Streamline improvement (#7435)

* Use updated generator. Switch to using priority list for seeds. Fix phase reporting and sign issues. Fix step size when growing.
* Reduce memory footprint by simplifying viz. code and filter out unused tracers early
* Remove unused viz. code.
This commit is contained in:
jonjenssen 2021-03-02 01:53:31 +01:00 committed by GitHub
parent 562ec1a398
commit 766ea6aab2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 302 additions and 813 deletions

View File

@ -96,7 +96,6 @@ void RivStreamlinesPartMgr::appendDynamicGeometryPartsToModel( cvf::ModelBasicLi
{
streamline.appendTracerPoint( tracer.tracerPoints()[i].position() );
streamline.appendAbsVelocity( tracer.tracerPoints()[i].absValue() );
streamline.appendDirection( tracer.tracerPoints()[i].direction() );
streamline.appendPhase( tracer.tracerPoints()[i].phaseType() );
}
m_streamlines.push_back( streamline );
@ -111,10 +110,6 @@ void RivStreamlinesPartMgr::appendDynamicGeometryPartsToModel( cvf::ModelBasicLi
model->addPart( createPart( *streamlineCollection, streamline ).p() );
}
}
else if ( streamlineCollection->visualizationMode() == RimStreamlineInViewCollection::VisualizationMode::VECTORS )
{
model->addPart( createVectorPart( *streamlineCollection, streamline ).p() );
}
}
}
@ -222,10 +217,6 @@ cvf::ref<cvf::Part> RivStreamlinesPartMgr::createPart( const RimStreamlineInView
drawable->setTextureCoordArray( lineTexCoords.p() );
// caf::MeshEffectGenerator effgen( cvf::Color3f( 0.0, 0.0, 0.95 ) );
// effgen.setLineWidth( 2 );
// cvf::ref<cvf::Effect> effect = effgen.generateCachedEffect();
cvf::ref<cvf::Part> part = new cvf::Part;
part->setDrawable( drawable.p() );
part->setEffect( effect.p() );
@ -246,13 +237,9 @@ void RivStreamlinesPartMgr::createResultColorTextureCoords( cvf::Vec2fArray*
CVF_ASSERT( mapper );
RimStreamlineInViewCollection* streamlineCollection = m_rimReservoirView->streamlineCollection();
CVF_ASSERT( streamlineCollection != nullptr );
size_t vertexCount = streamline.countTracerPoints() * 2 - 2;
if ( streamlineCollection &&
streamlineCollection->visualizationMode() == RimStreamlineInViewCollection::VisualizationMode::VECTORS )
{
vertexCount = streamline.countTracerPoints() * 7;
}
if ( textureCoords->capacity() != vertexCount ) textureCoords->reserve( vertexCount );
for ( size_t i = 0; i < streamline.countTracerPoints(); i++ )
@ -279,172 +266,14 @@ void RivStreamlinesPartMgr::createResultColorTextureCoords( cvf::Vec2fArray*
texCoord.x() = phaseValue;
}
if ( streamlineCollection &&
streamlineCollection->visualizationMode() == RimStreamlineInViewCollection::VisualizationMode::VECTORS )
{
for ( size_t vxIdx = 0; vxIdx < 7; ++vxIdx )
{
textureCoords->add( texCoord );
}
}
else
textureCoords->add( texCoord );
if ( i > 0 && i < streamline.countTracerPoints() - 1 )
{
textureCoords->add( texCoord );
if ( i > 0 && i < streamline.countTracerPoints() - 1 )
{
textureCoords->add( texCoord );
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivStreamlinesPartMgr::createVectorPart( const RimStreamlineInViewCollection& streamlineCollection,
Streamline& streamline )
{
cvf::ref<caf::DisplayCoordTransform> displayCordXf = m_rimReservoirView->displayCoordTransform();
std::vector<uint> shaftIndices;
shaftIndices.reserve( 2 * streamline.countTracerPoints() );
std::vector<uint> headIndices;
headIndices.reserve( 6 * streamline.countTracerPoints() );
std::vector<cvf::Vec3f> vertices;
vertices.reserve( 7 * streamline.countTracerPoints() );
for ( size_t i = 0; i < streamline.countTracerPoints(); i++ )
{
cvf::Vec3f anchorPoint = cvf::Vec3f( displayCordXf->transformToDisplayCoord( streamline.getTracerPoint( i ) ) );
cvf::Vec3f direction = cvf::Vec3f( streamline.getDirection( i ) ) * streamlineCollection.scaleFactor();
for ( const cvf::Vec3f& vertex : createArrowVertices( anchorPoint, direction ) )
{
vertices.push_back( vertex );
}
for ( const uint& index : createArrowShaftIndices( 0 ) )
{
shaftIndices.push_back( index );
}
for ( const uint& index : createArrowHeadIndices( 0 ) )
{
headIndices.push_back( index );
}
}
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUIntShaft =
new cvf::PrimitiveSetIndexedUInt( cvf::PrimitiveType::PT_LINES );
cvf::ref<cvf::UIntArray> indexArrayShaft = new cvf::UIntArray( shaftIndices );
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUIntHead =
new cvf::PrimitiveSetIndexedUInt( cvf::PrimitiveType::PT_TRIANGLES );
cvf::ref<cvf::UIntArray> indexArrayHead = new cvf::UIntArray( headIndices );
cvf::ref<cvf::DrawableGeo> drawable = new cvf::DrawableGeo();
indexedUIntShaft->setIndices( indexArrayShaft.p() );
drawable->addPrimitiveSet( indexedUIntShaft.p() );
indexedUIntHead->setIndices( indexArrayHead.p() );
drawable->addPrimitiveSet( indexedUIntHead.p() );
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray( vertices );
drawable->setVertexArray( vertexArray.p() );
cvf::ref<cvf::Vec2fArray> lineTexCoords = const_cast<cvf::Vec2fArray*>( drawable->textureCoordArray() );
if ( lineTexCoords.isNull() )
{
lineTexCoords = new cvf::Vec2fArray;
}
cvf::ref<cvf::Effect> effect;
const cvf::ScalarMapper* activeScalarMapper = streamlineCollection.legendConfig()->scalarMapper();
createResultColorTextureCoords( lineTexCoords.p(), streamline, activeScalarMapper );
caf::ScalarMapperMeshEffectGenerator meshEffGen( activeScalarMapper );
effect = meshEffGen.generateCachedEffect();
drawable->setTextureCoordArray( lineTexCoords.p() );
cvf::ref<cvf::Part> part = new cvf::Part;
part->setDrawable( drawable.p() );
part->setEffect( effect.p() );
part->updateBoundingBox();
return part;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<cvf::Vec3f, 7> RivStreamlinesPartMgr::createArrowVertices( const cvf::Vec3f anchorPoint,
const cvf::Vec3f direction ) const
{
std::array<cvf::Vec3f, 7> vertices;
cvf::Vec3f headTop = anchorPoint + direction;
RimEclipseCase* eclipseCase = m_rimReservoirView->eclipseCase();
if ( !eclipseCase ) return vertices;
float headLength =
std::min<float>( eclipseCase->characteristicCellSize() / 3.0f, ( headTop - anchorPoint ).length() / 2.0 );
// A fixed size is preferred here
cvf::Vec3f headBottom = headTop - ( headTop - anchorPoint ).getNormalized() * headLength;
float arrowWidth = headLength / 2.0f;
cvf::Vec3f headBottomDirection1 = direction ^ anchorPoint;
cvf::Vec3f headBottomDirection2 = headBottomDirection1 ^ direction;
cvf::Vec3f arrowBottomSegment1 = headBottomDirection1.getNormalized() * arrowWidth;
cvf::Vec3f arrowBottomSegment2 = headBottomDirection2.getNormalized() * arrowWidth;
vertices[0] = anchorPoint;
vertices[1] = headBottom;
vertices[2] = headBottom + arrowBottomSegment1;
vertices[3] = headBottom - arrowBottomSegment1;
vertices[4] = headTop;
vertices[5] = headBottom + arrowBottomSegment2;
vertices[6] = headBottom - arrowBottomSegment2;
return vertices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<uint, 2> RivStreamlinesPartMgr::createArrowShaftIndices( uint startIndex ) const
