3D view info box is up to speed.

This completes #291 feature wise
Statistics is now pr result address and not pr. Part-result Address
This commit is contained in:
Jacob Støren 2015-06-04 16:10:02 +02:00
parent e6231c0601
commit 00796b3fb4
8 changed files with 216 additions and 232 deletions

View File

@ -20,15 +20,17 @@
#include "RigFemNativeStatCalc.h"
#include "RigFemScalarResultFrames.h"
#include "RigFemPartResultsCollection.h"
#include <math.h>
#include "RigStatisticsMath.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemNativeStatCalc::RigFemNativeStatCalc(RigFemScalarResultFrames* cellResultsData)
RigFemNativeStatCalc::RigFemNativeStatCalc(RigFemPartResultsCollection* femResultCollection, const RigFemResultAddress& resVarAddr)
: m_resVarAddr(resVarAddr)
{
m_resultsData = cellResultsData;
m_resultsData = femResultCollection;
}
//--------------------------------------------------------------------------------------------------
@ -36,26 +38,29 @@ RigFemNativeStatCalc::RigFemNativeStatCalc(RigFemScalarResultFrames* cellResults
//--------------------------------------------------------------------------------------------------
void RigFemNativeStatCalc::minMaxCellScalarValues(size_t timeStepIndex, double& min, double& max)
{
std::vector<float>& values = m_resultsData->frameData(timeStepIndex);
for (int pIdx = 0; pIdx < static_cast<int>(m_resultsData->m_femPartResults.size()); ++pIdx)
{
const std::vector<float>& values = m_resultsData->resultValues(m_resVarAddr, pIdx, (int)timeStepIndex);
size_t i;
for (i = 0; i < values.size(); i++)
{
if (values[i] == HUGE_VAL) // TODO
{
continue;
}
size_t i;
for (i = 0; i < values.size(); i++)
{
if (values[i] == HUGE_VAL) // TODO
{
continue;
}
if (values[i] < min)
{
min = values[i];
}
if (values[i] < min)
{
min = values[i];
}
if (values[i] > max)
{
max = values[i];
}
}
if (values[i] > max)
{
max = values[i];
}
}
}
}
//--------------------------------------------------------------------------------------------------
@ -63,7 +68,28 @@ void RigFemNativeStatCalc::minMaxCellScalarValues(size_t timeStepIndex, double&
//--------------------------------------------------------------------------------------------------
void RigFemNativeStatCalc::posNegClosestToZero(size_t timeStepIndex, double& pos, double& neg)
{
for (int pIdx = 0; pIdx < static_cast<int>(m_resultsData->m_femPartResults.size()); ++pIdx)
{
const std::vector<float>& values = m_resultsData->resultValues(m_resVarAddr, pIdx, (int)timeStepIndex);
for (size_t i = 0; i < values.size(); i++)
{
if (values[i] == HUGE_VAL)
{
continue;
}
if (values[i] < pos && values[i] > 0)
{
pos = values[i];
}
if (values[i] > neg && values[i] < 0)
{
neg = values[i];
}
}
}
}
//--------------------------------------------------------------------------------------------------
@ -71,7 +97,31 @@ void RigFemNativeStatCalc::posNegClosestToZero(size_t timeStepIndex, double& pos
//--------------------------------------------------------------------------------------------------
void RigFemNativeStatCalc::valueSumAndSampleCount(double& valueSum, size_t& sampleCount)
{
int timestepCount = (int)(this->timeStepCount());
int partCount = static_cast<int>(m_resultsData->m_femPartResults.size());
for (int pIdx = 0; pIdx < partCount; ++pIdx)
{
for (int tIdx = 0; tIdx < timestepCount; tIdx++)
{
const std::vector<float>& values = m_resultsData->resultValues(m_resVarAddr, pIdx, tIdx);
size_t undefValueCount = 0;
for (size_t cIdx = 0; cIdx < values.size(); ++cIdx)
{
double value = values[cIdx];
if (value == HUGE_VAL || value != value)
{
++undefValueCount;
continue;
}
valueSum += value;
}
sampleCount += values.size();
sampleCount -= undefValueCount;
}
}
}
//--------------------------------------------------------------------------------------------------
@ -79,7 +129,17 @@ void RigFemNativeStatCalc::valueSumAndSampleCount(double& valueSum, size_t& samp
//--------------------------------------------------------------------------------------------------
void RigFemNativeStatCalc::addDataToHistogramCalculator(RigHistogramCalculator& histogramCalculator)
{
int timestepCount = (int)(this->timeStepCount());
int partCount = static_cast<int>(m_resultsData->m_femPartResults.size());
for (int pIdx = 0; pIdx < partCount; ++pIdx)
{
for (int tIdx = 0; tIdx < timestepCount; tIdx++)
{
const std::vector<float>& values = m_resultsData->resultValues(m_resVarAddr, pIdx, tIdx);
histogramCalculator.addData(values);
}
}
}
//--------------------------------------------------------------------------------------------------
@ -89,3 +149,5 @@ size_t RigFemNativeStatCalc::timeStepCount()
{
return m_resultsData->frameCount();
}

