ResInsight/ApplicationCode/ModelVisualization/Riv3dWellLogCurveGeometryGenerator.cpp

402 lines
19 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "Riv3dWellLogCurveGeometryGenerator.h"
#include "RimWellPath.h"
#include "RimWellPathCollection.h"
#include "RigCurveDataTools.h"
#include "RigWellPath.h"
#include "RigWellPathGeometryTools.h"
#include "cafLine.h"
#include "cafDisplayCoordTransform.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfBoundingBox.h"
#include "cvfMath.h"
2018-03-13 03:42:54 -05:00
#include <cmath>
2018-03-21 10:22:35 -05:00
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
Riv3dWellLogCurveGeometryGenerator::Riv3dWellLogCurveGeometryGenerator(RimWellPath* wellPath)
2018-03-21 10:22:35 -05:00
: m_wellPath(wellPath)
, m_planeWidth(0.0)
2018-03-21 10:22:35 -05:00
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::createCurveDrawables(const caf::DisplayCoordTransform* displayCoordTransform,
const cvf::BoundingBox& wellPathClipBoundingBox,
const Rim3dWellLogCurve* rim3dWellLogCurve,
double planeOffsetFromWellPathCenter,
double planeWidth,
const std::vector<cvf::Vec3f>& drawSurfaceVertices)
{
// Make sure all drawables are cleared in case we return early to avoid a
// previous drawable being "stuck" when changing result type.
clearCurvePointsAndGeometry();
std::vector<double> resultValues;
std::vector<double> resultMds;
rim3dWellLogCurve->curveValuesAndMds(&resultValues, &resultMds);
m_planeWidth = planeWidth;
if (!wellPathGeometry()) return;
if (wellPathGeometry()->m_wellPathPoints.empty()) return;
if (!wellPathClipBoundingBox.isValid()) return;
if (resultValues.empty()) return;
2018-03-21 10:22:35 -05:00
CVF_ASSERT(resultValues.size() == resultMds.size());
if (rim3dWellLogCurve->maxCurveValue() - rim3dWellLogCurve->minCurveValue() < 1.0e-6)
{
return;
}
RimWellPathCollection* wellPathCollection = nullptr;
m_wellPath->firstAncestorOrThisOfTypeAsserted(wellPathCollection);
cvf::Vec3d clipLocation = wellPathGeometry()->m_wellPathPoints.front();
if (wellPathCollection->wellPathClip)
{
double clipZDistance = wellPathCollection->wellPathClipZDistance;
clipLocation = wellPathClipBoundingBox.max() + clipZDistance * cvf::Vec3d(0, 0, 1);
}
clipLocation = displayCoordTransform->transformToDisplayCoord(clipLocation);
std::vector<cvf::Vec3d> wellPathPoints = wellPathGeometry()->m_wellPathPoints;
for (cvf::Vec3d& wellPathPoint : wellPathPoints)
{
wellPathPoint = displayCoordTransform->transformToDisplayCoord(wellPathPoint);
}
std::vector<cvf::Vec3d> wellPathCurveNormals =
RigWellPathGeometryTools::calculateLineSegmentNormals(wellPathPoints, rim3dWellLogCurve->drawPlaneAngle());
std::vector<cvf::Vec3d> interpolatedWellPathPoints;
std::vector<cvf::Vec3d> interpolatedCurveNormals;
2018-03-21 10:22:35 -05:00
// Iterate from bottom of well path and up to be able to stop at given Z max clipping height
for (auto md = resultMds.rbegin(); md != resultMds.rend(); md++)
{
cvf::Vec3d point = wellPathGeometry()->interpolatedVectorAlongWellPath(wellPathPoints, *md);
cvf::Vec3d normal = wellPathGeometry()->interpolatedVectorAlongWellPath(wellPathCurveNormals, *md);
if (point.z() > clipLocation.z()) break;
interpolatedWellPathPoints.push_back(point);
interpolatedCurveNormals.push_back(normal.getNormalized());
}
2018-03-21 10:22:35 -05:00
if (interpolatedWellPathPoints.empty()) return;
// Reverse list, since it was filled in the opposite order
2018-03-21 10:22:35 -05:00
std::reverse(interpolatedWellPathPoints.begin(), interpolatedWellPathPoints.end());
std::reverse(interpolatedCurveNormals.begin(), interpolatedCurveNormals.end());
