Geomech range : Improve Finding IJK = 000

Now the ijk assignment algorithm works for both test files.
Needed to use my first idea on how to detect element corresponing to IJK
= 000
This commit is contained in:
Jacob Støren 2015-05-29 09:24:31 +02:00
parent 51fd1b4de2
commit cdcfd62163
2 changed files with 104 additions and 97 deletions

View File

@ -49,7 +49,9 @@ void RigFemPartGrid::generateStructGridData()
//[X] record the ones with 3 or fewer neighbors as possible grid corners //[X] record the ones with 3 or fewer neighbors as possible grid corners
//[X] 2. Loop over the possible corner cells, //[X] 2. Loop over the possible corner cells,
//[X] find the one that corresponds to IJK = 000 //[X] find the one that corresponds to IJK = 000
//[X] by finding the one closest to origo //[X] by finding the one closest to origo // Does not work
//[X] by Determining what surfs correspond to NEG IJK surfaces in that element,
// and that none of those faces have a neighbor
//[X] 4. Assign IJK = 000 to that element //[X] 4. Assign IJK = 000 to that element
//[X] Store IJK in elm idx array //[X] Store IJK in elm idx array
//[X] 5. Loop along POS I surfaces increment I for each element and assign IJK //[X] 5. Loop along POS I surfaces increment I for each element and assign IJK
@ -61,98 +63,27 @@ void RigFemPartGrid::generateStructGridData()
//[ ] 6. If IJK to elm idx is needed, allocate "grid" with maxI,maxJ,maxZ values //[ ] 6. If IJK to elm idx is needed, allocate "grid" with maxI,maxJ,maxZ values
//[ ] Loop over elms, assign elmIdx to IJK address in grid //[ ] Loop over elms, assign elmIdx to IJK address in grid
int gridCornerClosestToOrigo = findElmIdxOfGridCornerClosestToOrigo(); int elmIdxForIJK_000 = findElmIdxForIJK000();
if (gridCornerClosestToOrigo == cvf::UNDEFINED_SIZE_T) return; CVF_ASSERT (elmIdxForIJK_000 != -1); // Debug. When we have run enough tests, remove
if (elmIdxForIJK_000 == -1) return;
// Find the IJK faces based on the corner cell // Find the IJK faces based on the corner cell
cvf::Vec3i ijkMainFaceIdx = cvf::Vec3i(-1,-1,-1); cvf::Vec3i ijkMainFaceIndices = findMainIJKFaces(elmIdxForIJK_000);
{
RigElementType eType = m_femPart->elementType(gridCornerClosestToOrigo);
int faceCount = RigFemTypes::elmentFaceCount(eType);
std::vector<cvf::Vec3f> normals(faceCount);
for (int faceIdx = 0; faceIdx < faceCount; ++faceIdx)
{
normals[faceIdx] = m_femPart->faceNormal(gridCornerClosestToOrigo, faceIdx);
}
// Record three independent main direction vectors for the element, and what face they are created from
cvf::Vec3f mainElmDirections[3];
int mainElmDirOriginFaces[3];
if (eType == HEX8)
{
mainElmDirections[0] = normals[0] - normals[1]; // To get a better "average" direction vector
mainElmDirections[1] = normals[2] - normals[3];
mainElmDirections[2] = normals[4] - normals[5];
mainElmDirOriginFaces[0] = 0;
mainElmDirOriginFaces[1] = 2;
mainElmDirOriginFaces[2] = 4;
}
else
{
CVF_ASSERT(false);
}
// Match the element main directions with best XYZ match (IJK respectively)
// Find the max component of a mainElmDirection.
// Assign the index of that mainElmDirection to the mainElmDirectionIdxForIJK at the index of the max component.
int mainElmDirectionIdxForIJK[3] = { -1, -1, -1};
for (int dIdx = 0; dIdx < 3; ++dIdx)
{
double maxAbsComp = 0;
for (int cIdx = 2; cIdx >= 0 ; --cIdx)
{
float absComp = fabs(mainElmDirections[dIdx][cIdx]);
if (absComp > maxAbsComp)
{
maxAbsComp = absComp;
mainElmDirectionIdxForIJK[cIdx] = dIdx;
}
}
}
// make sure all the main directions are used
bool mainDirsUsed[3] = { false, false, false};
mainDirsUsed[mainElmDirectionIdxForIJK[0]] = true;
mainDirsUsed[mainElmDirectionIdxForIJK[1]] = true;
mainDirsUsed[mainElmDirectionIdxForIJK[2]] = true;
int unusedDir = -1;
if (!mainDirsUsed[0]) unusedDir = 0;