{
std::array<uint, 2> indices;
indices[0] = startIndex;
indices[1] = startIndex + 1;
return indices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<uint, 6> RivStreamlinesPartMgr::createArrowHeadIndices( uint startIndex ) const
{
std::array<uint, 6> indices;
indices[0] = startIndex + 2;
indices[1] = startIndex + 3;
indices[2] = startIndex + 4;
indices[3] = startIndex + 5;
indices[4] = startIndex + 6;
indices[5] = startIndex + 4;
return indices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
@ -459,227 +288,6 @@ void RivStreamlinesPartMgr::setAlpha( cvf::ref<cvf::Part> part, float alpha )
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivStreamlinesPartMgr::StreamlineSegment::computeSegments()
{
a = startPoint;
b = startDirection;
c = 3.0 * ( endPoint - startPoint ) - 2.0 * startDirection - endDirection;
d = 2.0 * ( startPoint - endPoint ) + endDirection + startDirection;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RivStreamlinesPartMgr::StreamlineSegment::getPointAt( double t ) const
{
return a + b * t + c * t * t + d * t * t * t;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RivStreamlinesPartMgr::StreamlineSegment::getDirectionAt( double t ) const
{
return b + c * t + d * t * t;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RivStreamlinesPartMgr::StreamlineSegment::getVelocityAt( double localT ) const
{
if ( localT == 0 )
{
return startVelocity;
}
return startVelocity + ( endVelocity - startVelocity ) / localT;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RivStreamlinesPartMgr::StreamlineSegment::getChordLength() const
{
return startPoint.pointDistance( endPoint );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivStreamlinesPartMgr::StreamlineVisualization::computeTValues()
{
double totalLength = getApproximatedTotalLength();
double currentLength = 0.0;
for ( StreamlineSegment& segment : segments )
{
segment.globalTStart = currentLength / totalLength;
currentLength += segment.getChordLength();
segment.globalTEnd = currentLength / totalLength;
}
areTValuesComputed = true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivStreamlinesPartMgr::StreamlineVisualization::appendSegment( StreamlineSegment segment )
{
segments.push_back( segment );
areTValuesComputed = false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivStreamlinesPartMgr::StreamlineVisualization::prependSegment( StreamlineSegment segment )
{
segments.push_front( segment );
areTValuesComputed = false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivStreamlinesPartMgr::StreamlineVisualization::appendPart( cvf::ref<cvf::Part> part, double globalT )
{
parts.push_back( part.p() );
partTValues.push_back( globalT );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RivStreamlinesPartMgr::StreamlineVisualization::segmentsSize() const
{
return segments.size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::list<RivStreamlinesPartMgr::StreamlineSegment> RivStreamlinesPartMgr::StreamlineVisualization::getSegments()
{
return segments;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivStreamlinesPartMgr::StreamlineVisualization::clear()
{
segments.clear();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivStreamlinesPartMgr::StreamlineVisualization::updateAnimationGlobalT( double timeMs )
{
double totalLength = getApproximatedTotalLength(); // m
double velocity = getVelocityAt( currentAnimationGlobalT ); // m/s
currentAnimationGlobalT += velocity * timeMs / 1000.0 / totalLength;
if ( currentAnimationGlobalT > 1.0 )
{
currentAnimationGlobalT = 0.0;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RivStreamlinesPartMgr::StreamlineVisualization::getApproximatedTotalLength()
{
if ( areTValuesComputed ) return approximatedTotalLength;
double totalLength = 0.0;
for ( auto& segment : segments )
{
totalLength += segment.getChordLength();
}
approximatedTotalLength = totalLength;
return approximatedTotalLength;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RivStreamlinesPartMgr::StreamlineVisualization::getPointAt( double globalT ) const
{
CVF_ASSERT( areTValuesComputed );
for ( std::list<StreamlineSegment>::const_iterator it = segments.begin(); it != segments.end(); ++it )
{
if ( it->globalTStart <= globalT && it->globalTEnd >= globalT )
{
double localT = ( globalT - it->globalTStart ) / ( it->globalTEnd - it->globalTStart );
return it->getPointAt( localT );
}
}
return cvf::Vec3d();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RivStreamlinesPartMgr::StreamlineVisualization::getDirectionAt( double globalT ) const
{
CVF_ASSERT( areTValuesComputed );
for ( std::list<StreamlineSegment>::const_iterator it = segments.begin(); it != segments.end(); ++it )
{
if ( it->globalTStart <= globalT && it->globalTEnd >= globalT )
{
double localT = ( globalT - it->globalTStart ) / ( it->globalTEnd - it->globalTStart );
return it->getDirectionAt( localT );
}
}
return cvf::Vec3d();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RivStreamlinesPartMgr::StreamlineVisualization::getVelocityAt( double globalT ) const
{
CVF_ASSERT( areTValuesComputed );
for ( std::list<StreamlineSegment>::const_iterator it = segments.begin(); it != segments.end(); ++it )
{
if ( it->globalTStart <= globalT && it->globalTEnd >= globalT )
{
double localT = ( globalT - it->globalTStart ) / ( it->globalTEnd - it->globalTStart );
return it->getVelocityAt( localT );
}
}
return 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Collection<cvf::Part> RivStreamlinesPartMgr::StreamlineVisualization::getParts()
{
return parts;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivStreamlinesPartMgr::StreamlineVisualization::getPartAtGlobalT( double globalT ) const
{
CVF_ASSERT( areTValuesComputed );
double t = 0.0;
for ( size_t index = 0; index < parts.size(); index++ )
{
t = partTValues[index];
if ( t >= globalT )
{
return parts[index];
}
}
return cvf::ref<cvf::Part>( nullptr );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
@ -696,14 +304,6 @@ void RivStreamlinesPartMgr::Streamline::appendAbsVelocity( double velocity )
absVelocities.push_back( velocity );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivStreamlinesPartMgr::Streamline::appendDirection( cvf::Vec3d direction )
{
directions.push_back( direction );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
@ -719,7 +319,6 @@ void RivStreamlinesPartMgr::Streamline::clear()
{
tracerPoints.clear();
absVelocities.clear();
directions.clear();
dominantPhases.clear();
delete part.p();
}
@ -748,14 +347,6 @@ double RivStreamlinesPartMgr::Streamline::getAbsVelocity( size_t index ) const
return absVelocities[index];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RivStreamlinesPartMgr::Streamline::getDirection( size_t index ) const
{
return directions[index];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------