// The result values for the part of the well which is not clipped off, matching interpolatedWellPathPoints size
m_curveValues = std::vector<double>(resultValues.end() - interpolatedWellPathPoints.size(), resultValues.end());
m_curveMeasuredDepths = std::vector<double>(resultMds.end() - interpolatedWellPathPoints.size(), resultMds.end());
double maxClampedResult = -HUGE_VAL;
double minClampedResult = HUGE_VAL;
for (double& result : m_curveValues)
{
if (!RigCurveDataTools::isValidValue(result, false)) continue;
result = cvf::Math::clamp(result, rim3dWellLogCurve->minCurveValue(), rim3dWellLogCurve->maxCurveValue());
maxClampedResult = std::max(result, maxClampedResult);
minClampedResult = std::min(result, minClampedResult);
}
if (minClampedResult >= maxClampedResult)
{
return;
}
m_curveVertices = std::vector<cvf::Vec3f>();
m_curveVertices.reserve(interpolatedWellPathPoints.size());
double plotRangeToResultRangeFactor = planeWidth / (maxClampedResult - minClampedResult);
for (size_t i = 0; i < interpolatedWellPathPoints.size(); i++)
{
double scaledResult = 0;
if (RigCurveDataTools::isValidValue(m_curveValues[i], false))
{
scaledResult = planeOffsetFromWellPathCenter + (m_curveValues[i] - minClampedResult) * plotRangeToResultRangeFactor;
}
cvf::Vec3d curvePoint(interpolatedWellPathPoints[i] + scaledResult * interpolatedCurveNormals[i]);
m_curveVertices.push_back(cvf::Vec3f(curvePoint));
}
projectVerticesOntoTriangles(drawSurfaceVertices);
createNewVerticesAlongTriangleEdges(drawSurfaceVertices);
std::vector<cvf::uint> indices;
indices.reserve(m_curveVertices.size() * 2);
for (size_t i = 0; i < m_curveVertices.size() - 1; ++i)
{
indices.push_back(cvf::uint(i));
indices.push_back(cvf::uint(i + 1));
}
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt(cvf::PrimitiveType::PT_LINES);
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray(indices);
m_curveDrawable = new cvf::DrawableGeo();
indexedUInt->setIndices(indexArray.p());
m_curveDrawable->addPrimitiveSet(indexedUInt.p());
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray(m_curveVertices);
m_curveDrawable->setVertexArray(vertexArray.p());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::clearCurvePointsAndGeometry()
{
m_curveDrawable = nullptr;
m_curveVertices.clear();
m_curveMeasuredDepths.clear();
m_curveValues.clear();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> Riv3dWellLogCurveGeometryGenerator::curveDrawable()
{
return m_curveDrawable;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellPath* Riv3dWellLogCurveGeometryGenerator::wellPathGeometry() const
{
return m_wellPath->wellPathGeometry();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool Riv3dWellLogCurveGeometryGenerator::findClosestPointOnCurve(const cvf::Vec3d& globalIntersection,
cvf::Vec3d* closestPoint,
double* measuredDepthAtPoint,
double* valueAtClosestPoint) const
{
cvf::Vec3f globalIntersectionFloat(globalIntersection);
float closestDistance = m_planeWidth * 0.1;
*closestPoint = cvf::Vec3d::UNDEFINED;
*measuredDepthAtPoint = cvf::UNDEFINED_DOUBLE;
*valueAtClosestPoint = cvf::UNDEFINED_DOUBLE;
if (m_curveVertices.size() < 2u) false;
CVF_ASSERT(m_curveVertices.size() == m_curveValues.size());
for (size_t i = 1; i < m_curveVertices.size(); ++i)
{
bool validCurveSegment = RigCurveDataTools::isValidValue(m_curveValues[i], false) &&
RigCurveDataTools::isValidValue(m_curveValues[i - 1], false);
if (validCurveSegment)
{
cvf::Vec3f a = m_curveVertices[i - 1];
cvf::Vec3f b = m_curveVertices[i];
cvf::Vec3f ap = globalIntersectionFloat - a;
cvf::Vec3f ab = b - a;
// Projected point is clamped to one of the end points of the segment.