View File

@ -24,12 +24,16 @@
///
//==================================================================================================
#include "RigStatisticsCalculator.h"
class RigFemScalarResultFrames;
#include "RigFemResultAddress.h"
class RigFemPartResultsCollection;
class RigFemNativeStatCalc : public RigStatisticsCalculator
{
public:
RigFemNativeStatCalc(RigFemScalarResultFrames* cellResultsData);
RigFemNativeStatCalc(RigFemPartResultsCollection* femResultCollection, const RigFemResultAddress& resVarAddr);
virtual void minMaxCellScalarValues(size_t timeStepIndex, double& min, double& max);
virtual void posNegClosestToZero(size_t timeStepIndex, double& pos, double& neg);
@ -39,7 +43,8 @@ public:
virtual size_t timeStepCount();
private:
RigFemScalarResultFrames* m_resultsData;
RigFemPartResultsCollection* m_resultsData;
RigFemResultAddress m_resVarAddr;
};

View File

@ -34,6 +34,7 @@
#include <cmath>
#include <stdlib.h>
#include "RigFemNativeStatCalc.h"
//--------------------------------------------------------------------------------------------------
@ -91,7 +92,7 @@ std::map<std::string, std::vector<std::string> > RigFemPartResultsCollection::sc
///
//--------------------------------------------------------------------------------------------------
RigFemScalarResultFrames* RigFemPartResultsCollection::findOrLoadScalarResult(int partIndex,
const RigFemResultAddress& resVarAddr)
const RigFemResultAddress& resVarAddr)
{
CVF_ASSERT(partIndex < m_femPartResults.size());
CVF_ASSERT(m_readerInterface.notNull());
@ -100,29 +101,29 @@ RigFemScalarResultFrames* RigFemPartResultsCollection::findOrLoadScalarResult(in
if (frames) return frames;
std::vector<std::string> stepNames = m_readerInterface->stepNames();
frames = m_femPartResults[partIndex]->createScalarResult( resVarAddr);
frames = m_femPartResults[partIndex]->createScalarResult(resVarAddr);
for (int stepIndex = 0; stepIndex < static_cast<int>(stepNames.size()); ++stepIndex)
{
std::vector<double > frameTimes = m_readerInterface->frameTimes(stepIndex);
std::vector<double > frameTimes = m_readerInterface->frameTimes(stepIndex);
for (int fIdx = 1; (size_t)fIdx < frameTimes.size() && fIdx < 2 ; ++fIdx) // Read only the second frame
{
std::vector<float>* frameData = &(frames->frameData(stepIndex));
switch (resVarAddr.resultPosType)
for (int fIdx = 1; (size_t)fIdx < frameTimes.size() && fIdx < 2 ; ++fIdx) // Read only the second frame
{
case RIG_NODAL:
m_readerInterface->readScalarNodeField(resVarAddr.fieldName, resVarAddr.componentName, partIndex, stepIndex, fIdx, frameData);
break;
case RIG_ELEMENT_NODAL:
m_readerInterface->readScalarElementNodeField(resVarAddr.fieldName, resVarAddr.componentName, partIndex, stepIndex, fIdx, frameData);
break;
case RIG_INTEGRATION_POINT:
m_readerInterface->readScalarIntegrationPointField(resVarAddr.fieldName, resVarAddr.componentName, partIndex, stepIndex, fIdx, frameData);
break;
std::vector<float>* frameData = &(frames->frameData(stepIndex));
switch (resVarAddr.resultPosType)
{
case RIG_NODAL:
m_readerInterface->readScalarNodeField(resVarAddr.fieldName, resVarAddr.componentName, partIndex, stepIndex, fIdx, frameData);
break;
case RIG_ELEMENT_NODAL:
m_readerInterface->readScalarElementNodeField(resVarAddr.fieldName, resVarAddr.componentName, partIndex, stepIndex, fIdx, frameData);