View File

@ -51,98 +51,17 @@ public:
void updateAnimation();
private:
struct StreamlineSegment
{
/*
x_ij(t) = a_ij + b_ij * t + c_ij * t^2 + d_ij * t^3
*/
StreamlineSegment(){};
StreamlineSegment( cvf::Vec3d startPoint,
cvf::Vec3d endPoint,
cvf::Vec3d startDirection,
cvf::Vec3d endDirection,
double startVelocity,
double endVelocity )
: startPoint( startPoint )
, endPoint( endPoint )
, startDirection( startDirection )
, endDirection( endDirection )
, startVelocity( startVelocity )
, endVelocity( endVelocity )
{
computeSegments();
};
void computeSegments();
cvf::Vec3d getPointAt( double localT ) const;
cvf::Vec3d getDirectionAt( double localT ) const;
double getVelocityAt( double localT ) const;
double getChordLength() const;
cvf::Vec3d startPoint;
cvf::Vec3d endPoint;
cvf::Vec3d startDirection;
cvf::Vec3d endDirection;
double globalTStart;
double globalTEnd;
double startVelocity;
double endVelocity;
private:
cvf::Vec3d a;
cvf::Vec3d b;
cvf::Vec3d c;
cvf::Vec3d d;
};
struct StreamlineVisualization
{
StreamlineVisualization()
{
areTValuesComputed = false;
currentAnimationGlobalT = 0.0;
};
void computeTValues();
void appendSegment( StreamlineSegment segment );
void prependSegment( StreamlineSegment segment );
void appendPart( cvf::ref<cvf::Part> part, double globalT );
size_t segmentsSize() const;
std::list<RivStreamlinesPartMgr::StreamlineSegment> getSegments();
void clear();
void updateAnimationGlobalT( double timeMs );
double getApproximatedTotalLength();
cvf::Vec3d getPointAt( double globalT ) const;
cvf::Vec3d getDirectionAt( double globalT ) const;
double getVelocityAt( double globalT ) const;
cvf::Collection<cvf::Part> getParts();
cvf::ref<cvf::Part> getPartAtGlobalT( double globalT ) const;
double currentAnimationGlobalT;
private:
bool areTValuesComputed;
double approximatedTotalLength;
std::list<StreamlineSegment> segments;
cvf::Collection<cvf::Part> parts;
std::vector<double> partTValues;
};
struct Streamline
{
Streamline() { animIndex = 0; };
void appendTracerPoint( cvf::Vec3d point );
void appendAbsVelocity( double velocity );
void appendDirection( cvf::Vec3d direction );
void appendPhase( RiaDefines::PhaseType phase );
void clear();
cvf::ref<cvf::Part> getPart();
cvf::Vec3d getTracerPoint( size_t index ) const;
double getAbsVelocity( size_t index ) const;
cvf::Vec3d getDirection( size_t index ) const;
RiaDefines::PhaseType getPhase( size_t index ) const;
size_t countTracerPoints() const;
@ -154,7 +73,6 @@ private:
private:
std::vector<cvf::Vec3d> tracerPoints;
std::vector<double> absVelocities;
std::vector<cvf::Vec3d> directions;
std::vector<RiaDefines::PhaseType> dominantPhases;
cvf::ref<cvf::Part> part;
@ -169,12 +87,7 @@ private:
const Streamline& streamline,
const cvf::ScalarMapper* mapper );
cvf::ref<cvf::Part> createVectorPart( const RimStreamlineInViewCollection& streamlineCollection, Streamline& segment );
std::array<cvf::Vec3f, 7> createArrowVertices( const cvf::Vec3f anchorPoint, const cvf::Vec3f direction ) const;
std::array<uint, 2> createArrowShaftIndices( uint startIndex ) const;
std::array<uint, 6> createArrowHeadIndices( uint startIndex ) const;
void setAlpha( cvf::ref<cvf::Part> part, float alpha );
void setAlpha( cvf::ref<cvf::Part> part, float alpha );
private:
std::list<Streamline> m_streamlines;