float distanceToProjectedPointAlongAB = ap * ab / (ab * ab);
float clampedDistance = cvf::Math::clamp(distanceToProjectedPointAlongAB, 0.0f, 1.0f);
cvf::Vec3f projectionOfGlobalIntersection = a + clampedDistance * ab;
float distance = (projectionOfGlobalIntersection - globalIntersectionFloat).length();
if (distance < closestDistance)
{
*closestPoint = cvf::Vec3d(projectionOfGlobalIntersection);
closestDistance = distance;
*measuredDepthAtPoint =
m_curveMeasuredDepths[i - 1] * (1.0f - clampedDistance) + m_curveMeasuredDepths[i] * clampedDistance;
*valueAtClosestPoint = m_curveValues[i - 1] * (1.0f - clampedDistance) + m_curveValues[i] * clampedDistance;
}
}
}
if (closestPoint->isUndefined()) return false;
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::createNewVerticesAlongTriangleEdges(const std::vector<cvf::Vec3f>& drawSurfaceVertices)
{
std::vector<cvf::Vec3f> expandedCurveVertices;
std::vector<double> expandedMeasuredDepths;
std::vector<double> expandedValues;
size_t estimatedNumberOfPoints = m_curveVertices.size() + drawSurfaceVertices.size();
expandedCurveVertices.reserve(estimatedNumberOfPoints);
expandedMeasuredDepths.reserve(estimatedNumberOfPoints);
expandedValues.reserve(estimatedNumberOfPoints);
for (size_t i = 0; i < m_curveVertices.size() - 1; i += 2)
{
if (RigCurveDataTools::isValidValue(m_curveValues[i], false) &&
RigCurveDataTools::isValidValue(m_curveValues[i + 1], false))
{
caf::Line<float> fullSegmentLine(m_curveVertices[i], m_curveVertices[i + 1]);
cvf::Vec3f fullSegmentVector = fullSegmentLine.vector();
cvf::Vec3f lastVertex = m_curveVertices[i];
expandedCurveVertices.push_back(lastVertex);
expandedMeasuredDepths.push_back(m_curveMeasuredDepths[i]);
expandedValues.push_back(m_curveValues[i]);
// Find segments that intersects the triangle edges
for (size_t j = 0; j < drawSurfaceVertices.size() - 2; j += 1)
{
cvf::Vec3f currentSubSegment = m_curveVertices[i + 1] - lastVertex;
caf::Line<float> triangleEdge1 = caf::Line<float>(drawSurfaceVertices[j], drawSurfaceVertices[j + 1]);
caf::Line<float> triangleEdge2 = caf::Line<float>(drawSurfaceVertices[j + 2], drawSurfaceVertices[j + 1]);
cvf::Vec3f triangleNormal = (triangleEdge1.vector().getNormalized() ^ triangleEdge2.vector().getNormalized()).getNormalized();
cvf::Vec3f projectedSegmentVector = currentSubSegment - (currentSubSegment * triangleNormal) * triangleNormal;
caf::Line<float> projectedCurveLine (lastVertex, lastVertex + projectedSegmentVector);
// Only attempt to find intersections with the first edge. The other edge is handled with the next triangle.