break;
case RIG_INTEGRATION_POINT:
m_readerInterface->readScalarIntegrationPointField(resVarAddr.fieldName, resVarAddr.componentName, partIndex, stepIndex, fIdx, frameData);
break;
}
}
}
}
return frames;
}
@ -135,151 +136,6 @@ std::vector<std::string> RigFemPartResultsCollection::stepNames()
return m_readerInterface->stepNames();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::minMaxScalarValues(const RigFemResultAddress& resVarAddr, int frameIndex,
double* localMin, double* localMax)
{
minMaxScalarValuesInternal(resVarAddr, frameIndex, localMin, localMax);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::minMaxScalarValues(const RigFemResultAddress& resVarAddr,
double* globalMin, double* globalMax)
{
minMaxScalarValuesInternal(resVarAddr, -1, globalMin, globalMax);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::minMaxScalarValuesInternal(const RigFemResultAddress& resVarAddr, int frameIndex, double* overallMin, double* overallMax)
{
CVF_ASSERT(overallMax && overallMin);
double min = HUGE_VAL;
double max = -HUGE_VAL;
for (int pIdx = 0; pIdx < static_cast<int>(m_femPartResults.size()); ++pIdx)
{
if (m_femPartResults[pIdx].notNull())
{
RigFemScalarResultFrames* frames = findOrLoadScalarResult(pIdx, resVarAddr);
if (frames)
{
double lmin;
double lmax;
RigStatisticsDataCache* stats = frames->statistics();
if (frameIndex == -1)
{
stats->minMaxCellScalarValues(lmin, lmax);
}
else
{
stats->minMaxCellScalarValues(frameIndex, lmin, lmax);
}
min = lmin < min ? lmin: min;
max = lmax > max ? lmax: max;
}
}
}
*overallMax = max;
*overallMin = min;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::posNegClosestToZero(const RigFemResultAddress& resVarAddr, int frameIndex, double* localPosClosestToZero, double* localNegClosestToZero)
{
posNegClosestToZeroInternal(resVarAddr, frameIndex, localPosClosestToZero, localNegClosestToZero);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::posNegClosestToZero(const RigFemResultAddress& resVarAddr, double* globalPosClosestToZero, double* globalNegClosestToZero)
{
posNegClosestToZeroInternal(resVarAddr, -1, globalPosClosestToZero, globalNegClosestToZero);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::posNegClosestToZeroInternal(const RigFemResultAddress& resVarAddr, int frameIndex,
double* overallPosClosestToZero, double* overallNegClosestToZero)
{
CVF_ASSERT(overallPosClosestToZero && overallNegClosestToZero);
double posClosestToZero = HUGE_VAL;
double negClosestToZero = -HUGE_VAL;
for (int pIdx = 0; pIdx < static_cast<int>(m_femPartResults.size()); ++pIdx)
{
if (m_femPartResults[pIdx].notNull())
{
RigFemScalarResultFrames* frames = findOrLoadScalarResult(pIdx, resVarAddr);
if (frames)
{
double partNeg, partPos;
RigStatisticsDataCache* stats = frames->statistics();
if (frameIndex == -1)
{
stats->posNegClosestToZero(partPos, partNeg);
}
else
{
stats->posNegClosestToZero(frameIndex, partPos, partNeg);
}
if (partNeg > negClosestToZero && partNeg < 0) negClosestToZero = partNeg;
if (partPos < posClosestToZero && partPos > 0) posClosestToZero = partPos;
}
}
}
*overallPosClosestToZero = posClosestToZero;
*overallNegClosestToZero = negClosestToZero;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::meanCellScalarValues(const RigFemResultAddress& resVarAddr, double* meanValue)
