ResInsight/ApplicationCode/GeoMech/GeoMechDataModel/RigFemPartResultsCollection.cpp
Jacob Støren 00796b3fb4 3D view info box is up to speed.
This completes #291 feature wise
Statistics is now pr result address and not pr. Part-result Address
2015-06-04 16:25:27 +02:00

247 lines
10 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015- Statoil ASA
// Copyright (C) 2015- Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFemPartResultsCollection.h"
#include "RifGeoMechReaderInterface.h"
#ifdef USE_ODB_API
#include "RifOdbReader.h"
#endif
#include "RigFemScalarResultFrames.h"
#include "RigStatisticsDataCache.h"
#include "RigFemPartResults.h"
#include "cafProgressInfo.h"
#include "cvfBoundingBox.h"
#include <QString>
#include <cmath>
#include <stdlib.h>
#include "RigFemNativeStatCalc.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultsCollection::RigFemPartResultsCollection(RifGeoMechReaderInterface* readerInterface, int partCount)
{
CVF_ASSERT(readerInterface);
m_readerInterface = readerInterface;
m_femPartResults.resize(partCount);
std::vector<std::string> stepNames = m_readerInterface->stepNames();
for (int pIdx = 0; pIdx < static_cast<int>(m_femPartResults.size()); ++pIdx)
{
m_femPartResults[pIdx] = new RigFemPartResults;
m_femPartResults[pIdx]->initResultSteps(stepNames);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultsCollection::~RigFemPartResultsCollection()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::map<std::string, std::vector<std::string> > RigFemPartResultsCollection::scalarFieldAndComponentNames(RigFemResultPosEnum resPos)
{
std::map<std::string, std::vector<std::string> > fieldCompNames;
if (m_readerInterface.notNull())
{
if (resPos == RIG_NODAL)
{
fieldCompNames = m_readerInterface->scalarNodeFieldAndComponentNames();
}
else if (resPos == RIG_ELEMENT_NODAL)
{
fieldCompNames = m_readerInterface->scalarElementNodeFieldAndComponentNames();
}
else if (resPos == RIG_INTEGRATION_POINT)
{
fieldCompNames = m_readerInterface->scalarIntegrationPointFieldAndComponentNames();
}
}
return fieldCompNames;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemScalarResultFrames* RigFemPartResultsCollection::findOrLoadScalarResult(int partIndex,
const RigFemResultAddress& resVarAddr)
{
CVF_ASSERT(partIndex < m_femPartResults.size());
CVF_ASSERT(m_readerInterface.notNull());
RigFemScalarResultFrames* frames = m_femPartResults[partIndex]->findScalarResult(resVarAddr);
if (frames) return frames;
std::vector<std::string> stepNames = m_readerInterface->stepNames();
frames = m_femPartResults[partIndex]->createScalarResult(resVarAddr);
for (int stepIndex = 0; stepIndex < static_cast<int>(stepNames.size()); ++stepIndex)
{
std::vector<double > frameTimes = m_readerInterface->frameTimes(stepIndex);
for (int fIdx = 1; (size_t)fIdx < frameTimes.size() && fIdx < 2 ; ++fIdx) // Read only the second frame
{
std::vector<float>* frameData = &(frames->frameData(stepIndex));
switch (resVarAddr.resultPosType)
{
case RIG_NODAL:
m_readerInterface->readScalarNodeField(resVarAddr.fieldName, resVarAddr.componentName, partIndex, stepIndex, fIdx, frameData);
break;
case RIG_ELEMENT_NODAL:
m_readerInterface->readScalarElementNodeField(resVarAddr.fieldName, resVarAddr.componentName, partIndex, stepIndex, fIdx, frameData);
break;
case RIG_INTEGRATION_POINT:
m_readerInterface->readScalarIntegrationPointField(resVarAddr.fieldName, resVarAddr.componentName, partIndex, stepIndex, fIdx, frameData);
break;
}
}
}
return frames;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::string> RigFemPartResultsCollection::stepNames()
{
CVF_ASSERT(m_readerInterface.notNull());
return m_readerInterface->stepNames();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
int RigFemPartResultsCollection::frameCount()
{
return static_cast<int>(stepNames().size());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::assertResultsLoaded(const RigFemResultAddress& resVarAddr)
{
for (int pIdx = 0; pIdx < static_cast<int>(m_femPartResults.size()); ++pIdx)
{
if (m_femPartResults[pIdx].notNull())
{
findOrLoadScalarResult(pIdx, resVarAddr);
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<float>& RigFemPartResultsCollection::resultValues(const RigFemResultAddress& resVarAddr, int partIndex, int frameIndex)
{
RigFemScalarResultFrames* scalarResults = findOrLoadScalarResult(partIndex, resVarAddr);
return scalarResults->frameData(frameIndex);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigStatisticsDataCache* RigFemPartResultsCollection::statistics(const RigFemResultAddress& resVarAddr)
{
RigStatisticsDataCache* statCache = m_resultStatistics[resVarAddr].p();
if (!statCache)
{
RigFemNativeStatCalc* calculator = new RigFemNativeStatCalc(this, resVarAddr);
statCache = new RigStatisticsDataCache(calculator);
m_resultStatistics[resVarAddr] = statCache;
}
return statCache;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::minMaxScalarValues(const RigFemResultAddress& resVarAddr, int frameIndex,
double* localMin, double* localMax)
{
this->statistics(resVarAddr)->minMaxCellScalarValues(frameIndex, *localMin, *localMax);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::minMaxScalarValues(const RigFemResultAddress& resVarAddr,
double* globalMin, double* globalMax)
{
this->statistics(resVarAddr)->minMaxCellScalarValues(*globalMin, *globalMax);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::posNegClosestToZero(const RigFemResultAddress& resVarAddr, int frameIndex, double* localPosClosestToZero, double* localNegClosestToZero)
{
this->statistics(resVarAddr)->posNegClosestToZero(frameIndex, *localPosClosestToZero, *localNegClosestToZero);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::posNegClosestToZero(const RigFemResultAddress& resVarAddr, double* globalPosClosestToZero, double* globalNegClosestToZero)
{
this->statistics(resVarAddr)->posNegClosestToZero(*globalPosClosestToZero, *globalNegClosestToZero);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::meanScalarValue(const RigFemResultAddress& resVarAddr, double* meanValue)
{
CVF_ASSERT(meanValue);
this->statistics(resVarAddr)->meanCellScalarValues(*meanValue);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFemPartResultsCollection::p10p90ScalarValues(const RigFemResultAddress& resVarAddr, double* p10, double* p90)
{
this->statistics(resVarAddr)->p10p90CellScalarValues(*p10, *p90);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigFemPartResultsCollection::scalarValuesHistogram(const RigFemResultAddress& resVarAddr)
{
return this->statistics(resVarAddr)->cellScalarValuesHistogram();
}