View File

@ -4,7 +4,7 @@ ${CMAKE_CURRENT_LIST_DIR}/RimStreamline.h
${CMAKE_CURRENT_LIST_DIR}/RimStreamlineInViewCollection.h
${CMAKE_CURRENT_LIST_DIR}/RimStreamlineGeneratorBase.h
${CMAKE_CURRENT_LIST_DIR}/RimStreamlineDataAccess.h
${CMAKE_CURRENT_LIST_DIR}/RimStreamlineGenerator2.h
${CMAKE_CURRENT_LIST_DIR}/RimStreamlineGenerator.h
)
set (SOURCE_GROUP_SOURCE_FILES
@ -12,7 +12,7 @@ ${CMAKE_CURRENT_LIST_DIR}/RimStreamline.cpp
${CMAKE_CURRENT_LIST_DIR}/RimStreamlineInViewCollection.cpp
${CMAKE_CURRENT_LIST_DIR}/RimStreamlineGeneratorBase.cpp
${CMAKE_CURRENT_LIST_DIR}/RimStreamlineDataAccess.cpp
${CMAKE_CURRENT_LIST_DIR}/RimStreamlineGenerator2.cpp
${CMAKE_CURRENT_LIST_DIR}/RimStreamlineGenerator.cpp
)
list(APPEND CODE_HEADER_FILES

View File

@ -20,11 +20,6 @@
#include "cafPdmFieldScriptingCapability.h"
#include "cafPdmObjectScriptingCapability.h"
#include "cafPdmUiLineEditor.h"
#include "cafPdmUiTextEditor.h"
#include <algorithm>
#include <cmath>
CAF_PDM_ABSTRACT_SOURCE_INIT( RimStreamline, "Streamline" );
@ -39,12 +34,6 @@ RimStreamline::RimStreamline( QString simWellName )
m_simWellName.uiCapability()->setUiReadOnly( true );
m_simWellName.uiCapability()->setUiHidden( true );
CAF_PDM_InitScriptableFieldNoDefault( &m_propertiesTable, "PropertiesTable", "Properties Table", "", "", "" );
m_propertiesTable.uiCapability()->setUiEditorTypeName( caf::PdmUiTextEditor::uiEditorTypeName() );
m_propertiesTable.uiCapability()->setUiLabelPosition( caf::PdmUiItemInfo::HIDDEN );
m_propertiesTable.uiCapability()->setUiReadOnly( true );
m_propertiesTable.xmlCapability()->disableIO();
setDeletable( false );
}
@ -95,25 +84,6 @@ void RimStreamline::reverse()
m_tracer.reverse();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStreamline::generateStatistics()
{
QString stats;
stats += "Total distance: ";
stats += QString::number( m_tracer.totalDistance(), 'f', 2 );
stats += " meters\n";
stats += "\n";
stats += "Number of points: ";
stats += QString::number( m_tracer.size() );
stats += "\n";
stats += "\n";
m_propertiesTable = stats;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------

View File

@ -24,10 +24,6 @@
#include "cafPdmField.h"
#include "cafPdmObject.h"
#include "cafPdmFieldCvfColor.h"
#include "cafPdmProxyValueField.h"
#include "cvfObject.h"
#include "cvfVector3.h"
#include <vector>
@ -46,7 +42,6 @@ public:
void addTracerPoint( cvf::Vec3d position, cvf::Vec3d direction, RiaDefines::PhaseType dominantPhase );
void reverse();
void generateStatistics();
protected:
caf::PdmFieldHandle* userDescriptionField() override;
@ -54,6 +49,4 @@ protected:
private:
RigTracer m_tracer;
caf::PdmField<QString> m_simWellName;
caf::PdmField<QString> m_propertiesTable;
};