if (!mainDirsUsed[1]) unusedDir = 1;
if (!mainDirsUsed[2]) unusedDir = 2;
if (unusedDir >= 0)
{
if (mainElmDirectionIdxForIJK[0] == mainElmDirectionIdxForIJK[1]) mainElmDirectionIdxForIJK[0] = unusedDir;
else if (mainElmDirectionIdxForIJK[1] == mainElmDirectionIdxForIJK[2]) mainElmDirectionIdxForIJK[1] = unusedDir;
else if (mainElmDirectionIdxForIJK[2] == mainElmDirectionIdxForIJK[0]) mainElmDirectionIdxForIJK[2] = unusedDir;
}
// Assign the correct face based on the main direction
ijkMainFaceIdx[0] = (mainElmDirections[mainElmDirectionIdxForIJK[0]] * cvf::Vec3f::X_AXIS > 0) ? mainElmDirOriginFaces[mainElmDirectionIdxForIJK[0]]: RigFemTypes::oppositeFace(eType, mainElmDirOriginFaces[mainElmDirectionIdxForIJK[0]]);
ijkMainFaceIdx[1] = (mainElmDirections[mainElmDirectionIdxForIJK[1]] * cvf::Vec3f::Y_AXIS > 0) ? mainElmDirOriginFaces[mainElmDirectionIdxForIJK[1]]: RigFemTypes::oppositeFace(eType, mainElmDirOriginFaces[mainElmDirectionIdxForIJK[1]]);
ijkMainFaceIdx[2] = (mainElmDirections[mainElmDirectionIdxForIJK[2]] * -cvf::Vec3f::Z_AXIS > 0) ? mainElmDirOriginFaces[mainElmDirectionIdxForIJK[2]]: RigFemTypes::oppositeFace(eType, mainElmDirOriginFaces[mainElmDirectionIdxForIJK[2]]);
}
// assign ijk to cells // assign ijk to cells
{ {
m_ijkPrElement.resize(m_femPart->elementCount(), cvf::Vec3i(-1,-1,-1)); m_ijkPrElement.resize(m_femPart->elementCount(), cvf::Vec3i(-1,-1,-1));
int posIFaceIdx = ijkMainFaceIdx[0]; int posIFaceIdx = ijkMainFaceIndices[0];
int posJFaceIdx = ijkMainFaceIdx[1]; int posJFaceIdx = ijkMainFaceIndices[1];
int posKFaceIdx = ijkMainFaceIdx[2]; int posKFaceIdx = ijkMainFaceIndices[2];
m_elmentIJKCounts = cvf::Vec3st(0, 0, 0); m_elmentIJKCounts = cvf::Vec3st(0, 0, 0);
int elmIdxInK = gridCornerClosestToOrigo; int elmIdxInK = elmIdxForIJK_000;
cvf::Vec3f posKNormal = m_femPart->faceNormal(elmIdxInK, posKFaceIdx); cvf::Vec3f posKNormal = m_femPart->faceNormal(elmIdxInK, posKFaceIdx);
int kCoord = 0; int kCoord = 0;
while (true) while (true)
@ -246,31 +177,105 @@ void RigFemPartGrid::generateStructGridData()
//-------------------------------------------------------------------------------------------------- //--------------------------------------------------------------------------------------------------
/// ///
//-------------------------------------------------------------------------------------------------- //--------------------------------------------------------------------------------------------------
int RigFemPartGrid::findElmIdxOfGridCornerClosestToOrigo() int RigFemPartGrid::findElmIdxForIJK000()
{ {
const std::vector<int>& possibleGridCorners = m_femPart->possibleGridCornerElements(); const std::vector<int>& possibleGridCorners = m_femPart->possibleGridCornerElements();
size_t possibleCornerCount = possibleGridCorners.size(); size_t possibleCornerCount = possibleGridCorners.size();
const std::vector<cvf::Vec3f>& nodeCoordinates = m_femPart->nodes().coordinates;
int elmIdxToClosestCorner = -1;
// Find corner cell closest to origo
double minSqDistance = HUGE_VAL;
for (size_t pcIdx = 0; pcIdx < possibleCornerCount; ++pcIdx) for (size_t pcIdx = 0; pcIdx < possibleCornerCount; ++pcIdx)
{ {
int elmIdx = possibleGridCorners[pcIdx]; int elmIdx = possibleGridCorners[pcIdx];
cvf::Vec3i ijkMainFaceIndices = findMainIJKFaces(elmIdx);
const int* elmNodeIndices = m_femPart->connectivities(elmIdx); if ( m_femPart->elementNeighbor(elmIdx, ijkMainFaceIndices[0]) != -1
cvf::Vec3f firstNodePos = nodeCoordinates[elmNodeIndices[0]]; && m_femPart->elementNeighbor(elmIdx, ijkMainFaceIndices[0]) != -1
float distSq = firstNodePos.lengthSquared(); && m_femPart->elementNeighbor(elmIdx, ijkMainFaceIndices[0]) != -1 )
if (distSq < minSqDistance)
{ {
minSqDistance = distSq; return elmIdx;
elmIdxToClosestCorner = elmIdx;
} }
} }