{
CVF_ASSERT(meanValue);
double mean = 0;
size_t meanContribCount = 0;
for (int pIdx = 0; pIdx < static_cast<int>(m_femPartResults.size()); ++pIdx)
{
if (m_femPartResults[pIdx].notNull())
{
RigFemScalarResultFrames* frames = findOrLoadScalarResult(pIdx, resVarAddr);
if (frames)
{
double localMean = 0;
RigStatisticsDataCache* stats = frames->statistics();
stats->meanCellScalarValues(localMean);
mean += localMean;
meanContribCount++;
}
}
}
*meanValue = meanContribCount > 0 ? mean/meanContribCount : 0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
@ -291,7 +147,7 @@ int RigFemPartResultsCollection::frameCount()
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::assertResultsLoaded( const RigFemResultAddress& resVarAddr)
void RigFemPartResultsCollection::assertResultsLoaded(const RigFemResultAddress& resVarAddr)
{
for (int pIdx = 0; pIdx < static_cast<int>(m_femPartResults.size()); ++pIdx)
{
@ -311,4 +167,80 @@ const std::vector<float>& RigFemPartResultsCollection::resultValues(const RigFem
return scalarResults->frameData(frameIndex);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigStatisticsDataCache* RigFemPartResultsCollection::statistics(const RigFemResultAddress& resVarAddr)
{
RigStatisticsDataCache* statCache = m_resultStatistics[resVarAddr].p();
if (!statCache)
{
RigFemNativeStatCalc* calculator = new RigFemNativeStatCalc(this, resVarAddr);
statCache = new RigStatisticsDataCache(calculator);
m_resultStatistics[resVarAddr] = statCache;
}
return statCache;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::minMaxScalarValues(const RigFemResultAddress& resVarAddr, int frameIndex,
double* localMin, double* localMax)
{
this->statistics(resVarAddr)->minMaxCellScalarValues(frameIndex, *localMin, *localMax);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::minMaxScalarValues(const RigFemResultAddress& resVarAddr,
double* globalMin, double* globalMax)
{
this->statistics(resVarAddr)->minMaxCellScalarValues(*globalMin, *globalMax);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::posNegClosestToZero(const RigFemResultAddress& resVarAddr, int frameIndex, double* localPosClosestToZero, double* localNegClosestToZero)
{
this->statistics(resVarAddr)->posNegClosestToZero(frameIndex, *localPosClosestToZero, *localNegClosestToZero);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::posNegClosestToZero(const RigFemResultAddress& resVarAddr, double* globalPosClosestToZero, double* globalNegClosestToZero)
{
this->statistics(resVarAddr)->posNegClosestToZero(*globalPosClosestToZero, *globalNegClosestToZero);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::meanScalarValue(const RigFemResultAddress& resVarAddr, double* meanValue)
{
CVF_ASSERT(meanValue);
this->statistics(resVarAddr)->meanCellScalarValues(*meanValue);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::p10p90ScalarValues(const RigFemResultAddress& resVarAddr, double* p10, double* p90)
{
this->statistics(resVarAddr)->p10p90CellScalarValues(*p10, *p90);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigFemPartResultsCollection::scalarValuesHistogram(const RigFemResultAddress& resVarAddr)
{
return this->statistics(resVarAddr)->cellScalarValuesHistogram();
}

