|
|
|
@@ -18,6 +18,9 @@
|
|
|
|
|
|
|
|
|
|
#include "RimSummaryRegressionAnalysisCurve.h"
|
|
|
|
|
|
|
|
|
|
#include "RiaQDateTimeTools.h"
|
|
|
|
|
#include "RiaTimeTTools.h"
|
|
|
|
|
|
|
|
|
|
#include "cafPdmUiLineEditor.h"
|
|
|
|
|
#include "cafPdmUiTextEditor.h"
|
|
|
|
|
|
|
|
|
@@ -28,6 +31,8 @@
|
|
|
|
|
#include "PolynominalRegression.hpp"
|
|
|
|
|
#include "PowerFitRegression.hpp"
|
|
|
|
|
|
|
|
|
|
#include <QDateTime>
|
|
|
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
|
@@ -46,6 +51,16 @@ void caf::AppEnum<RimSummaryRegressionAnalysisCurve::RegressionType>::setUp()
|
|
|
|
|
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::LOGISTIC, "LOGISTIC", "Logistic" );
|
|
|
|
|
setDefault( RimSummaryRegressionAnalysisCurve::RegressionType::LINEAR );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <>
|
|
|
|
|
void caf::AppEnum<RimSummaryRegressionAnalysisCurve::ForecastUnit>::setUp()
|
|
|
|
|
{
|
|
|
|
|
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::DAYS, "DAYS", "Days" );
|
|
|
|
|
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::MONTHS, "MONTHS", "Months" );
|
|
|
|
|
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::YEARS, "YEARS", "Years" );
|
|
|
|
|
setDefault( RimSummaryRegressionAnalysisCurve::ForecastUnit::YEARS );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}; // namespace caf
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
@@ -56,6 +71,9 @@ RimSummaryRegressionAnalysisCurve::RimSummaryRegressionAnalysisCurve()
|
|
|
|
|
CAF_PDM_InitObject( "Regression Analysis Curve", ":/SummaryCurve16x16.png" );
|
|
|
|
|
|
|
|
|
|
CAF_PDM_InitFieldNoDefault( &m_regressionType, "RegressionType", "Type" );
|
|
|
|
|
CAF_PDM_InitField( &m_forecastForward, "ForecastForward", 0, "Forward" );
|
|
|
|
|
CAF_PDM_InitField( &m_forecastBackward, "ForecastBackward", 0, "Backward" );
|
|
|
|
|
CAF_PDM_InitFieldNoDefault( &m_forecastUnit, "ForecastUnit", "Unit" );
|
|
|
|
|
CAF_PDM_InitField( &m_polynominalDegree, "PolynominalDegree", 3, "Degree" );
|
|
|
|
|
|
|
|
|
|
CAF_PDM_InitFieldNoDefault( &m_expressionText, "ExpressionText", "Expression" );
|
|
|
|
@@ -128,87 +146,56 @@ std::tuple<std::vector<time_t>, std::vector<double>, QString>
|
|
|
|
|
{
|
|
|
|
|
if ( values.empty() || timeSteps.empty() ) return { timeSteps, values, "" };
|
|
|
|
|
|
|
|
|
|
auto convertToDouble = []( const std::vector<time_t>& timeSteps )
|
|
|
|
|
{
|
|
|
|
|
std::vector<double> doubleVector( timeSteps.size() );
|
|
|
|
|
std::transform( timeSteps.begin(),
|
|
|
|
|
timeSteps.end(),
|
|
|
|
|
doubleVector.begin(),
|
|
|
|
|
[]( const auto& timeVal ) { return static_cast<double>( timeVal ); } );
|
|
|
|
|
return doubleVector;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
auto convertToTimeT = []( const std::vector<double>& timeSteps )
|
|
|
|
|
{
|
|
|
|
|
std::vector<time_t> tVector( timeSteps.size() );
|
|
|
|
|
std::transform( timeSteps.begin(),
|
|
|
|
|
timeSteps.end(),
|
|
|
|
|
tVector.begin(),
|
|
|
|
|
[]( const auto& timeVal ) { return static_cast<time_t>( timeVal ); } );
|
|
|
|
|
return tVector;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
auto filterValues = []( const std::vector<double>& timeSteps, const std::vector<double>& values )
|
|
|
|
|
{
|
|
|
|
|
std::vector<double> filteredTimeSteps;
|
|
|
|
|
std::vector<double> filteredValues;
|
|
|
|
|
for ( size_t i = 0; i < timeSteps.size(); i++ )
|
|
|
|
|
{
|
|
|
|
|
if ( timeSteps[i] > 0.0 && values[i] > 0.0 )
