_AllocateDeviceMemory((void **) &dist, 19*dist_mem_size);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
|
||||
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
|
||||
//...........................................................................
|
||||
|
||||
/*
|
||||
* AA Algorithm begins here
|
||||
*
|
||||
*/
|
||||
//ScaLBL_D3Q19_Init(ID, dist, &dist[10*Np], Np, 1, 1);
|
||||
double *DIST;
|
||||
DIST = new double [19*Np];
|
||||
double VALUE=0.1;
|
||||
|
||||
for (int n=0; n<Np; n++){
|
||||
//DIST[n]=1.0;
|
||||
// even distributions
|
||||
DIST[Np + n] = 1.0 - VALUE;
|
||||
DIST[2*Np + n] = 1.0 - VALUE;
|
||||
DIST[3*Np + n] = 1.0 - VALUE;
|
||||
DIST[4*Np + n] = 1.0;
|
||||
DIST[5*Np + n] = 1.0;
|
||||
DIST[6*Np + n] = 1.0;
|
||||
DIST[7*Np + n] = 1.0;
|
||||
DIST[8*Np + n] = 1.0;
|
||||
DIST[9*Np + n] = 1.0;
|
||||
// odd distributions
|
||||
DIST[10*Np + n] = 1.0;
|
||||
DIST[11*Np + n] = 1.0;
|
||||
DIST[12*Np + n] = 1.0;
|
||||
DIST[13*Np + n] = 1.0;
|
||||
DIST[14*Np + n] = 1.0;
|
||||
DIST[15*Np + n] = 1.0;
|
||||
DIST[16*Np + n] = 1.0;
|
||||
DIST[17*Np + n] = 1.0;
|
||||
DIST[18*Np + n] = 1.0;
|
||||
}
|
||||
|
||||
ScaLBL_CopyToDevice(dist, DIST, 19*Np*sizeof(double));
|
||||
|
||||
|
||||
double *Vz;
|
||||
Vz= new double [Np];
|
||||
size_t SIZE=Np*sizeof(double);
|
||||
ScaLBL_D3Q19_Momentum(dist, Velocity, Np);
|
||||
ScaLBL_CopyToHost(&Vz[0],&Velocity[2],SIZE);
|
||||
//
|
||||
for (int n=0; n<Np; n++){
|
||||
if (Vz[n] - VALUE > 1e-8){
|
||||
printf("ERROR: site %i, value=%f \n",n,Vz[n]); check = 15;
|
||||
}
|
||||
}
|
||||
}
|
||||
// ****************************************************
|
||||
MPI_Barrier(comm);
|
||||
MPI_Finalize();
|
||||
// ****************************************************
|
||||
}
|
||||
Reference in New Issue
Block a user