View File

@ -30,6 +30,7 @@ class RifGeoMechReaderInterface;
class RigFemScalarResultFrames;
class RigFemPartResultsCollection;
class RigFemPartResults;
class RigStatisticsDataCache;
class RigFemPartResultsCollection: public cvf::Object
{
@ -38,32 +39,37 @@ public:
~RigFemPartResultsCollection();
std::map<std::string, std::vector<std::string> > scalarFieldAndComponentNames(RigFemResultPosEnum resPos);
std::vector<std::string> stepNames();
void assertResultsLoaded(const RigFemResultAddress& resVarAddr);
const std::vector<float>& resultValues(const RigFemResultAddress& resVarAddr, int partIndex, int frameIndex);
std::vector<std::string> stepNames();
void assertResultsLoaded(const RigFemResultAddress& resVarAddr);
const std::vector<float>& resultValues(const RigFemResultAddress& resVarAddr, int partIndex, int frameIndex);
int frameCount();
int frameCount();
void minMaxScalarValues (const RigFemResultAddress& resVarAddr, int frameIndex, double* localMin, double* localMax);
void posNegClosestToZero(const RigFemResultAddress& resVarAddr, int frameIndex, double* localPosClosestToZero, double* localNegClosestToZero);
void minMaxScalarValues (const RigFemResultAddress& resVarAddr, double* globalMin, double* globalMax);
void posNegClosestToZero(const RigFemResultAddress& resVarAddr, double* globalPosClosestToZero, double* globalNegClosestToZero);
void meanCellScalarValues(const RigFemResultAddress& resVarAddr, double* meanValue);
void minMaxScalarValues (const RigFemResultAddress& resVarAddr, int frameIndex, double* localMin, double* localMax);
void posNegClosestToZero(const RigFemResultAddress& resVarAddr, int frameIndex, double* localPosClosestToZero, double* localNegClosestToZero);
void minMaxScalarValues (const RigFemResultAddress& resVarAddr, double* globalMin, double* globalMax);
void posNegClosestToZero(const RigFemResultAddress& resVarAddr, double* globalPosClosestToZero, double* globalNegClosestToZero);
void meanScalarValue(const RigFemResultAddress& resVarAddr, double* meanValue);
void p10p90ScalarValues(const RigFemResultAddress& resVarAddr, double* p10, double* p90);
const std::vector<size_t>& scalarValuesHistogram(const RigFemResultAddress& resVarAddr);
private:
RigFemScalarResultFrames* findOrLoadScalarResult(int partIndex,
const RigFemResultAddress& resVarAddr);
RigFemScalarResultFrames* findOrLoadScalarResult(int partIndex,
const RigFemResultAddress& resVarAddr);
void minMaxScalarValuesInternal(const RigFemResultAddress& resVarAddr, int frameIndex,
double* overallMin, double* overallMax);
void posNegClosestToZeroInternal(const RigFemResultAddress& resVarAddr, int frameIndex,
double* localPosClosestToZero, double* localNegClosestToZero);
void minMaxScalarValuesInternal(const RigFemResultAddress& resVarAddr, int frameIndex,
double* overallMin, double* overallMax);
void posNegClosestToZeroInternal(const RigFemResultAddress& resVarAddr, int frameIndex,
double* localPosClosestToZero, double* localNegClosestToZero);
cvf::Collection<RigFemPartResults> m_femPartResults;
friend class RigFemNativeStatCalc;
cvf::Collection<RigFemPartResults> m_femPartResults;
cvf::ref<RifGeoMechReaderInterface> m_readerInterface;
cvf::ref<RifGeoMechReaderInterface> m_readerInterface;
RigStatisticsDataCache* statistics(const RigFemResultAddress& resVarAddr);
std::map<RigFemResultAddress, cvf::ref<RigStatisticsDataCache> > m_resultStatistics;
};