View File

@ -149,34 +149,37 @@ QString RimStreamlineDataAccess::gridResultNameFromPhase( RiaDefines::PhaseType
//--------------------------------------------------------------------------------------------------
/// Return the face scalar value for the given cell and NEG_? face, by using the neighbor cell
//--------------------------------------------------------------------------------------------------
double RimStreamlineDataAccess::negFaceValueDividedByArea( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
RiaDefines::PhaseType phase ) const
double RimStreamlineDataAccess::negFaceRate( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
RiaDefines::PhaseType phase ) const
{
double retval = 0.0;
// NEG_? face values must be read from the neighbor cells
RigCell neighborCell = cell.neighborCell( faceIdx );
if ( neighborCell.isInvalid() ) return retval;
std::vector<cvf::ref<RigResultAccessor>> access = m_dataAccess.at( phase );
retval = access[faceIdx]->cellScalar( neighborCell.mainGridCellIndex() );
double area = cell.faceNormalWithAreaLength( faceIdx ).length();
if ( area != 0.0 )
retval = access[faceIdx]->cellScalar( neighborCell.mainGridCellIndex() );
double area = cell.faceNormalWithAreaLength( faceIdx ).length();
if ( area > 1.0e-4 )
retval /= area;
else
retval = 0.0;
if ( std::isinf( retval ) ) retval = 0.0;
return retval;
// change sign to get proper rate value direction (out of one cell is into the next)
return -1.0 * retval;
}
//--------------------------------------------------------------------------------------------------
/// Return the face scalar value for the given cell and POS_? face
//--------------------------------------------------------------------------------------------------
double RimStreamlineDataAccess::posFaceValueDividedByArea( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
RiaDefines::PhaseType phase ) const
double RimStreamlineDataAccess::posFaceRate( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
RiaDefines::PhaseType phase ) const
{
std::vector<cvf::ref<RigResultAccessor>> access = m_dataAccess.at( phase );
double retval = access[faceIdx]->cellScalar( cell.mainGridCellIndex() );
@ -193,24 +196,25 @@ double RimStreamlineDataAccess::posFaceValueDividedByArea( RigCell
//--------------------------------------------------------------------------------------------------
/// Return the face scalar value for the given cell and face
/// Positive values is flow out of the cell, negative values is flow into the cell
//--------------------------------------------------------------------------------------------------
double RimStreamlineDataAccess::faceValueDividedByArea( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
RiaDefines::PhaseType phase ) const
double RimStreamlineDataAccess::faceRate( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
RiaDefines::PhaseType phase ) const
{
if ( faceIdx % 2 == 0 ) return posFaceValueDividedByArea( cell, faceIdx, phase );
// NEG_? face values must be read from the neighbor cells
return negFaceValueDividedByArea( cell, faceIdx, phase );
if ( faceIdx % 2 == 0 ) return posFaceRate( cell, faceIdx, phase );
return negFaceRate( cell, faceIdx, phase );
}
//--------------------------------------------------------------------------------------------------
/// Return the face scalar value for the given cell and face, by combining flow for all specified phases
/// Positive values is flow out of the cell, negative values is flow into the cell
//--------------------------------------------------------------------------------------------------
double RimStreamlineDataAccess::combinedFaceValueByArea( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
std::list<RiaDefines::PhaseType> phases,
RiaDefines::PhaseType& outDominantPhase ) const
double RimStreamlineDataAccess::combinedFaceRate( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
std::list<RiaDefines::PhaseType> phases,
double direction,
RiaDefines::PhaseType& outDominantPhase ) const
{
double retValue = 0.0;
outDominantPhase = phases.front();
@ -221,14 +225,16 @@ double RimStreamlineDataAccess::combinedFaceValueByArea( RigCell
{
double tmp = 0.0;
if ( faceIdx % 2 == 0 )
tmp = posFaceValueDividedByArea( cell, faceIdx, phase );
tmp = posFaceRate( cell, faceIdx, phase );
else
tmp = negFaceValueDividedByArea( cell, faceIdx, phase );
if ( abs( tmp ) > max )
tmp = negFaceRate( cell, faceIdx, phase );
if ( tmp * direction > max )
{
outDominantPhase = phase;
max = abs( tmp );
max = std::abs( tmp );
}
retValue += tmp;
}

View File

@ -34,6 +34,11 @@ class RigGridBase;
class RigResultAccessor;
class RigEclipseCaseData;
//--------------------------------------------------------------------------------------------------
/// Specialized data access for streamline generation. Operates using flow rate in meters/day
/// calculated by dividing the FLR values by the cell face area.
/// NOTE: Positive rate values are flow out of a cell, negative values are flow into a cell
//--------------------------------------------------------------------------------------------------
class RimStreamlineDataAccess
{
public:
@ -42,11 +47,12 @@ public:
bool setupDataAccess( RigMainGrid* grid, RigEclipseCaseData* data, std::list<RiaDefines::PhaseType> phases, int timeIdx );
double faceValueDividedByArea( RigCell cell, cvf::StructGridInterface::FaceType faceIdx, RiaDefines::PhaseType phase ) const;
double combinedFaceValueByArea( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
std::list<RiaDefines::PhaseType> phases,
RiaDefines::PhaseType& dominantPhaseOut ) const;
double faceRate( RigCell cell, cvf::StructGridInterface::FaceType faceIdx, RiaDefines::PhaseType phase ) const;
double combinedFaceRate( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
std::list<RiaDefines::PhaseType> phases,
double direction,
RiaDefines::PhaseType& dominantPhaseOut ) const;
const RigMainGrid* grid() const { return m_grid; }
@ -55,12 +61,8 @@ protected:
getDataAccessor( cvf::StructGridInterface::FaceType faceIdx, RiaDefines::PhaseType phase, int timeIdx );
QString gridResultNameFromPhase( RiaDefines::PhaseType phase, cvf::StructGridInterface::FaceType faceIdx ) const;
double posFaceValueDividedByArea( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
RiaDefines::PhaseType phase ) const;
double negFaceValueDividedByArea( RigCell cell,
cvf::StructGridInterface::FaceType faceIdx,
RiaDefines::PhaseType phase ) const;
double posFaceRate( RigCell cell, cvf::StructGridInterface::FaceType faceIdx, RiaDefines::PhaseType phase ) const;
double negFaceRate( RigCell cell, cvf::StructGridInterface::FaceType faceIdx, RiaDefines::PhaseType phase ) const;
private:
RigMainGrid* m_grid;