|
|
|
|
|
{
|
|
|
|
|
filteredTimeSteps.push_back( timeSteps[i] );
|
|
|
|
|
filteredValues.push_back( values[i] );
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return std::make_pair( filteredTimeSteps, filteredValues );
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
std::vector<double> timeStepsD = convertToDouble( timeSteps );
|
|
|
|
|
|
|
|
|
|
std::vector<time_t> outputTimeSteps = getOutputTimeSteps( timeSteps, m_forecastBackward(), m_forecastForward(), m_forecastUnit() );
|
|
|
|
|
|
|
|
|
|
std::vector<double> outputTimeStepsD = convertToDouble( outputTimeSteps );
|
|
|
|
|
|
|
|
|
|
if ( m_regressionType == RegressionType::LINEAR )
|
|
|
|
|
{
|
|
|
|
|
regression::LinearRegression linearRegression;
|
|
|
|
|
linearRegression.fit( timeStepsD, values );
|
|
|
|
|
std::vector<double> predictedValues = linearRegression.predict( timeStepsD );
|
|
|
|
|
return { timeSteps, predictedValues, generateRegressionText( linearRegression ) };
|
|
|
|
|
std::vector<double> predictedValues = linearRegression.predict( outputTimeStepsD );
|
|
|
|
|
return { outputTimeSteps, predictedValues, generateRegressionText( linearRegression ) };
|
|
|
|
|
}
|
|
|
|
|
else if ( m_regressionType == RegressionType::POLYNOMINAL )
|
|
|
|
|
{
|
|
|
|
|
regression::PolynominalRegression polynominalRegression;
|
|
|
|
|
polynominalRegression.fit( timeStepsD, values, m_polynominalDegree );
|
|
|
|
|
std::vector<double> predictedValues = polynominalRegression.predict( timeStepsD );
|
|
|
|
|
return { timeSteps, predictedValues, generateRegressionText( polynominalRegression ) };
|
|
|
|
|
std::vector<double> predictedValues = polynominalRegression.predict( outputTimeStepsD );
|
|
|
|
|
return { outputTimeSteps, predictedValues, generateRegressionText( polynominalRegression ) };
|
|
|
|
|
}
|
|
|
|
|
else if ( m_regressionType == RegressionType::POWER_FIT )
|
|
|
|
|
{
|
|
|
|
|
auto [filteredTimeSteps, filteredValues] = filterValues( timeStepsD, values );
|
|
|
|
|
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsD, values );
|
|
|
|
|
regression::PowerFitRegression powerFitRegression;
|
|
|
|
|
powerFitRegression.fit( filteredTimeSteps, filteredValues );
|
|
|
|
|
std::vector<double> predictedValues = powerFitRegression.predict( filteredTimeSteps );
|
|
|
|
|
return { convertToTimeT( filteredTimeSteps ), predictedValues, generateRegressionText( powerFitRegression ) };
|
|
|
|
|
std::vector<double> predictedValues = powerFitRegression.predict( outputTimeStepsD );
|
|
|
|
|
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( powerFitRegression ) };
|
|
|
|
|
}
|
|
|
|
|
else if ( m_regressionType == RegressionType::EXPONENTIAL )
|
|
|
|
|
{
|
|
|
|
|
auto [filteredTimeSteps, filteredValues] = filterValues( timeStepsD, values );
|
|
|
|
|
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsD, values );
|
|
|
|
|
regression::ExponentialRegression exponentialRegression;
|
|
|
|
|
exponentialRegression.fit( filteredTimeSteps, filteredValues );
|
|
|
|
|
std::vector<double> predictedValues = exponentialRegression.predict( filteredTimeSteps );
|
|
|
|
|
return { convertToTimeT( filteredTimeSteps ), predictedValues, generateRegressionText( exponentialRegression ) };
|
|
|
|
|
std::vector<double> predictedValues = exponentialRegression.predict( outputTimeStepsD );
|
|
|
|
|
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( exponentialRegression ) };
|
|
|
|
|
}
|
|
|
|
|
