ResInsight/ApplicationCode/ProjectDataModel/Completions/RimFractureTemplate.cpp

957 lines
36 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 - Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimFractureTemplate.h"
#include "RiaFractureDefines.h"
#include "RigTesselatorTools.h"
#include "RimFracture.h"
#include "RimFractureContainment.h"
#include "RimProject.h"
#include "cafPdmObject.h"
#include "cafPdmUiDoubleSliderEditor.h"
#include "cafPdmUiDoubleValueEditor.h"
#include "cafPdmUiPushButtonEditor.h"
#include "cafPdmUiTextEditor.h"
#include "cvfVector3.h"
#include <cmath>
// clang-format off
namespace caf
{
template<>
void caf::AppEnum< RimFractureTemplate::FracOrientationEnum>::setUp()
{
addItem(RimFractureTemplate::AZIMUTH, "Az", "Azimuth");
addItem(RimFractureTemplate::ALONG_WELL_PATH, "AlongWellPath", "Along Well Path");
addItem(RimFractureTemplate::TRANSVERSE_WELL_PATH, "TransverseWellPath", "Transverse (normal) to Well Path");
setDefault(RimFractureTemplate::TRANSVERSE_WELL_PATH);
}
template<>
void caf::AppEnum< RimFractureTemplate::FracConductivityEnum>::setUp()
{
addItem(RimFractureTemplate::INFINITE_CONDUCTIVITY, "InfiniteConductivity", "Infinite Conductivity");
addItem(RimFractureTemplate::FINITE_CONDUCTIVITY, "FiniteConductivity", "Finite Conductivity");
setDefault(RimFractureTemplate::INFINITE_CONDUCTIVITY);
}
template<>
void caf::AppEnum< RimFractureTemplate::PermeabilityEnum>::setUp()
{
addItem(RimFractureTemplate::USER_DEFINED_PERMEABILITY, "UserDefinedPermeability", "User Defined");
addItem(RimFractureTemplate::CONDUCTIVITY_FROM_FRACTURE, "FractureConductivity", "Use Fracture Conductivity");
setDefault(RimFractureTemplate::CONDUCTIVITY_FROM_FRACTURE);
}
template<>
void caf::AppEnum<RimFractureTemplate::WidthEnum>::setUp()
{
addItem(RimFractureTemplate::USER_DEFINED_WIDTH, "UserDefinedWidth", "User Defined");
addItem(RimFractureTemplate::WIDTH_FROM_FRACTURE, "FractureWidth", "Use Fracture Width");
setDefault(RimFractureTemplate::WIDTH_FROM_FRACTURE);
}
template<>
void caf::AppEnum<RimFractureTemplate::NonDarcyFlowEnum>::setUp()
{
addItem(RimFractureTemplate::NON_DARCY_NONE, "None", "None");
addItem(RimFractureTemplate::NON_DARCY_COMPUTED, "Computed", "Compute D-factor");
addItem(RimFractureTemplate::NON_DARCY_USER_DEFINED,"UserDefined", "User Defined D-factor");
setDefault(RimFractureTemplate::NON_DARCY_NONE);
}
template<>
void caf::AppEnum< RimFractureTemplate::BetaFactorEnum>::setUp()
{
addItem(RimFractureTemplate::USER_DEFINED_BETA_FACTOR, "UserDefinedBetaFactor", "User Defined");
addItem(RimFractureTemplate::BETA_FACTOR_FROM_FRACTURE, "FractureBetaFactor", "Use Fracture Beta Factor");
setDefault(RimFractureTemplate::USER_DEFINED_BETA_FACTOR);
}
}
// TODO Move to cafPdmObject.h
#define CAF_PDM_InitField_Basic(field, keyword, default, uiName) CAF_PDM_InitField(field, keyword, default, uiName, "", "", "")
CAF_PDM_XML_ABSTRACT_SOURCE_INIT(RimFractureTemplate, "RimFractureTemplate");
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFractureTemplate::RimFractureTemplate()
{
CAF_PDM_InitObject("Fracture Template", ":/FractureTemplate16x16.png", "", "");
CAF_PDM_InitField(&m_id, "Id", -1, "ID", "", "", "");
m_id.uiCapability()->setUiReadOnly(true);
CAF_PDM_InitField(&m_name, "UserDescription", QString("Fracture Template"), "Name", "", "", "");
CAF_PDM_InitFieldNoDefault(&m_nameAndUnit, "NameAndUnit", "NameAndUnit", "", "", "");
m_nameAndUnit.registerGetMethod(this, &RimFractureTemplate::nameAndUnit);
m_nameAndUnit.uiCapability()->setUiHidden(true);
m_nameAndUnit.xmlCapability()->disableIO();
