ResInsight/ApplicationCode/ModelVisualization/Intersections/RivSectionFlattner.h

149 lines
5.2 KiB
C
Raw Normal View History

#pragma once
class RivSectionFlattner
{
public:
//--------------------------------------------------------------------------------------------------
/// Returns the next index higher than idxToStartOfLineSegment that makes the line
// polyline[idxToStartOfLineSegment] .. polyline[nextIdx] not parallel to extrDir
///
/// Returns size_t(-1) if no point is found
//--------------------------------------------------------------------------------------------------
static size_t indexToNextValidPoint(const std::vector<cvf::Vec3d>& polyLine,
const cvf::Vec3d extrDir,
size_t idxToStartOfLineSegment)
{
size_t lineCount = polyLine.size();
if ( !(idxToStartOfLineSegment + 1 < lineCount) ) return -1;
cvf::Vec3d p1 = polyLine[idxToStartOfLineSegment];
for ( size_t lIdx = idxToStartOfLineSegment+1; lIdx < lineCount; ++lIdx )
{
cvf::Vec3d p2 = polyLine[lIdx];
cvf::Vec3d p1p2 = p2 - p1;
if ( (p1p2 - (p1p2 * extrDir)*extrDir).length() > 0.1 )
{
return lIdx;
}
}
return -1;
}
//--------------------------------------------------------------------------------------------------
/// Returns one CS pr point, valid for the next segment
//--------------------------------------------------------------------------------------------------
static std::vector<cvf::Mat4d> calculateFlatteningCSsForPolyline(const std::vector<cvf::Vec3d> & polyLine,
const cvf::Vec3d& extrusionDir,
const cvf::Vec3d& startOffset,
cvf::Vec3d* endOffset)
{
CVF_ASSERT(endOffset);
size_t pointCount = polyLine.size();
CVF_ASSERT(pointCount > 1);
std::vector<cvf::Mat4d> segmentTransforms;
segmentTransforms.reserve(pointCount);
// Find initial transform, used if all is vertical
cvf::Mat4d invSectionCS;
{
cvf::Vec3d p1 = polyLine[0];
cvf::Vec3d p2 = polyLine[1];
cvf::Mat4d sectionLocalCS = calculateSectionLocalFlatteningCS(p1, p2, extrusionDir);
cvf::Mat4d invSectionCS = sectionLocalCS.getInverted();
invSectionCS.setTranslation(invSectionCS.translation() + startOffset);
}
cvf::Vec3d previousFlattenedSectionEndPoint = startOffset;
size_t lIdx = 0;
while ( lIdx < pointCount )
{
size_t idxToNextP = indexToNextValidPoint(polyLine, extrusionDir, lIdx);
// If the rest is nearly parallel to extrusionDir, use the current inverse matrix for the rest of the points
if ( idxToNextP == size_t(-1) )
{
size_t inc = 0;
while ( (lIdx + inc) < pointCount )
{
segmentTransforms.push_back(invSectionCS);
++inc;
}
break;
}
cvf::Vec3d p1 = polyLine[lIdx];
cvf::Vec3d p2 = polyLine[idxToNextP];
cvf::Mat4d sectionLocalCS = calculateSectionLocalFlatteningCS(p1, p2, extrusionDir);
invSectionCS = sectionLocalCS.getInverted();
cvf::Vec3d flattenedSectionEndPoint = p2.getTransformedPoint(invSectionCS);
invSectionCS.setTranslation(invSectionCS.translation() + previousFlattenedSectionEndPoint );
previousFlattenedSectionEndPoint += flattenedSectionEndPoint;
// Assign the matrix to the points in between
size_t inc = 0;
while ( (lIdx + inc) < idxToNextP )
{
segmentTransforms.push_back(invSectionCS);
inc++;
}
lIdx = idxToNextP;
}
*endOffset = previousFlattenedSectionEndPoint;
return segmentTransforms;
}
private:
//--------------------------------------------------------------------------------------------------
/// Origo in P1
/// Ez in upwards extrusionDir
/// Ey normal to the section plane
/// Ex in plane along p1-p2
//--------------------------------------------------------------------------------------------------
static cvf::Mat4d calculateSectionLocalFlatteningCS(const cvf::Vec3d& p1,
const cvf::Vec3d& p2,
const cvf::Vec3d& extrusionDir)
{
using namespace cvf;
Vec3d Ez = extrusionDir.z() > 0.0 ? extrusionDir: -extrusionDir;
Vec3d sectionLineDir = p2 - p1;
if ( cvf::GeometryTools::getAngle(sectionLineDir, extrusionDir) < 0.01 )
{
sectionLineDir = Ez.perpendicularVector();
}
Vec3d Ey = Ez ^ sectionLineDir;
Ey.normalize();
Vec3d Ex = Ey ^ Ez;
Ex.normalize();
return Mat4d(Ex[0], Ey[0], Ez[0], p1[0],
Ex[1], Ey[1], Ez[1], p1[1],
Ex[2], Ey[2], Ez[2], p1[2],
0.0, 0.0, 0.0, 1.0);
}
};