ResInsight/ApplicationCode/ReservoirDataModel/RigWellLogExtractor.cpp

267 lines
12 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigWellLogExtractor.h"
#include "RigWellPath.h"
#include "cvfTrace.h"
#include "RiaLogging.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellLogExtractor::RigWellLogExtractor(const RigWellPath* wellpath, const std::string& wellCaseErrorMsgName) : m_wellPath(wellpath), m_wellCaseErrorMsgName(wellCaseErrorMsgName)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellLogExtractor::~RigWellLogExtractor()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<CellIntersectionInfo> RigWellLogExtractor::intersectionInfo() const
{
std::vector<CellIntersectionInfo> infoVector;
if (m_intersectedCellsGlobIdx.empty()) return infoVector;
for (size_t i = 0; i < m_intersectedCellsGlobIdx.size() - 1; i=i+2)
{
CVF_ASSERT(m_intersectedCellsGlobIdx[i] == m_intersectedCellsGlobIdx[i + 1]);
CellIntersectionInfo cellInfo;
cellInfo.globCellIndex = m_intersectedCellsGlobIdx[i];
cellInfo.startPoint = m_intersections[i];
cellInfo.endPoint = m_intersections[i+1];
cellInfo.intersectedCellFaceIn = m_intersectedCellFaces[i];
cellInfo.intersectedCellFaceOut = m_intersectedCellFaces[i+1];
infoVector.push_back(cellInfo);
}
return infoVector;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellLogExtractor::insertIntersectionsInMap(const std::vector<HexIntersectionInfo> &intersections,
cvf::Vec3d p1,
double md1,
cvf::Vec3d p2,
double md2,
std::map<RigMDCellIdxEnterLeaveKey, HexIntersectionInfo > *uniqueIntersections)
{
for (size_t intIdx = 0; intIdx < intersections.size(); ++intIdx)
{
double lenghtAlongLineSegment1 = (intersections[intIdx].m_intersectionPoint - p1).length();
double lenghtAlongLineSegment2 = (p2 - intersections[intIdx].m_intersectionPoint).length();
double measuredDepthDiff = md2 - md1;
double lineLength = lenghtAlongLineSegment1 + lenghtAlongLineSegment2;
double measuredDepthOfPoint = 0.0;
if (lineLength > 0.00001)
{
measuredDepthOfPoint = md1 + measuredDepthDiff*lenghtAlongLineSegment1/(lineLength);
}
else
{
measuredDepthOfPoint = md1;
}
uniqueIntersections->insert(std::make_pair(RigMDCellIdxEnterLeaveKey(measuredDepthOfPoint,
intersections[intIdx].m_hexIndex,
intersections[intIdx].m_isIntersectionEntering),
intersections[intIdx]));
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellLogExtractor::populateReturnArrays(std::map<RigMDCellIdxEnterLeaveKey, HexIntersectionInfo > &uniqueIntersections)
{
// For same MD and same cell, remove enter/leave pairs, as they only touches the wellpath, and should not contribute.
{
std::map<RigMDCellIdxEnterLeaveKey, HexIntersectionInfo >::iterator it1 = uniqueIntersections.begin();
std::map<RigMDCellIdxEnterLeaveKey, HexIntersectionInfo >::iterator it2 = uniqueIntersections.begin();
std::vector<std::map<RigMDCellIdxEnterLeaveKey, HexIntersectionInfo >::iterator> iteratorsToIntersectonsToErase;
while (it2 != uniqueIntersections.end())
{
++it2;
if (it2 != uniqueIntersections.end())
{
if (RigWellLogExtractionTools::isEqualDepth(it1->first.measuredDepth, it2->first.measuredDepth))
{
if (it1->first.hexIndex == it2->first.hexIndex)
{
// Remove the two from the map, as they just are a touch of the cell surface
CVF_TIGHT_ASSERT(!it1->first.isEnteringCell && it2->first.isEnteringCell);
iteratorsToIntersectonsToErase.push_back(it1);
iteratorsToIntersectonsToErase.push_back(it2);
}
}
}
++it1;
}
// Erase all the intersections that is not needed
for (size_t erItIdx = 0; erItIdx < iteratorsToIntersectonsToErase.size(); ++erItIdx)
{
uniqueIntersections.erase(iteratorsToIntersectonsToErase[erItIdx]);
}
}
// Copy the map into a different sorting regime, with enter leave more significant than cell index
std::map<RigMDEnterLeaveCellIdxKey, HexIntersectionInfo > sortedUniqueIntersections;
{
std::map<RigMDCellIdxEnterLeaveKey, HexIntersectionInfo >::iterator it = uniqueIntersections.begin();
while (it != uniqueIntersections.end())
{
sortedUniqueIntersections.insert(std::make_pair(RigMDEnterLeaveCellIdxKey(it->first.measuredDepth, it->first.isEnteringCell, it->first.hexIndex),
it->second));
++it;
}
}
// Add points for the endpoint of the wellpath, if it starts/ends inside a cell
{
// Add an intersection for the well startpoint that is inside the first cell
std::map<RigMDEnterLeaveCellIdxKey, HexIntersectionInfo >::iterator it = sortedUniqueIntersections.begin();
if (it != sortedUniqueIntersections.end() && !it->first.isEnteringCell) // Leaving a cell as first intersection. Well starts inside a cell.