CAF_PDM_InitField(&m_fractureTemplateUnit, "UnitSystem", caf::AppEnum<RiaEclipseUnitTools::UnitSystem>(RiaEclipseUnitTools::UNITS_UNKNOWN), "Units System", "", "", "");
m_fractureTemplateUnit.uiCapability()->setUiReadOnly(true);
CAF_PDM_InitField(&m_orientationType, "Orientation", caf::AppEnum<FracOrientationEnum>(TRANSVERSE_WELL_PATH), "Fracture Orientation", "", "", "");
CAF_PDM_InitField(&m_azimuthAngle, "AzimuthAngle", 0.0f, "Azimuth Angle", "", "", ""); //Is this correct description?
CAF_PDM_InitField(&m_skinFactor, "SkinFactor", 0.0f, "Skin Factor", "", "", "");
CAF_PDM_InitField(&m_perforationLength, "PerforationLength", 1.0, "Perforation Length", "", "", "");
CAF_PDM_InitField(&m_perforationEfficiency, "PerforationEfficiency", 1.0, "Perforation Efficiency", "", "", "");
m_perforationEfficiency.uiCapability()->setUiEditorTypeName(caf::PdmUiDoubleSliderEditor::uiEditorTypeName());
CAF_PDM_InitField(&m_wellDiameter, "WellDiameter", 0.216, "Well Diameter at Fracture", "", "", "");
CAF_PDM_InitField(&m_conductivityType, "ConductivityType", caf::AppEnum<FracConductivityEnum>(FINITE_CONDUCTIVITY), "Conductivity in Fracture", "", "", "");
CAF_PDM_InitFieldNoDefault(&m_fractureContainment, "FractureContainmentField", "Fracture Containment", "", "", "");
m_fractureContainment = new RimFractureContainment();
m_fractureContainment.uiCapability()->setUiTreeHidden(true);
m_fractureContainment.uiCapability()->setUiTreeChildrenHidden(true);
// Non-Darcy Flow options
CAF_PDM_InitFieldNoDefault(&m_nonDarcyFlowType, "NonDarcyFlowType", "Non-Darcy Flow", "", "", "");
CAF_PDM_InitField(&m_userDefinedDFactor, "UserDefinedDFactor", 1.0, "D Factor", "", "", "");
CAF_PDM_InitFieldNoDefault(&m_fractureWidthType, "FractureWidthType", "Type", "", "", "");
CAF_PDM_InitField_Basic(&m_fractureWidth, "FractureWidth", 0.01, "Fracture Width (h)");
CAF_PDM_InitFieldNoDefault(&m_betaFactorType, "BetaFactorType", "Type", "", "", "");
CAF_PDM_InitField_Basic(&m_inertialCoefficient, "InertialCoefficient", 0.006083236, "<html>Inertial Coefficient (&beta;)</html> [Forch. unit]");
CAF_PDM_InitFieldNoDefault(&m_permeabilityType, "PermeabilityType", "Type", "", "", "");
CAF_PDM_InitField_Basic(&m_relativePermeability, "RelativePermeability", 1.0, "Relative Permeability");
CAF_PDM_InitField(&m_userDefinedEffectivePermeability, "EffectivePermeability",0.0, "Effective Permeability (Ke) [mD]", "", "", "");
CAF_PDM_InitField(&m_relativeGasDensity, "RelativeGasDensity", 0.8, "<html>Relative Gas Density (&gamma;)</html>", "", "Relative density of gas at surface conditions with respect to air at STP", "");
CAF_PDM_InitField(&m_gasViscosity, "GasViscosity", 0.02, "<html>Gas Viscosity (&mu;)</html> [cP]", "", "Gas viscosity at bottom hole pressure", "");
CAF_PDM_InitFieldNoDefault(&m_dFactorDisplayField, "dFactorDisplayField", "D Factor", "", "", "");
m_dFactorDisplayField.registerGetMethod(this, &RimFractureTemplate::dFactorForTemplate);
m_dFactorDisplayField.uiCapability()->setUiEditorTypeName(caf::PdmUiDoubleValueEditor::uiEditorTypeName());
m_dFactorDisplayField.uiCapability()->setUiReadOnly(true);
m_dFactorDisplayField.xmlCapability()->disableIO();
CAF_PDM_InitFieldNoDefault(&m_dFactorSummaryText, "dFactorSummaryText", "D Factor Summary", "", "", "");
m_dFactorSummaryText.registerGetMethod(this, &RimFractureTemplate::dFactorSummary);
m_dFactorSummaryText.uiCapability()->setUiReadOnly(true);
m_dFactorSummaryText.uiCapability()->setUiEditorTypeName(caf::PdmUiTextEditor::uiEditorTypeName());
m_dFactorSummaryText.uiCapability()->setUiLabelPosition(caf::PdmUiItemInfo::LabelPosType::TOP);