View File

@ -0,0 +1,228 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2021 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimStreamlineGenerator.h"
#include "RigCell.h"
#include "RigMainGrid.h"
#include "RimStreamline.h"
#include "RimStreamlineDataAccess.h"
//--------------------------------------------------------------------------------------------------
/// Helper class for prioritizing streamline seed points
//--------------------------------------------------------------------------------------------------
class StreamlineSeedPoint
{
public:
StreamlineSeedPoint( double rate, size_t cellIdx, cvf::StructGridInterface::FaceType faceIdx )
: m_rate( rate )
, m_cellIdx( cellIdx )
, m_faceIdx( faceIdx ){};
~StreamlineSeedPoint(){};
bool operator<( const StreamlineSeedPoint& other ) const { return m_rate < other.m_rate; };
public:
double m_rate;
size_t m_cellIdx;
cvf::StructGridInterface::FaceType m_faceIdx;
};
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimStreamlineGenerator::RimStreamlineGenerator( std::set<size_t>& wellCells )
: RimStreamlineGeneratorBase( wellCells )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimStreamlineGenerator::~RimStreamlineGenerator()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStreamlineGenerator::generateTracer( RigCell cell,
double direction,
QString simWellName,
std::list<RimStreamline*>& outStreamlines )
{
RiaDefines::PhaseType dominantPhase = m_phases.front();
const size_t cellIdx = cell.gridLocalCellIndex();
// try to generate a tracer for all faces in the selected cell with positive flow (or negative flow if we are
// backtracking from a producer)
for ( auto faceIdx : m_allFaces )
{
double rate = m_dataAccess->combinedFaceRate( cell, faceIdx, m_phases, direction, dominantPhase ) * direction;
if ( rate > m_flowThreshold )
{
m_seeds.push( StreamlineSeedPoint( rate, cellIdx, faceIdx ) );
}
}
while ( m_seeds.size() > 0 )
{
const size_t cellIdx = m_seeds.top().m_cellIdx;
const cvf::StructGridInterface::FaceType faceIdx = m_seeds.top().m_faceIdx;
m_seeds.pop();
RimStreamline* streamline = new RimStreamline( simWellName );
growStreamline( streamline, cellIdx, faceIdx, direction );
if ( direction < 0.0 ) streamline->reverse();
if ( streamline->tracer().totalDistance() >= m_minLength )
outStreamlines.push_back( streamline );
else
delete streamline;
}
return;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStreamlineGenerator::growStreamline( RimStreamline* streamline,
size_t cellIdx,
cvf::StructGridInterface::FaceType faceIdx,
double direction )
{
// get the cell
RigCell cell = m_dataAccess->grid()->cell( cellIdx );
// get rate
RiaDefines::PhaseType dominantPhaseOut;
double rate = m_dataAccess->combinedFaceRate( cell, faceIdx, m_phases, direction, dominantPhaseOut );
// if we go backwards from a producer, the rate needs to be flipped
rate *= direction;
// grow from start cell center to face center, exiting if we reach the max length
if ( !growStreamlineFromTo( streamline, cell.center(), cell.faceCenter( faceIdx ), rate, dominantPhaseOut ) )
return;
while ( rate >= m_flowThreshold )
{
// find next cell and entry face
cell = cell.neighborCell( faceIdx );
if ( cell.isInvalid() ) break;
faceIdx = cvf::StructGridInterface::oppositeFace( faceIdx );
// grow from given face center to cell center, exiting if we reach the max length
if ( !growStreamlineFromTo( streamline, cell.faceCenter( faceIdx ), cell.center(), rate, dominantPhaseOut ) )
break;
const size_t cellIdx = cell.gridLocalCellIndex();
if ( m_visitedCells.count( cellIdx ) > 0 ) break;
if ( m_wellCells.count( cellIdx ) > 0 ) break;
m_visitedCells.insert( cellIdx );
// find the face with max flow where we should exit the cell
cvf::StructGridInterface::FaceType exitFace = cvf::StructGridInterface::FaceType::NO_FACE;
std::map<cvf::StructGridInterface::FaceType, double> rateMap;
double maxRate = 0.0;
for ( auto face : m_allFaces )
{
// skip the entry face
if ( face == faceIdx ) continue;
RiaDefines::PhaseType tempDominantFace;
double faceRate = m_dataAccess->combinedFaceRate( cell, face, m_phases, direction, tempDominantFace );
// if we go backwards from a producer, the rate needs to be flipped
faceRate *= direction;
if ( faceRate > maxRate )
{
exitFace = face;
maxRate = faceRate;
dominantPhaseOut = tempDominantFace;
}
rateMap[face] = faceRate;
}
// did we find an exit?
if ( exitFace == cvf::StructGridInterface::FaceType::NO_FACE ) break;
// add seeds for other faces with flow > threshold
for ( auto& kvp : rateMap )
{
if ( kvp.first == exitFace ) continue;
if ( kvp.second >= m_flowThreshold )
m_seeds.push( StreamlineSeedPoint( kvp.second, cell.gridLocalCellIndex(), kvp.first ) );
}
rate = maxRate;
// grow from cell center to exit face center, stopping if we reach the max point limit
if ( !growStreamlineFromTo( streamline, cell.center(), cell.faceCenter( exitFace ), rate, dominantPhaseOut ) )
break;
faceIdx = exitFace;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimStreamlineGenerator::growStreamlineFromTo( RimStreamline* streamline,
cvf::Vec3d startPos,
cvf::Vec3d endPos,
double rate,
RiaDefines::PhaseType dominantPhase )
{
double totDistance = endPos.pointDistance( startPos );
if ( totDistance < 0.1 ) return true;
if ( rate < m_flowThreshold ) return false;
cvf::Vec3d movementDirection = endPos - startPos;
movementDirection.normalize();
movementDirection *= rate * m_resolution;
int nSteps = (int)std::round( totDistance / ( rate * m_resolution ) );
cvf::Vec3d curpos = startPos;
streamline->addTracerPoint( curpos, movementDirection, dominantPhase );
for ( int i = 1; i < nSteps; i++ )
{
curpos = curpos + movementDirection;
streamline->addTracerPoint( curpos, movementDirection, dominantPhase );
if ( streamline->size() >= m_maxPoints ) return false;
}
return true;
}

View File

@ -25,17 +25,18 @@
#include <QString>
#include <list>
#include <queue>
#include <set>
#include <utility>
class RigCell;
class RimStreamline;
class StreamlineSeedPoint;
class RimStreamlineGenerator2 : public RimStreamlineGeneratorBase
class RimStreamlineGenerator : public RimStreamlineGeneratorBase
{
public:
RimStreamlineGenerator2( std::set<size_t>& wellCells );
~RimStreamlineGenerator2();
RimStreamlineGenerator( std::set<size_t>& wellCells );
~RimStreamlineGenerator();
void generateTracer( RigCell cell, double direction, QString simWellName, std::list<RimStreamline*>& outStreamlines ) override;
@ -48,8 +49,8 @@ protected:
bool growStreamlineFromTo( RimStreamline* streamline,
cvf::Vec3d startPos,
cvf::Vec3d endpos,
double flowVelocity,
double rate,
RiaDefines::PhaseType dominantPhase );
std::list<std::pair<size_t, cvf::StructGridInterface::FaceType>> m_seeds;
std::priority_queue<StreamlineSeedPoint> m_seeds;
};