bool withinSegments = false;
caf::Line<float> connectingLine = projectedCurveLine.findLineBetweenNearestPoints(triangleEdge1, &withinSegments);
if (withinSegments)
{
cvf::Vec3f newVertex = connectingLine.end();
cvf::Vec3f newSegmentVector = newVertex - lastVertex;
if (newSegmentVector.lengthSquared() < fullSegmentVector.lengthSquared())
{
expandedCurveVertices.push_back(newVertex);
// Scalar projection (a * b / |b|) divided by full segment length to become (a * b / |b|^2)
float dotProduct = newSegmentVector * fullSegmentVector;
float fractionAlongFullSegment = dotProduct / fullSegmentVector.lengthSquared();
float measuredDepth = m_curveMeasuredDepths[i] * (1 - fractionAlongFullSegment) + m_curveMeasuredDepths[i + 1] * fractionAlongFullSegment;
float valueAtPoint = m_curveValues[i] * (1 - fractionAlongFullSegment) + m_curveValues[i + 1] * fractionAlongFullSegment;
expandedMeasuredDepths.push_back(measuredDepth);
expandedValues.push_back(valueAtPoint);
lastVertex = newVertex;
}
}
}
// Next original segment point
expandedCurveVertices.push_back(m_curveVertices[i + 1]);
expandedMeasuredDepths.push_back(m_curveMeasuredDepths[i + 1]);
expandedValues.push_back(m_curveValues[i + 1]);
}
}
m_curveVertices.swap(expandedCurveVertices);
m_curveMeasuredDepths.swap(expandedMeasuredDepths);
m_curveValues.swap(expandedValues);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::projectVerticesOntoTriangles(const std::vector<cvf::Vec3f>& drawSurfaceVertices)
{
for (size_t i = 0; i < m_curveVertices.size(); ++i)
{
// Sort projections onto triangle by the distance of the projection.
std::map<float, cvf::Vec3f> projectionsInsideTriangle;
for (size_t j = 0; j < drawSurfaceVertices.size() - 2; j += 1)
{
cvf::Vec3f triangleVertex1, triangleVertex2, triangleVertex3;
if (j % 2 == 0)
{
triangleVertex1 = drawSurfaceVertices[j];
triangleVertex2 = drawSurfaceVertices[j + 1];
triangleVertex3 = drawSurfaceVertices[j + 2];
}
else
{
triangleVertex1 = drawSurfaceVertices[j];
triangleVertex2 = drawSurfaceVertices[j + 2];
triangleVertex3 = drawSurfaceVertices[j + 1];
}
bool wasInsideTriangle = false;
cvf::Vec3f projectedPoint = projectPointOntoTriangle(
m_curveVertices[i], triangleVertex1, triangleVertex2, triangleVertex3, &wasInsideTriangle);
if (wasInsideTriangle)
{
projectionsInsideTriangle.insert(std::make_pair((projectedPoint - m_curveVertices[i]).lengthSquared(),
projectedPoint));
}
}
// Take the closest projection
if (!projectionsInsideTriangle.empty())
{
m_curveVertices[i] = projectionsInsideTriangle.begin()->second;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3f Riv3dWellLogCurveGeometryGenerator::projectPointOntoTriangle(const cvf::Vec3f& point,
const cvf::Vec3f& triangleVertex1,
const cvf::Vec3f& triangleVertex2,
const cvf::Vec3f& triangleVertex3,
bool* wasInsideTriangle)
{
*wasInsideTriangle = false;
cvf::Vec3f e1 = triangleVertex2 - triangleVertex1;
cvf::Vec3f e2 = triangleVertex3 - triangleVertex1;
cvf::Vec3f n = (e1.getNormalized() ^ e2.getNormalized()).getNormalized();
// Project vertex onto triangle plane
cvf::Vec3f av = point - triangleVertex1;
cvf::Vec3f projectedAv = av - (av * n) * n;
cvf::Vec3f projectedPoint = projectedAv + triangleVertex1;
// Calculate barycentric coordinates
float areaABC = n * (e1 ^ e2);
float areaPBC = n * ((triangleVertex2 - projectedPoint) ^ (triangleVertex3 - projectedPoint));
float areaPCA = n * ((triangleVertex3 - projectedPoint) ^ (triangleVertex1 - projectedPoint));
float u = areaPBC / areaABC;
float v = areaPCA / areaABC;
float w = 1.0 - u - v;
if (u >= -1.0e-6 && v >= -1.0e-6 && w >= -1.0e-6)
{
*wasInsideTriangle = true;
// Clamp to ensure it is inside the triangle
u = cvf::Math::clamp(u, 0.0f, 1.0f);
v = cvf::Math::clamp(v, 0.0f, 1.0f);
w = cvf::Math::clamp(w, 0.0f, 1.0f);
projectedPoint = triangleVertex1 * u + triangleVertex2 * v + triangleVertex3 * w;
}
return projectedPoint;
}