m_dFactorSummaryText.xmlCapability()->disableIO();
CAF_PDM_InitField(&m_heightScaleFactor, "HeightScaleFactor", 1.0, "Height", "", "", "");
CAF_PDM_InitField(&m_halfLengthScaleFactor, "WidthScaleFactor", 1.0, "Half Length", "", "", "");
CAF_PDM_InitField(&m_dFactorScaleFactor, "DFactorScaleFactor", 1.0, "D-factor", "", "", "");
CAF_PDM_InitField(&m_conductivityScaleFactor, "ConductivityFactor", 1.0, "Conductivity", "", "The conductivity values read from file will be scaled with this parameters", "");
CAF_PDM_InitField(&m_scaleApplyButton, "ScaleApplyButton", false, "Apply", "", "", "");
m_scaleApplyButton.xmlCapability()->disableIO();
m_scaleApplyButton.uiCapability()->setUiEditorTypeName(caf::PdmUiPushButtonEditor::uiEditorTypeName());
m_scaleApplyButton.uiCapability()->setUiLabelPosition(caf::PdmUiItemInfo::HIDDEN);
}
// clang-format on
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFractureTemplate::~RimFractureTemplate() {}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
int RimFractureTemplate::id() const
{
return m_id;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::setName(const QString& name)
{
m_name = name;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::setFractureTemplateUnit(RiaEclipseUnitTools::UnitSystemType unitSystem)
{
m_fractureTemplateUnit = unitSystem;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimFractureTemplate::name() const
{
return m_name;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFractureTemplate::FracOrientationEnum RimFractureTemplate::orientationType() const
{
return m_orientationType();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RiaEclipseUnitTools::UnitSystemType RimFractureTemplate::fractureTemplateUnit() const
{
return m_fractureTemplateUnit();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
caf::PdmFieldHandle* RimFractureTemplate::userDescriptionField()
{
return &m_nameAndUnit;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::fieldChangedByUi(const caf::PdmFieldHandle* changedField,
const QVariant& oldValue,
const QVariant& newValue)
{
bool createDisplayModelAndRedraw = false;
if (changedField == &m_azimuthAngle || changedField == &m_orientationType)
{
for (RimFracture* fracture : fracturesUsingThisTemplate())
{
if (changedField == &m_azimuthAngle && (fabs(oldValue.toDouble() - fracture->m_azimuth()) < 1e-5))
{
fracture->m_azimuth = m_azimuthAngle;
}
if (changedField == &m_orientationType)
{
if (newValue == AZIMUTH)
{
fracture->m_azimuth = m_azimuthAngle;
}
else
{
fracture->updateAzimuthBasedOnWellAzimuthAngle();
}
}
createDisplayModelAndRedraw = true;
}
}
if (changedField == &m_perforationLength || changedField == &m_perforationEfficiency || changedField == &m_wellDiameter)
{
for (RimFracture* fracture : fracturesUsingThisTemplate())
{
if (changedField == &m_perforationLength && (fabs(oldValue.toDouble() - fracture->m_perforationLength()) < 1e-5))
{
fracture->m_perforationLength = m_perforationLength;
}
if (changedField == &m_perforationEfficiency &&
(fabs(oldValue.toDouble() - fracture->m_perforationEfficiency()) < 1e-5))
{
fracture->m_perforationEfficiency = m_perforationEfficiency;
}
if (changedField == &m_wellDiameter && (fabs(oldValue.toDouble() - fracture->m_wellDiameter()) < 1e-5))
{
fracture->m_wellDiameter = m_wellDiameter;
}
}
}
for (RimFracture* fracture : fracturesUsingThisTemplate())
{
fracture->clearCachedNonDarcyProperties();
}
if (changedField == &m_perforationLength)
{
createDisplayModelAndRedraw = true;
}
if (createDisplayModelAndRedraw)
{
RimProject* proj;
this->firstAncestorOrThisOfType(proj);
