ResInsight/ApplicationLibCode/Application/Tools/RiaImageTools.cpp

136 lines
3.9 KiB
C++
Raw Normal View History

#include "RiaImageTools.h"
2019-01-23 02:32:57 -06:00
#include "cvfAssert.h"
#include <QColor>
#include <QImage>
#include <algorithm>
2019-01-23 02:32:57 -06:00
#include <limits>
//--------------------------------------------------------------------------------------------------
/// Meijster, Roerdink, Hesselink
/// A GENERAL ALGORITHM FOR COMPUTING DISTANCE TRANSFORMS IN LINEAR TIME
/// http://fab.cba.mit.edu/classes/S62.12/docs/Meijster_distance.pdf
/// Currently Euclidean only, but can be easily extended by replacing the lambda functions.
//--------------------------------------------------------------------------------------------------
void RiaImageTools::distanceTransform2d( std::vector<std::vector<unsigned int>>& image )
{
if ( image.empty() )
{
return;
}
if ( image.front().empty() )
{
return;
}
const int64_t M = (int64_t)image.size();
const int64_t N = (int64_t)image.front().size();
2019-01-23 02:32:57 -06:00
int64_t infVal = M + N;
CVF_ASSERT( infVal <= std::numeric_limits<unsigned int>::max() );
// First phase
std::vector<std::vector<int64_t>> g( M );
#pragma omp parallel for
for ( int64_t x = 0; x < M; ++x )
{
g[x].resize( N, infVal );
if ( image[x][0] )
{
g[x][0] = 0;
}
for ( int64_t y = 1; y < N - 1; ++y )
{
if ( image[x][y] )
{
g[x][y] = 0;
}
else
{
g[x][y] = 1 + g[x][y - 1];
}
}
for ( int64_t y = N - 2; y >= 0; --y )
{
if ( g[x][y + 1] < g[x][y] )
{
g[x][y] = 1 + g[x][y + 1];
}
}
}
auto f = []( int64_t x, int64_t i, const std::vector<std::vector<int64_t>>& g, int64_t y )
{ return ( x - i ) * ( x - i ) + g[i][y] * g[i][y]; };
auto sep = []( int64_t i, int64_t u, const std::vector<std::vector<int64_t>>& g, int64_t y )
{
if ( i == u ) return (int64_t)0;
int64_t numerator = u * u - i * i + g[u][y] * g[u][y] - g[i][y] * g[i][y];
int64_t divisor = 2 * ( u - i );
return numerator / divisor;
};
// Second phase
#pragma omp parallel for
for ( int64_t y = 0; y < N; ++y )
{
int64_t q = 0;
std::vector<int64_t> s( std::max( N, M ), (int64_t)0 );
std::vector<int64_t> t( std::max( N, M ), (int64_t)0 );
for ( int64_t u = 1; u < M - 1; ++u )
{
while ( q >= 0 && f( t[q], s[q], g, y ) > f( t[q], u, g, y ) )
{
q--;
}
if ( q < 0 )
{
q = 0;
s[0] = u;
}
else
{
int64_t w = 1 + sep( (int64_t)s[q], u, g, y );
if ( w < M )
{
q++;
s[q] = u;
t[q] = w;
}
}
}
for ( int64_t u = M - 1; u >= 0; --u )
{
int64_t fVal = f( u, s[q], g, y );
CVF_ASSERT( fVal <= std::numeric_limits<double>::max() );
image[u][y] = static_cast<unsigned int>( fVal );
if ( u == t[q] )
{
q = q - 1;
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RiaImageTools::makeGrayScale( QImage& image )
{
for ( int i = 0; i < image.height(); i++ )
{
uchar* scanLine = image.scanLine( i );
for ( int j = 0; j < image.width(); j++ )
{
QRgb* pixel = reinterpret_cast<QRgb*>( scanLine + j * 4 );
int gray = qGray( *pixel );
int alpha = qAlpha( *pixel );
*pixel = QColor( gray, gray, gray, alpha ).rgba();
}
}
}