return elmIdxToClosestCorner; return -1;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3i RigFemPartGrid::findMainIJKFaces(int elementIndex)
{
cvf::Vec3i ijkMainFaceIndices = cvf::Vec3i(-1, -1, -1);
RigElementType eType = m_femPart->elementType(elementIndex);
int faceCount = RigFemTypes::elmentFaceCount(eType);
std::vector<cvf::Vec3f> normals(faceCount);
for (int faceIdx = 0; faceIdx < faceCount; ++faceIdx)
{
normals[faceIdx] = m_femPart->faceNormal(elementIndex, faceIdx);
}
// Record three independent main direction vectors for the element, and what face they are created from
cvf::Vec3f mainElmDirections[3];
int mainElmDirOriginFaces[3];
if (eType == HEX8)
{
mainElmDirections[0] = normals[0] - normals[1]; // To get a better "average" direction vector
mainElmDirections[1] = normals[2] - normals[3];
mainElmDirections[2] = normals[4] - normals[5];
mainElmDirOriginFaces[0] = 0;
mainElmDirOriginFaces[1] = 2;
mainElmDirOriginFaces[2] = 4;
}
else
{
CVF_ASSERT(false);
}
// Match the element main directions with best XYZ match (IJK respectively)
// Find the max component of a mainElmDirection.
// Assign the index of that mainElmDirection to the mainElmDirectionIdxForIJK at the index of the max component.
int mainElmDirectionIdxForIJK[3] ={ -1, -1, -1 };
for (int dIdx = 0; dIdx < 3; ++dIdx)
{
double maxAbsComp = 0;
for (int cIdx = 2; cIdx >= 0 ; --cIdx)
{
float absComp = fabs(mainElmDirections[dIdx][cIdx]);
if (absComp > maxAbsComp)
{
maxAbsComp = absComp;
mainElmDirectionIdxForIJK[cIdx] = dIdx;
}
}
}
// make sure all the main directions are used
bool mainDirsUsed[3] ={ false, false, false };
mainDirsUsed[mainElmDirectionIdxForIJK[0]] = true;
mainDirsUsed[mainElmDirectionIdxForIJK[1]] = true;
mainDirsUsed[mainElmDirectionIdxForIJK[2]] = true;
int unusedDir = -1;
if (!mainDirsUsed[0]) unusedDir = 0;
if (!mainDirsUsed[1]) unusedDir = 1;
if (!mainDirsUsed[2]) unusedDir = 2;
if (unusedDir >= 0)
{
if (mainElmDirectionIdxForIJK[0] == mainElmDirectionIdxForIJK[1]) mainElmDirectionIdxForIJK[0] = unusedDir;
else if (mainElmDirectionIdxForIJK[1] == mainElmDirectionIdxForIJK[2]) mainElmDirectionIdxForIJK[1] = unusedDir;
else if (mainElmDirectionIdxForIJK[2] == mainElmDirectionIdxForIJK[0]) mainElmDirectionIdxForIJK[2] = unusedDir;
}
// Assign the correct face based on the main direction
ijkMainFaceIndices[0] = (mainElmDirections[mainElmDirectionIdxForIJK[0]] * cvf::Vec3f::X_AXIS > 0) ? mainElmDirOriginFaces[mainElmDirectionIdxForIJK[0]]: RigFemTypes::oppositeFace(eType, mainElmDirOriginFaces[mainElmDirectionIdxForIJK[0]]);
ijkMainFaceIndices[1] = (mainElmDirections[mainElmDirectionIdxForIJK[1]] * cvf::Vec3f::Y_AXIS > 0) ? mainElmDirOriginFaces[mainElmDirectionIdxForIJK[1]]: RigFemTypes::oppositeFace(eType, mainElmDirOriginFaces[mainElmDirectionIdxForIJK[1]]);
ijkMainFaceIndices[2] = (mainElmDirections[mainElmDirectionIdxForIJK[2]] * -cvf::Vec3f::Z_AXIS > 0) ? mainElmDirOriginFaces[mainElmDirectionIdxForIJK[2]]: RigFemTypes::oppositeFace(eType, mainElmDirOriginFaces[mainElmDirectionIdxForIJK[2]]);
return ijkMainFaceIndices;
} }
//-------------------------------------------------------------------------------------------------- //--------------------------------------------------------------------------------------------------

View File

@ -51,9 +51,11 @@ public:
private: private:
void generateStructGridData(); void generateStructGridData();
int findElmIdxOfGridCornerClosestToOrigo(); cvf::Vec3i findMainIJKFaces(int elementIndex);
int perpendicularFaceInDirection(cvf::Vec3f direction, int perpFaceIdx, int elmIdx);
int findElmIdxForIJK000();
int perpendicularFaceInDirection(cvf::Vec3f direction, int perpFaceIdx, int elmIdx);
RigFemPart* m_femPart; RigFemPart* m_femPart;
std::vector<cvf::Vec3i> m_ijkPrElement; std::vector<cvf::Vec3i> m_ijkPrElement;