if (proj)
{
proj->reloadCompletionTypeResultsInAllViews();
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::defineUiOrdering(QString uiConfigName, caf::PdmUiOrdering& uiOrdering)
{
prepareFieldsForUiDisplay();
{
auto group = uiOrdering.addNewGroup("Sensitivity Scale Factors");
group->setCollapsedByDefault(true);
group->add(&m_heightScaleFactor);
group->add(&m_halfLengthScaleFactor);
group->add(&m_dFactorScaleFactor);
group->add(&m_conductivityScaleFactor);
group->add(&m_scaleApplyButton);
}
auto nonDarcyFlowGroup = uiOrdering.addNewGroup("Non-Darcy Flow");
nonDarcyFlowGroup->add(&m_nonDarcyFlowType);
if (m_nonDarcyFlowType == RimFractureTemplate::NON_DARCY_USER_DEFINED)
{
nonDarcyFlowGroup->add(&m_userDefinedDFactor);
}
if (m_nonDarcyFlowType == RimFractureTemplate::NON_DARCY_COMPUTED)
{
{
auto group = nonDarcyFlowGroup->addNewGroup("<html>Inertial Coefficient(&beta;-factor)</html>");
group->add(&m_betaFactorType);
group->add(&m_inertialCoefficient);
}
{
auto group = nonDarcyFlowGroup->addNewGroup("Effective Permeability");
group->add(&m_permeabilityType);
group->add(&m_relativePermeability);
group->add(&m_userDefinedEffectivePermeability);
}
{
auto group = nonDarcyFlowGroup->addNewGroup("Width");
group->add(&m_fractureWidthType);
group->add(&m_fractureWidth);
}
nonDarcyFlowGroup->add(&m_relativeGasDensity);
nonDarcyFlowGroup->add(&m_gasViscosity);
if (orientationType() != ALONG_WELL_PATH)
{
nonDarcyFlowGroup->add(&m_dFactorDisplayField);
}
{
auto group = nonDarcyFlowGroup->addNewGroup("D Factor Details");
group->setCollapsedByDefault(true);
group->add(&m_dFactorSummaryText);
}
}
uiOrdering.add(&m_fractureTemplateUnit);
uiOrdering.skipRemainingFields(true);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::defineEditorAttribute(const caf::PdmFieldHandle* field,
QString uiConfigName,
caf::PdmUiEditorAttribute* attribute)
{
if (field == &m_perforationEfficiency)
{
auto myAttr = dynamic_cast<caf::PdmUiDoubleSliderEditorAttribute*>(attribute);
if (myAttr)
{
myAttr->m_minimum = 0;
myAttr->m_maximum = 1.0;
}
}
if (field == &m_dFactorSummaryText)
{
auto myAttr = dynamic_cast<caf::PdmUiTextEditorAttribute*>(attribute);
if (myAttr)
{
myAttr->wrapMode = caf::PdmUiTextEditorAttribute::NoWrap;
QFont font("Monospace", 10);
myAttr->font = font;
myAttr->textMode = caf::PdmUiTextEditorAttribute::HTML;
}
}
if (field == &m_scaleApplyButton)
{
caf::PdmUiPushButtonEditorAttribute* attrib = dynamic_cast<caf::PdmUiPushButtonEditorAttribute*>(attribute);
if (attrib)
{
attrib->m_buttonText = "Apply";
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::prepareFieldsForUiDisplay()
{
if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_METRIC)
{
m_wellDiameter.uiCapability()->setUiName("Well Diameter [m]");
m_perforationLength.uiCapability()->setUiName("Perforation Length [m]");
m_fractureWidth.uiCapability()->setUiName("Fracture Width [m]");
}
else if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_FIELD)
{
m_wellDiameter.uiCapability()->setUiName("Well Diameter [inches]");
m_perforationLength.uiCapability()->setUiName("Perforation Length [ft]");
m_fractureWidth.uiCapability()->setUiName("Fracture Width [ft]");
}
if (m_orientationType == RimFractureTemplate::ALONG_WELL_PATH ||
m_orientationType == RimFractureTemplate::TRANSVERSE_WELL_PATH)
{
m_azimuthAngle.uiCapability()->setUiHidden(true);
}
else if (m_orientationType == RimFractureTemplate::AZIMUTH)
{
m_azimuthAngle.uiCapability()->setUiHidden(false);
}
if (m_orientationType == RimFractureTemplate::ALONG_WELL_PATH)
{
m_perforationEfficiency.uiCapability()->setUiHidden(false);