{
// Needs wellpath start point in front
HexIntersectionInfo firstLeavingPoint = it->second;
firstLeavingPoint.m_intersectionPoint = m_wellPath->m_wellPathPoints[0];
sortedUniqueIntersections.insert(std::make_pair(RigMDEnterLeaveCellIdxKey(m_wellPath->m_measuredDepths[0], true, firstLeavingPoint.m_hexIndex),
firstLeavingPoint));
}
// Add an intersection for the well endpoint possibly inside the last cell.
std::map<RigMDEnterLeaveCellIdxKey, HexIntersectionInfo >::reverse_iterator rit = sortedUniqueIntersections.rbegin();
if (rit != sortedUniqueIntersections.rend() && rit->first.isEnteringCell) // Entering a cell as last intersection. Well ends inside a cell.
{
// Needs wellpath end point at end
HexIntersectionInfo lastEnterPoint = rit->second;
lastEnterPoint.m_intersectionPoint = m_wellPath->m_wellPathPoints.back();
lastEnterPoint.m_isIntersectionEntering = false;
sortedUniqueIntersections.insert(std::make_pair(RigMDEnterLeaveCellIdxKey(m_wellPath->m_measuredDepths.back(), false, lastEnterPoint.m_hexIndex),
lastEnterPoint));
}
}
// Filter and store the intersections pairwise as cell enter-leave pairs
// Discard points that does not have a match .
{
std::map<RigMDEnterLeaveCellIdxKey, HexIntersectionInfo >::iterator it1 = sortedUniqueIntersections.begin();
std::map<RigMDEnterLeaveCellIdxKey, HexIntersectionInfo >::iterator it2;
while (it1 != sortedUniqueIntersections.end())
{
it2 = it1;
++it2;
if (it2 == sortedUniqueIntersections.end()) break;
if (RigMDEnterLeaveCellIdxKey::isProperCellEnterLeavePair(it1->first, it2->first))
{
appendIntersectionToArrays(it1->first.measuredDepth, it1->second);
++it1;
appendIntersectionToArrays(it1->first.measuredDepth, it1->second);
++it1;
}
else
{
// If we haven't a proper pair, try our best to recover these variants:
// 1-2 3 4 5 6 7 8 9 10 11-12
// +---+
// +---+
// +---+
std::map<RigMDEnterLeaveCellIdxKey, HexIntersectionInfo >::iterator it11 = it1;
std::map<RigMDEnterLeaveCellIdxKey, HexIntersectionInfo >::iterator it21 = it2;
// Check if we have overlapping cells (typically at a fault)
++it21;
if (it21 != sortedUniqueIntersections.end()
&& RigMDEnterLeaveCellIdxKey::isProperCellEnterLeavePair(it11->first, it21->first))
{
// Found 3 to 5 connection
appendIntersectionToArrays(it11->first.measuredDepth, it11->second);
appendIntersectionToArrays(it21->first.measuredDepth, it21->second);
++it11; ++it21;
if (it21 != sortedUniqueIntersections.end()
&& RigMDEnterLeaveCellIdxKey::isProperCellEnterLeavePair(it11->first, it21->first))
{
// Found a 4 to 6 connection
appendIntersectionToArrays(it11->first.measuredDepth, it11->second);
appendIntersectionToArrays(it21->first.measuredDepth, it21->second);
it1 = it21;
++it1;
continue;
}
else
{
RiaLogging::warning(QString("Well Log Extraction : ") + QString::fromStdString(m_wellCaseErrorMsgName) + (" Discards a point at MD: ") + QString::number((double)(it1->first.measuredDepth)));
// Found that 8 to 10 is not connected, after finding 7 to 9
it1 = it21; // Discard 8 by Jumping to 10
continue;
}
}
else
{
RiaLogging::warning(QString("Well Log Extraction : ") + QString::fromStdString(m_wellCaseErrorMsgName) + (" Discards a point at MD: ") + QString::number((double)(it1->first.measuredDepth)));
// Found that 10 to 11 is not connected, and not 10 to 12 either
++it1; // Discard 10 and jump to 11 and hope that recovers us
continue;
}
CVF_ASSERT(false); // Should never end here
}
}
}
}
void RigWellLogExtractor::appendIntersectionToArrays(double measuredDepth, const HexIntersectionInfo& intersection)
{
m_measuredDepth.push_back (measuredDepth);
m_trueVerticalDepth.push_back (fabs(intersection.m_intersectionPoint[2]));
m_intersections.push_back (intersection.m_intersectionPoint);
m_intersectedCellsGlobIdx.push_back (intersection.m_hexIndex);
m_intersectedCellFaces.push_back(intersection.m_face);
}