else if ( m_regressionType == RegressionType::LOGARITHMIC )
|
|
|
|
|
{
|
|
|
|
|
auto [filteredTimeSteps, filteredValues] = filterValues( timeStepsD, values );
|
|
|
|
|
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsD, values );
|
|
|
|
|
regression::LogarithmicRegression logarithmicRegression;
|
|
|
|
|
logarithmicRegression.fit( filteredTimeSteps, filteredValues );
|
|
|
|
|
std::vector<double> predictedValues = logarithmicRegression.predict( filteredTimeSteps );
|
|
|
|
|
return { convertToTimeT( filteredTimeSteps ), predictedValues, generateRegressionText( logarithmicRegression ) };
|
|
|
|
|
std::vector<double> predictedValues = logarithmicRegression.predict( outputTimeStepsD );
|
|
|
|
|
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( logarithmicRegression ) };
|
|
|
|
|
}
|
|
|
|
|
else if ( m_regressionType == RegressionType::LOGISTIC )
|
|
|
|
|
{
|
|
|
|
|
regression::LogisticRegression logisticRegression;
|
|
|
|
|
logisticRegression.fit( timeStepsD, values );
|
|
|
|
|
std::vector<double> predictedValues = logisticRegression.predict( timeStepsD );
|
|
|
|
|
return { timeSteps, predictedValues, generateRegressionText( logisticRegression ) };
|
|
|
|
|
std::vector<double> predictedValues = logisticRegression.predict( outputTimeStepsD );
|
|
|
|
|
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( logisticRegression ) };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return { timeSteps, values, "" };
|
|
|
|
@@ -231,6 +218,11 @@ void RimSummaryRegressionAnalysisCurve::defineUiOrdering( QString uiConfigName,
|
|
|
|
|
|
|
|
|
|
regressionCurveGroup->add( &m_expressionText );
|
|
|
|
|
|
|
|
|
|
caf::PdmUiGroup* forecastingGroup = uiOrdering.addNewGroup( "Forecasting" );
|
|
|
|
|
forecastingGroup->add( &m_forecastForward );
|
|
|
|
|
forecastingGroup->add( &m_forecastBackward );
|
|
|
|
|
forecastingGroup->add( &m_forecastUnit );
|
|
|
|
|
|
|
|
|
|
RimSummaryCurve::defineUiOrdering( uiConfigName, uiOrdering );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@@ -242,7 +234,8 @@ void RimSummaryRegressionAnalysisCurve::fieldChangedByUi( const caf::PdmFieldHan
|
|
|
|
|
const QVariant& newValue )
|
|
|
|
|
{
|
|
|
|
|
RimSummaryCurve::fieldChangedByUi( changedField, oldValue, newValue );
|
|
|
|
|
if ( changedField == &m_regressionType || changedField == &m_polynominalDegree )
|
|
|
|
|
if ( changedField == &m_regressionType || changedField == &m_polynominalDegree || changedField == &m_forecastBackward ||
|
|
|
|
|
changedField == &m_forecastForward || changedField == &m_forecastUnit )
|
|
|
|
|
{
|
|
|
|
|
loadAndUpdateDataAndPlot();
|
|
|
|
|
}
|
|
|
|
@@ -265,6 +258,14 @@ void RimSummaryRegressionAnalysisCurve::defineEditorAttribute( const caf::PdmFie
|
|
|
|
|
lineEditorAttr->validator = new QIntValidator( 1, 50, nullptr );
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if ( field == &m_forecastForward || field == &m_forecastBackward )
|
|
|
|
|
{
|
|
|
|
|
if ( auto* lineEditorAttr = dynamic_cast<caf::PdmUiLineEditorAttribute*>( attribute ) )
|
|
|
|
|
{
|
|
|
|
|
// Block negative forecast
|
|
|
|
|
lineEditorAttr->validator = new QIntValidator( 0, 50, nullptr );
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if ( field == &m_expressionText )
|
|
|
|
|
{
|
|
|
|
|
auto myAttr = dynamic_cast<caf::PdmUiTextEditorAttribute*>( attribute );
|
|
|
|
@@ -382,3 +383,96 @@ QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regress
|
|
|
|
|
// TODO: Display more parameters here.