m_perforationLength.uiCapability()->setUiHidden(false);
}
else
{
m_perforationEfficiency.uiCapability()->setUiHidden(true);
m_perforationLength.uiCapability()->setUiHidden(true);
}
if (m_conductivityType == FINITE_CONDUCTIVITY)
{
m_wellDiameter.uiCapability()->setUiHidden(false);
}
else if (m_conductivityType == INFINITE_CONDUCTIVITY)
{
m_wellDiameter.uiCapability()->setUiHidden(true);
}
// Non Darcy Flow
{
if (m_fractureWidthType == RimFractureTemplate::USER_DEFINED_WIDTH)
{
m_fractureWidth.uiCapability()->setUiReadOnly(false);
}
else
{
m_fractureWidth.uiCapability()->setUiReadOnly(true);
}
if (m_betaFactorType == RimFractureTemplate::USER_DEFINED_BETA_FACTOR)
{
m_inertialCoefficient.uiCapability()->setUiReadOnly(false);
}
else
{
m_inertialCoefficient.uiCapability()->setUiReadOnly(true);
}
}
if (m_permeabilityType == RimFractureTemplate::USER_DEFINED_PERMEABILITY)
{
m_relativePermeability.uiCapability()->setUiHidden(true);
m_userDefinedEffectivePermeability.uiCapability()->setUiHidden(false);
}
else
{
m_relativePermeability.uiCapability()->setUiHidden(false);
m_userDefinedEffectivePermeability.uiCapability()->setUiHidden(true);
}
}
QString indentedText(const QString& text)
{
return QString(" %1\n").arg(text);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimFractureTemplate::dFactorSummary() const
{
QString text;
std::vector<RimFracture*> fracturesToDisplay;
{
auto candidateFractures = fracturesUsingThisTemplate();
if (orientationType() != ALONG_WELL_PATH)
{
// D-factor values are identical for all fractures, only show summary for the first fracture
if (!candidateFractures.empty())
{
fracturesToDisplay.push_back(candidateFractures.front());
}
}
else
{
fracturesToDisplay = candidateFractures;
}
}
for (auto f : fracturesToDisplay)
{
f->ensureValidNonDarcyProperties();
if (orientationType() == ALONG_WELL_PATH)
{
text += QString("Fracture name : %1").arg(f->name());
}
text += "<pre>";
{
auto val = f->nonDarcyProperties().dFactor;
text += indentedText(QString("D-factor : %1").arg(val));
auto alpha = RiaDefines::nonDarcyFlowAlpha(m_fractureTemplateUnit());
text += indentedText(QString("&alpha; : %1").arg(alpha));
auto beta = getOrComputeBetaFactor(f);
text += indentedText(QString("&beta; : %1").arg(beta));
double effPerm = f->nonDarcyProperties().effectivePermeability;
text += indentedText(QString("Ke : %1").arg(effPerm));
double gamma = m_relativeGasDensity;
text += indentedText(QString("&gamma; : %1").arg(gamma));
auto h = f->nonDarcyProperties().width;
text += indentedText(QString("h : %1").arg(h));
auto wellRadius = f->nonDarcyProperties().eqWellRadius;
text += indentedText(QString("rw : %1").arg(wellRadius));
auto mu = m_gasViscosity;
text += indentedText(QString("&mu; : %1").arg(mu));
}
text += "</pre>";
text += "<br>";
}
return text;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureTemplate::dFactorForTemplate() const
{
if (orientationType() == ALONG_WELL_PATH)
{
return std::numeric_limits<double>::infinity();
}
return computeDFactor(nullptr);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureTemplate::computeEffectivePermeability(const RimFracture* fractureInstance) const
{
if (m_permeabilityType() == RimFractureTemplate::USER_DEFINED_PERMEABILITY)
{
return m_userDefinedEffectivePermeability;
}
else
{
double fracPermeability = 0.0;
auto values = wellFractureIntersectionData(fractureInstance);
if (values.isWidthAndPermeabilityDefined())
{
fracPermeability = values.m_permeability;
}
else
{
auto conductivity = values.m_conductivity;
auto width = computeFractureWidth(fractureInstance);