View File

@ -1,199 +0,0 @@
/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2021 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimStreamlineGenerator2.h"
#include "RigCell.h"
#include "RigMainGrid.h"
#include "RimStreamline.h"
#include "RimStreamlineDataAccess.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimStreamlineGenerator2::RimStreamlineGenerator2( std::set<size_t>& wellCells )
: RimStreamlineGeneratorBase( wellCells )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimStreamlineGenerator2::~RimStreamlineGenerator2()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStreamlineGenerator2::generateTracer( RigCell cell,
double direction,
QString simWellName,
std::list<RimStreamline*>& outStreamlines )
{
RiaDefines::PhaseType dominantPhase = m_phases.front();
const size_t cellIdx = cell.gridLocalCellIndex();
// try to generate a tracer for all faces in the selected cell with positive flow
for ( auto faceIdx : m_allFaces )
{
double flowVelocity = m_dataAccess->combinedFaceValueByArea( cell, faceIdx, m_phases, dominantPhase ) * direction;
if ( std::abs( flowVelocity ) > m_flowThreshold )
{
m_seeds.push_back( std::make_pair( cellIdx, faceIdx ) );
}
}
while ( m_seeds.size() > 0 )
{
const size_t cellIdx = m_seeds.front().first;
const cvf::StructGridInterface::FaceType faceIdx = m_seeds.front().second;
RimStreamline* streamline = new RimStreamline( simWellName );
growStreamline( streamline, cellIdx, faceIdx, direction );
if ( direction < 0.0 ) streamline->reverse();
outStreamlines.push_back( streamline );
m_seeds.pop_front();
}
return;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStreamlineGenerator2::growStreamline( RimStreamline* streamline,
size_t cellIdx,
cvf::StructGridInterface::FaceType faceIdx,
double direction )
{
// get the cell
RigCell cell = m_dataAccess->grid()->cell( cellIdx );
// get rate
RiaDefines::PhaseType dominantPhaseOut;
double flowVelocity = std::abs( m_dataAccess->combinedFaceValueByArea( cell, faceIdx, m_phases, dominantPhaseOut ) );
while ( flowVelocity >= m_flowThreshold )
{
// grow from given face center to cell center, exiting if we reach the max length
if ( !growStreamlineFromTo( streamline, cell.faceCenter( faceIdx ), cell.center(), flowVelocity, dominantPhaseOut ) )
break;
// move to next cell
RigCell neighbor = cell.neighborCell( faceIdx );
if ( neighbor.isInvalid() ) break;
cvf::StructGridInterface::FaceType neighborFaceIdx = cvf::StructGridInterface::oppositeFace( faceIdx );
// get rate
flowVelocity =
std::abs( m_dataAccess->combinedFaceValueByArea( neighbor, neighborFaceIdx, m_phases, dominantPhaseOut ) );
// grow from face center to cell center, exiting if we reach the max point limit
if ( !growStreamlineFromTo( streamline,
neighbor.faceCenter( neighborFaceIdx ),
neighbor.center(),
flowVelocity,
dominantPhaseOut ) )
break;
// have we been here?
if ( m_visitedCells.count( neighbor.gridLocalCellIndex() ) > 0 ) break;
// is this a well?
if ( m_wellCells.count( neighbor.gridLocalCellIndex() ) > 0 ) break;
m_visitedCells.insert( neighbor.gridLocalCellIndex() );
// find the face with max flow where we should exit the cell
cvf::StructGridInterface::FaceType exitFace = cvf::StructGridInterface::FaceType::NO_FACE;
double maxRate = 0.0;
std::map<cvf::StructGridInterface::FaceType, double> rateMap;
for ( auto face : m_allFaces )
{
RiaDefines::PhaseType dummy;
if ( face == neighborFaceIdx ) continue;
double faceRate = m_dataAccess->combinedFaceValueByArea( neighbor, face, m_phases, dummy ) * direction;
if ( ( ( direction < 0.0 ) && ( faceRate < maxRate ) ) || ( ( direction > 0.0 ) && ( faceRate > maxRate ) ) )
{
exitFace = face;
maxRate = faceRate;
}
if ( face % 2 != 0 )
rateMap[face] = -1.0 * faceRate * direction;
else
rateMap[face] = faceRate * direction;
}
flowVelocity = std::abs( maxRate );
faceIdx = exitFace;
cell = neighbor;
// add seeds for other faces with flow > threshold
for ( auto& kvp : rateMap )
{
if ( kvp.first == exitFace ) continue;
if ( std::abs( kvp.second ) < m_flowThreshold ) continue;
m_seeds.push_back( std::make_pair( neighbor.gridLocalCellIndex(), kvp.first ) );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimStreamlineGenerator2::growStreamlineFromTo( RimStreamline* streamline,
cvf::Vec3d startPos,
cvf::Vec3d endPos,
double flowVelocity,
RiaDefines::PhaseType dominantPhase )
{
double totDistance = endPos.pointDistance( startPos );
if ( totDistance < 0.1 ) return true;
if ( flowVelocity < m_flowThreshold ) return false;
cvf::Vec3d direction = endPos - startPos;
direction.normalize();
direction *= flowVelocity;
int nSteps = (int)std::round( ( totDistance / flowVelocity ) / m_resolution );
cvf::Vec3d curpos = startPos;
for ( int i = 0; i < nSteps; i++ )
{
streamline->addTracerPoint( curpos, direction, dominantPhase );
curpos = startPos + direction;
if ( streamline->size() > m_maxPoints ) return false;
}
return true;
}

