ResInsight/ApplicationCode/ReservoirDataModel/RigTransmissibilityEquations.cpp

168 lines
7.5 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigTransmissibilityEquations.h"
#include <cmath>
#include <limits>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::wellBoreTransmissibilityComponent( double cellPerforationVectorComponent,
double permeabilityNormalDirection1,
double permeabilityNormalDirection2,
double cellSizeNormalDirection1,
double cellSizeNormalDirection2,
double wellRadius,
double skinFactor,
double cDarcyForRelevantUnit )
{
double K = cvf::Math::sqrt( permeabilityNormalDirection1 * permeabilityNormalDirection2 );
const double lowerLimit = 1.0e-9;
if ( std::fabs( permeabilityNormalDirection1 * permeabilityNormalDirection2 ) < lowerLimit )
{
// Guard further computations to avoid nan values
return 0.0;
}
double nominator = cDarcyForRelevantUnit * 2 * cvf::PI_D * K * cellPerforationVectorComponent;
double peaceManRad = peacemanRadius( permeabilityNormalDirection1,
permeabilityNormalDirection2,
cellSizeNormalDirection1,
cellSizeNormalDirection2 );
double denominator = log( peaceManRad / wellRadius ) + skinFactor;
double trans = nominator / denominator;
return trans;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::totalConnectionFactor( double transX, double transY, double transZ )
{
return cvf::Math::sqrt( pow( transX, 2.0 ) + pow( transY, 2.0 ) + pow( transZ, 2.0 ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::totalKh( double cellPermX,
double cellPermY,
double cellPermZ,
const cvf::Vec3d& internalCellLengths,
double lateralNtg,
double ntg )
{
// Compute kh for each local grid cell axis
// Use permeability values for the two other axis
double khx = sqrt( cellPermY * cellPermZ ) * internalCellLengths.x() * lateralNtg;
double khy = sqrt( cellPermX * cellPermZ ) * internalCellLengths.y() * lateralNtg;
double khz = sqrt( cellPermX * cellPermY ) * internalCellLengths.z() * ntg;
const double totKh = cvf::Math::sqrt( khx * khx + khy * khy + khz * khz );
return totKh;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::effectiveK( double cellPermX,
double cellPermY,
double cellPermZ,
const cvf::Vec3d& internalCellLengths,
double lateralNtg,
double ntg )
{
// Compute kh for each local grid cell axis
// Use permeability values for the two other axis
double lx = internalCellLengths.x() * lateralNtg;
double ly = internalCellLengths.y() * lateralNtg;
double lz = internalCellLengths.z() * ntg;
double khx = sqrt( cellPermY * cellPermZ ) * lx;
double khy = sqrt( cellPermX * cellPermZ ) * ly;
double khz = sqrt( cellPermX * cellPermY ) * lz;
double nominator = khx + khy + khz;
double denominator = lx + ly + lz;
const double effK = nominator / denominator;
return effK;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::effectiveH( const cvf::Vec3d& internalCellLengths, double lateralNtg, double ntg )
{
double lx = internalCellLengths.x() * lateralNtg;
double ly = internalCellLengths.y() * lateralNtg;
double lz = internalCellLengths.z() * ntg;
double effH = cvf::Math::sqrt( lx * lx + ly * ly + lz * lz );
return effH;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::permeability( const double conductivity, const double width )
{
double threshold = 1e-7;
if ( std::fabs( width ) > threshold )
{
double perm = conductivity / width;
return perm;
}
else
{
return 0.0;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigTransmissibilityEquations::peacemanRadius( double permeabilityNormalDirection1,
double permeabilityNormalDirection2,
double cellSizeNormalDirection1,
double cellSizeNormalDirection2 )
{
double numerator = cvf::Math::sqrt(
pow( cellSizeNormalDirection2, 2.0 ) * pow( permeabilityNormalDirection1 / permeabilityNormalDirection2, 0.5 ) +
pow( cellSizeNormalDirection1, 2.0 ) * pow( permeabilityNormalDirection2 / permeabilityNormalDirection1, 0.5 ) );
double denominator = pow( ( permeabilityNormalDirection1 / permeabilityNormalDirection2 ), 0.25 ) +
pow( ( permeabilityNormalDirection2 / permeabilityNormalDirection1 ), 0.25 );
double r0 = 0.28 * numerator / denominator;
return r0;
}