if (fabs(width) < 1e-10) return std::numeric_limits<double>::infinity();
fracPermeability = conductivity / width;
}
return fracPermeability * m_relativePermeability;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureTemplate::computeWellRadiusForDFactorCalculation(const RimFracture* fractureInstance) const
{
double radius = 0.0;
if (m_orientationType == ALONG_WELL_PATH && fractureInstance)
{
auto perforationLength = fractureInstance->perforationLength();
radius = perforationLength / cvf::PI_D;
}
else
{
radius = m_wellDiameter / 2.0;
}
return radius;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureTemplate::computeDFactor(const RimFracture* fractureInstance) const
{
double d;
if (m_nonDarcyFlowType == RimFractureTemplate::NON_DARCY_USER_DEFINED)
{
d = m_userDefinedDFactor;
}
else
{
double radius = computeWellRadiusForDFactorCalculation(fractureInstance);
double alpha = RiaDefines::nonDarcyFlowAlpha(m_fractureTemplateUnit());
double beta = getOrComputeBetaFactor(fractureInstance);
double effPerm = computeEffectivePermeability(fractureInstance);
double gamma = m_relativeGasDensity;
double mu = m_gasViscosity;
double h = computeFractureWidth(fractureInstance);
double numerator = alpha * beta * effPerm * gamma;
double denumerator = h * radius * mu;
if (denumerator < 1e-10) return std::numeric_limits<double>::infinity();
d = numerator / denumerator;
if (m_orientationType == ALONG_WELL_PATH)
{
// Correction for linear inflow into the well
// Dlinear = cgeometric * Dradial
// Dlinear = 1.2 * Dradial
d *= 1.2;
}
}
return d * m_dFactorScaleFactor;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureTemplate::computeKh(const RimFracture* fractureInstance) const
{
// kh = permeability * h
// conductivity = permeability * h
auto values = wellFractureIntersectionData(fractureInstance);
if (values.isConductivityDefined())
{
// If conductivity is found in stim plan file, use this directly
return values.m_conductivity;
}
return computeEffectivePermeability(fractureInstance) * computeFractureWidth(fractureInstance);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::convertToUnitSystem(RiaEclipseUnitTools::UnitSystem neededUnit)
{
if (neededUnit == RiaEclipseUnitTools::UNITS_METRIC)
{
m_perforationLength = RiaEclipseUnitTools::feetToMeter(m_perforationLength);
m_wellDiameter = RiaEclipseUnitTools::inchToMeter(m_wellDiameter);
m_fractureWidth = RiaEclipseUnitTools::feetToMeter(m_fractureWidth);
}
else if (neededUnit == RiaEclipseUnitTools::UNITS_FIELD)
{
m_perforationLength = RiaEclipseUnitTools::meterToFeet(m_perforationLength);
m_wellDiameter = RiaEclipseUnitTools::meterToInch(m_wellDiameter);
m_fractureWidth = RiaEclipseUnitTools::meterToFeet(m_fractureWidth);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::disconnectAllFracturesAndRedrawViews() const
{
// The unit has changed. Disconnect all fractures referencing this fracture template to avoid mix of units between fracture
// and template
for (auto fracture : fracturesUsingThisTemplate())
{
if (fracture)
{
fracture->setFractureTemplate(nullptr);
}
}
RimProject* proj;
this->firstAncestorOrThisOfType(proj);
if (proj)
{
proj->scheduleCreateDisplayModelAndRedrawAllViews();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::setId(int id)
{
m_id = id;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::setScaleFactors(double halfLengthScale,
double heightScale,
double dFactorScale,
double conductivityScale)
{
m_halfLengthScaleFactor = halfLengthScale;
m_heightScaleFactor = heightScale;
m_dFactorScaleFactor = dFactorScale;
m_conductivityScaleFactor = conductivityScale;