|
|
|
|
|
return "";
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
|
///
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
|
void RimSummaryRegressionAnalysisCurve::appendTimeSteps( std::vector<time_t>& destinationTimeSteps, const std::set<QDateTime>& sourceTimeSteps )
|
|
|
|
|
{
|
|
|
|
|
for ( const QDateTime& t : sourceTimeSteps )
|
|
|
|
|
destinationTimeSteps.push_back( RiaTimeTTools::fromQDateTime( t ) );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
|
///
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
|
std::vector<time_t> RimSummaryRegressionAnalysisCurve::getOutputTimeSteps( const std::vector<time_t>& timeSteps,
|
|
|
|
|
int forecastBackward,
|
|
|
|
|
int forecastForward,
|
|
|
|
|
ForecastUnit forecastUnit )
|
|
|
|
|
{
|
|
|
|
|
auto getTimeSpan = []( int value, ForecastUnit unit )
|
|
|
|
|
{
|
|
|
|
|
if ( unit == ForecastUnit::YEARS ) return DateTimeSpan( value, 0, 0 );
|
|
|
|
|
if ( unit == ForecastUnit::MONTHS ) return DateTimeSpan( 0, value, 0 );
|
|
|
|
|
CAF_ASSERT( unit == ForecastUnit::DAYS );
|
|
|
|
|
return DateTimeSpan( 0, 0, value );
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
int numDates = 50;
|
|
|
|
|
|
|
|
|
|
std::vector<time_t> outputTimeSteps;
|
|
|
|
|
if ( forecastBackward > 0 )
|
|
|
|
|
{
|
|
|
|
|
QDateTime firstTimeStepInData = RiaQDateTimeTools::fromTime_t( timeSteps.front() );
|
|
|
|
|
QDateTime forecastStartTimeStep = RiaQDateTimeTools::subtractSpan( firstTimeStepInData, getTimeSpan( forecastBackward, forecastUnit ) );
|
|
|
|
|
auto forecastTimeSteps =
|
|
|
|
|
RiaQDateTimeTools::createEvenlyDistributedDatesInInterval( forecastStartTimeStep, firstTimeStepInData, numDates );
|
|
|
|
|
appendTimeSteps( outputTimeSteps, forecastTimeSteps );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
outputTimeSteps.insert( std::end( outputTimeSteps ), std::begin( timeSteps ), std::end( timeSteps ) );
|
|
|
|
|
|
|
|
|
|
if ( forecastForward > 0 )
|
|
|
|
|
{
|
|
|
|
|
QDateTime lastTimeStepInData = RiaQDateTimeTools::fromTime_t( timeSteps.back() );
|
|
|
|
|
QDateTime forecastEndTimeStep = RiaQDateTimeTools::addSpan( lastTimeStepInData, getTimeSpan( forecastForward, forecastUnit ) );
|
|
|
|
|
auto forecastTimeSteps = RiaQDateTimeTools::createEvenlyDistributedDatesInInterval( lastTimeStepInData, forecastEndTimeStep, numDates );
|
|
|
|
|
appendTimeSteps( outputTimeSteps, forecastTimeSteps );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return outputTimeSteps;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
|
///
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
|
std::vector<double> RimSummaryRegressionAnalysisCurve::convertToDouble( const std::vector<time_t>& timeSteps )
|
|
|
|
|
{
|
|
|
|
|
std::vector<double> doubleVector( timeSteps.size() );
|
|
|
|
|
std::transform( timeSteps.begin(),
|
|
|
|
|
timeSteps.end(),
|
|
|
|
|
doubleVector.begin(),
|
|
|
|
|
[]( const auto& timeVal ) { return static_cast<double>( timeVal ); } );
|
|
|
|
|
return doubleVector;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
|
///
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
|
std::vector<time_t> RimSummaryRegressionAnalysisCurve::convertToTimeT( const std::vector<double>& timeSteps )
|
|
|
|
|
{
|
|
|
|
|
std::vector<time_t> tVector( timeSteps.size() );
|
|
|
|
|
std::transform( timeSteps.begin(), timeSteps.end(), tVector.begin(), []( const auto& timeVal ) { return static_cast<time_t>( timeVal ); } );
|
|
|
|
|
return tVector;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
|
///
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
|
std::pair<std::vector<double>, std::vector<double>>
|
|
|
|
|
RimSummaryRegressionAnalysisCurve::getPositiveValues( const std::vector<double>& timeSteps, const std::vector<double>& values )
|
|
|
|
|
{
|
|
|
|
|
std::vector<double> filteredTimeSteps;
|
|
|
|
|
std::vector<double> filteredValues;
|
|
|
|
|
for ( size_t i = 0; i < timeSteps.size(); i++ )
|
|
|
|
|
{
|
|
|
|
|
if ( timeSteps[i] > 0.0 && values[i] > 0.0 )
|
|
|
|
|
{
|
|
|
|
|
filteredTimeSteps.push_back( timeSteps[i] );
|
|
|
|
|
filteredValues.push_back( values[i] );
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return std::make_pair( filteredTimeSteps, filteredValues );
|
|
|
|
|
}
|
|
|
|
|