View File

@ -34,6 +34,7 @@ RimStreamlineGeneratorBase::RimStreamlineGeneratorBase( std::set<size_t>& wellCe
, m_wellCells( wellCells )
, m_dataAccess( nullptr )
, m_maxPoints( 1 )
, m_minLength( 1.0 )
{
}
@ -47,12 +48,13 @@ RimStreamlineGeneratorBase::~RimStreamlineGeneratorBase()
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimStreamlineGeneratorBase::setLimits( double flowThreshold, int maxDays, double resolutionInDays )
void RimStreamlineGeneratorBase::setLimits( double flowThreshold, int maxDays, double resolutionInDays, double minimumLength )
{
m_flowThreshold = flowThreshold;
m_maxDays = maxDays;
m_resolution = resolutionInDays;
m_maxPoints = maxDays / resolutionInDays;
m_minLength = minimumLength;
}
//--------------------------------------------------------------------------------------------------

View File

@ -41,7 +41,7 @@ public:
RimStreamlineGeneratorBase( std::set<size_t>& wellCells );
~RimStreamlineGeneratorBase();
void setLimits( double flowThreshold, int maxDays, double resolutionInDays );
void setLimits( double flowThreshold, int maxDays, double resolutionInDays, double minimumLength );
void initGenerator( RimStreamlineDataAccess* dataAccess, std::list<RiaDefines::PhaseType> phases );
@ -52,6 +52,7 @@ protected:
double m_flowThreshold;
int m_maxDays;
double m_resolution;
double m_minLength;
size_t m_maxPoints;

View File

@ -33,7 +33,7 @@
#include "RimRegularLegendConfig.h"
#include "RimStreamline.h"
#include "RimStreamlineDataAccess.h"
#include "RimStreamlineGenerator2.h"
#include "RimStreamlineGenerator.h"
#include "RiaLogging.h"
@ -60,7 +60,6 @@ void AppEnum<RimStreamlineInViewCollection::VisualizationMode>::setUp()
{
addItem( RimStreamlineInViewCollection::VisualizationMode::ANIMATION, "ANIMATION", "Animation" );
addItem( RimStreamlineInViewCollection::VisualizationMode::MANUAL, "MANUAL", "Manual control" );
addItem( RimStreamlineInViewCollection::VisualizationMode::VECTORS, "VECTORS", "Vectors" );
setDefault( RimStreamlineInViewCollection::VisualizationMode::ANIMATION );
}
@ -407,7 +406,7 @@ void RimStreamlineInViewCollection::findStartCells( int
{
outInjectorCells.push_back( std::pair<QString, RigCell>( swdata->m_wellName, cell ) );
}
m_wellCellIds.insert( cell.mainGridCellIndex() );
m_wellCellIds.insert( cell.gridLocalCellIndex() );
}
}
}
@ -451,8 +450,8 @@ void RimStreamlineInViewCollection::updateStreamlines()
if ( accessOk )
{
// setup the streamline generator to use
RimStreamlineGenerator2 generator( m_wellCellIds );
generator.setLimits( m_flowThreshold, m_maxDays, m_resolution );
RimStreamlineGenerator generator( m_wellCellIds );
generator.setLimits( m_flowThreshold, m_maxDays, m_resolution, m_lengthThreshold );
generator.initGenerator( &dataAccess, phases() );
const int reverseDirection = -1.0;
@ -464,7 +463,7 @@ void RimStreamlineInViewCollection::updateStreamlines()
if ( m_useInjectors() ) seedsCount += seedCellsInjector.size();
if ( m_useProducers() ) seedsCount += seedCellsProducer.size();
caf::ProgressInfo streamlineProgress( seedsCount, "Generating Streamlines" );
caf::ProgressInfo streamlineProgress( seedsCount, "Generating streamlines, please wait..." );
// generate tracers for all injectors
if ( m_useInjectors() )
@ -492,16 +491,9 @@ void RimStreamlineInViewCollection::updateStreamlines()
{
if ( sline && sline->size() > 1 )
{
double distance = sline->tracer().totalDistance();
if ( distance >= m_lengthThreshold )
{
m_maxAnimationIndex = std::max( sline->size(), m_maxAnimationIndex );
sline->generateStatistics();
m_streamlines.push_back( sline );
sline = nullptr;
}
if ( sline ) delete sline;
m_maxAnimationIndex = std::max( sline->size(), m_maxAnimationIndex );
m_streamlines.push_back( sline );
sline = nullptr;
}
}
@ -574,14 +566,10 @@ void RimStreamlineInViewCollection::defineUiOrdering( QString uiConfigName, caf:
visualizationGroup->add( &m_animationSpeed );
visualizationGroup->add( &m_tracerLength );
}
if ( m_visualizationMode() == VisualizationMode::MANUAL )
else if ( m_visualizationMode() == VisualizationMode::MANUAL )
{
visualizationGroup->add( &m_animationIndex );
}
if ( m_visualizationMode() == VisualizationMode::VECTORS )
{
visualizationGroup->add( &m_scaleFactor );
}
uiOrdering.skipRemainingFields();
}
@ -648,14 +636,8 @@ void RimStreamlineInViewCollection::fieldChangedByUi( const caf::PdmFieldHandle*
const QVariant& oldValue,
const QVariant& newValue )
{
if ( changedField == &m_animationSpeed || changedField == &m_animationIndex || changedField == &m_tracerLength )
{
return;
}
if ( changedField == &m_visualizationMode &&
qvariant_cast<int>( newValue ) != static_cast<int>( VisualizationMode::VECTORS ) &&
qvariant_cast<int>( oldValue ) != static_cast<int>( VisualizationMode::VECTORS ) )
if ( changedField == &m_animationSpeed || changedField == &m_animationIndex || changedField == &m_tracerLength ||
changedField == &m_visualizationMode )
{
return;
}

View File

@ -46,8 +46,7 @@ public:
enum class VisualizationMode
{
ANIMATION = 0,
MANUAL,
VECTORS
MANUAL
};
using VisualizationModeEnum = caf::AppEnum<VisualizationMode>;