for (RimFracture* fracture : fracturesUsingThisTemplate())
{
fracture->clearCachedNonDarcyProperties();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::scaleFactors(double* halfLengthScale,
double* heightScale,
double* dFactorScale,
double* conductivityScale) const
{
CVF_ASSERT(halfLengthScale && heightScale && dFactorScale && conductivityScale);
*halfLengthScale = m_halfLengthScaleFactor;
*heightScale = m_heightScaleFactor;
*dFactorScale = m_dFactorScaleFactor;
*conductivityScale = m_conductivityScaleFactor;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::setContainmentTopKLayer(int topKLayer)
{
m_fractureContainment->setTopKLayer(topKLayer);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::setContainmentBaseKLayer(int baseKLayer)
{
m_fractureContainment->setBaseKLayer(baseKLayer);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureTemplate::computeFractureWidth(const RimFracture* fractureInstance) const
{
if (m_fractureWidthType == RimFractureTemplate::WIDTH_FROM_FRACTURE)
{
auto values = wellFractureIntersectionData(fractureInstance);
return values.m_width;
}
return m_fractureWidth;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureTemplate::getOrComputeBetaFactor(const RimFracture* fractureInstance) const
{
if (m_betaFactorType == RimFractureTemplate::BETA_FACTOR_FROM_FRACTURE)
{
auto values = wellFractureIntersectionData(fractureInstance);
return values.m_betaFactorInForcheimerUnits;
}
return m_inertialCoefficient;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::loadDataAndUpdateGeometryHasChanged()
{
onLoadDataAndUpdateGeometryHasChanged();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RimFracture*> RimFractureTemplate::fracturesUsingThisTemplate() const
{
std::vector<RimFracture*> fractures;
this->objectsWithReferringPtrFieldsOfType(fractures);
return fractures;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFractureTemplate::isBetaFactorAvailableOnFile() const
{
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimFractureTemplate::nameAndUnit() const
{
QString decoratedName;
if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_METRIC)
{
decoratedName += "[M] - ";
}
else if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_FIELD)
{
decoratedName += "[F] - ";
}
decoratedName += m_name;
return decoratedName;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureTemplate::wellDiameter() const
{
return m_wellDiameter;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFractureTemplate::perforationLength() const
{
return m_perforationLength;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RimFractureContainment* RimFractureTemplate::fractureContainment() const
{
return m_fractureContainment();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFractureTemplate::FracConductivityEnum RimFractureTemplate::conductivityType() const
{
return m_conductivityType();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
float RimFractureTemplate::azimuthAngle() const
{
return m_azimuthAngle;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
float RimFractureTemplate::skinFactor() const
{
return m_skinFactor;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFractureTemplate::setDefaultWellDiameterFromUnit()
{
if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_FIELD)
{
m_wellDiameter = 8.5;
}
else if (m_fractureTemplateUnit == RiaEclipseUnitTools::UNITS_METRIC)
{
m_wellDiameter = 0.216;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFractureTemplate::isNonDarcyFlowEnabled() const
{
return m_nonDarcyFlowType() != RimFractureTemplate::NON_DARCY_NONE;
}