View File

@ -20,7 +20,6 @@
#include <stdlib.h>
#include "RigFemScalarResultFrames.h"
#include "RigFemNativeStatCalc.h"
#include "RigStatisticsDataCache.h"
//--------------------------------------------------------------------------------------------------
@ -48,19 +47,6 @@ size_t RigFemScalarResultFrames::frameCount()
return m_frameNames.size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigStatisticsDataCache* RigFemScalarResultFrames::statistics()
{
if (m_statistics.isNull())
{
RigFemNativeStatCalc* calculator = new RigFemNativeStatCalc(this);
m_statistics = new RigStatisticsDataCache(calculator);
}
return m_statistics.p();
}
//--------------------------------------------------------------------------------------------------
///

View File

@ -36,13 +36,10 @@ public:
std::vector<float>& frameData(size_t frameIndex);
size_t frameCount();
RigStatisticsDataCache* statistics();
private:
std::vector< std::vector<float> > m_dataForEachFrame;
std::vector<std::string> m_frameNames;
cvf::ref<RigStatisticsDataCache> m_statistics;
};

View File

@ -237,7 +237,7 @@ void RivFemPartPartMgr::updateCellResultColor(size_t timeStepIndex, RimGeoMechRe
RigFemResultAddress resVarAddress(resPosType, fieldName.toStdString(), compName.toStdString());
const std::vector<float>& resultValues = caseData->femPartResults()->resultValues(resVarAddress, m_gridIdx, timeStepIndex);
const std::vector<float>& resultValues = caseData->femPartResults()->resultValues(resVarAddress, m_gridIdx, (int)timeStepIndex);
const std::vector<size_t>* vxToResultMapping = NULL;

View File

@ -331,12 +331,12 @@ void Rim3dOverlayInfoConfig::updateGeoMech3DInfo(RimGeoMechView * geoMechView)
double mean = 0;
RigFemResultAddress resAddress = geoMechView->cellResult()->resultAddress();
caseData->femPartResults()->meanCellScalarValues(resAddress, &mean);
caseData->femPartResults()->meanScalarValue(resAddress, &mean);
caseData->femPartResults()->minMaxScalarValues(resAddress,&min, &max);
// ToDo: Implement statistics for geomech data
//caseData->p10p90CellScalarValues(resAddress, p10, p90);
caseData->femPartResults()->p10p90ScalarValues(resAddress, &p10, &p90);
infoText += QString("<table border=0 cellspacing=5 ><tr><td>Min</td><td>P10</td> <td>Mean</td> <td>P90</td> <td>Max</td> </tr>"
"<tr><td>%1</td><td> %2</td><td> %3</td><td> %4</td><td> %5 </td></tr></table>").arg(min).arg(p10).arg(mean).arg(p90).arg(max);
@ -379,14 +379,10 @@ void Rim3dOverlayInfoConfig::updateGeoMech3DInfo(RimGeoMechView * geoMechView)
double mean = 0;
RigFemResultAddress resAddress = geoMechView->cellResult()->resultAddress();
caseData->femPartResults()->meanCellScalarValues(resAddress, &mean);
caseData->femPartResults()->meanScalarValue(resAddress, &mean);
caseData->femPartResults()->minMaxScalarValues(resAddress,&min, &max);
// ToDo: Implement statistics for geomech data
//caseData->p10p90CellScalarValues(resAddress, p10, p90);
caseData->femPartResults()->minMaxScalarValues(resAddress, &min, &max);
//geoMechView->viewer()->setHistogram(min, max, caseData->scalarValuesHistogram(resAddress));
caseData->femPartResults()->p10p90ScalarValues(resAddress, &p10, &p90);
geoMechView->viewer()->setHistogram(min, max, caseData->femPartResults()->scalarValuesHistogram(resAddress));
geoMechView->viewer()->setHistogramPercentiles(p10, p90, mean);
}
}