ResInsight/ApplicationLibCode/ReservoirDataModel/RigGeoMechWellLogExtractor.cpp

1475 lines
68 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
//==================================================================================================
///
//==================================================================================================
#include "RigGeoMechWellLogExtractor.h"
#include "RiaDefines.h"
#include "RiaLogging.h"
#include "RiaResultNames.h"
#include "RiaWeightedMeanCalculator.h"
#include "RigFemPart.h"
#include "RigFemPartCollection.h"
#include "RigFemPartResultsCollection.h"
#include "RigFemTypes.h"
#include "RigGeoMechBoreHoleStressCalculator.h"
#include "RigGeoMechCaseData.h"
#include "RiaWellLogUnitTools.h"
#include "RigWellLogExtractionTools.h"
#include "RigWellPath.h"
#include "RigWellPathGeometryTools.h"
#include "RigWellPathIntersectionTools.h"
#include "cafTensor3.h"
#include "cvfGeometryTools.h"
#include "cvfMath.h"
#include <QDebug>
#include <QPolygonF>
#include <type_traits>
const double RigGeoMechWellLogExtractor::PURE_WATER_DENSITY_GCM3 = 1.0; // g / cm^3
const double RigGeoMechWellLogExtractor::GRAVITY_ACCEL = 9.81; // m / s^2
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigGeoMechWellLogExtractor::RigGeoMechWellLogExtractor( gsl::not_null<RigGeoMechCaseData*> aCase,
gsl::not_null<const RigWellPath*> wellpath,
const std::string& wellCaseErrorMsgName )
: RigWellLogExtractor( wellpath, wellCaseErrorMsgName )
, m_caseData( aCase )
{
calculateIntersection();
m_waterDepth = calculateWaterDepth();
for ( RigWbsParameter parameter : RigWbsParameter::allParameters() )
{
m_parameterSources[parameter] = parameter.sources().front();
m_lasFileValues[parameter] = std::vector<std::pair<double, double>>();
m_userDefinedValues[parameter] = std::numeric_limits<double>::infinity();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::performCurveDataSmoothing( int timeStepIndex,
int frameIndex,
std::vector<double>* mds,
std::vector<double>* tvds,
std::vector<double>* values,
const double smoothingTreshold )
{
CVF_ASSERT( mds && tvds && values );
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
RigFemResultAddress shAddr( RIG_ELEMENT_NODAL, "ST", "S3" );
RigFemResultAddress porBarResAddr( RIG_ELEMENT_NODAL, "POR-Bar", "" );
const std::vector<float>& unscaledShValues = resultCollection->resultValues( shAddr, 0, timeStepIndex, frameIndex );
const std::vector<float>& porePressures = resultCollection->resultValues( porBarResAddr, 0, timeStepIndex, frameIndex );
std::vector<float> interfaceShValues = interpolateInterfaceValues( shAddr, timeStepIndex, frameIndex, unscaledShValues );
std::vector<float> interfacePorePressures = interpolateInterfaceValues( porBarResAddr, timeStepIndex, frameIndex, porePressures );
std::vector<double> interfaceShValuesDbl( interfaceShValues.size(), std::numeric_limits<double>::infinity() );
std::vector<double> interfacePorePressuresDbl( interfacePorePressures.size(), std::numeric_limits<double>::infinity() );
#pragma omp parallel for
for ( int64_t i = 0; i < static_cast<int64_t>( intersections().size() ); ++i )
{
double hydroStaticPorePressureBar = hydroStaticPorePressureForSegment( i );
interfaceShValuesDbl[i] = interfaceShValues[i] / hydroStaticPorePressureBar;
interfacePorePressuresDbl[i] = interfacePorePressures[i];
}
if ( !mds->empty() && !values->empty() )
{
std::vector<unsigned char> smoothOrFilterSegments = determineFilteringOrSmoothing( interfacePorePressuresDbl );
smoothSegments( mds, tvds, values, interfaceShValuesDbl, smoothOrFilterSegments, smoothingTreshold );
}
}
//--------------------------------------------------------------------------------------------------
/// Get curve data for a given parameter. Returns the output units of the data.
//--------------------------------------------------------------------------------------------------
QString RigGeoMechWellLogExtractor::curveData( const RigFemResultAddress& resAddr, int timeStepIndex, int frameIndex, std::vector<double>* values )
{
CVF_TIGHT_ASSERT( values );
if ( resAddr.resultPosType == RIG_WELLPATH_DERIVED )
{
if ( m_wellPathGeometry->rkbDiff() == HUGE_VAL )
{
RiaLogging::error( "Well path has an invalid datum elevation and we cannot estimate TVDRKB. No well bore "
"stability curves created." );
return "";
}
if ( !isValid( m_waterDepth ) )
{
RiaLogging::error( "Well path does not intersect with sea floor. No well bore "
"stability curves created." );
return "";
}
if ( resAddr.fieldName == RiaResultNames::wbsFGResult().toStdString() )
{
wellBoreWallCurveData( resAddr, timeStepIndex, frameIndex, values );
// Try to replace invalid values with Shale-values
wellBoreFGShale( timeStepIndex, frameIndex, values );
values->front() = wbsCurveValuesAtMsl();
}
else if ( resAddr.fieldName == RiaResultNames::wbsSFGResult().toStdString() )
{
wellBoreWallCurveData( resAddr, timeStepIndex, frameIndex, values );
}
else if ( resAddr.fieldName == RiaResultNames::wbsPPResult().toStdString() ||
resAddr.fieldName == RiaResultNames::wbsOBGResult().toStdString() ||
resAddr.fieldName == RiaResultNames::wbsSHResult().toStdString() )
{
wellPathScaledCurveData( resAddr, timeStepIndex, frameIndex, values );
values->front() = wbsCurveValuesAtMsl();
}
else if ( resAddr.fieldName == RiaResultNames::wbsAzimuthResult().toStdString() ||
resAddr.fieldName == RiaResultNames::wbsInclinationResult().toStdString() )
{
wellPathAngles( resAddr, values );
}
else if ( resAddr.fieldName == RiaResultNames::wbsSHMkResult().toStdString() )
{
wellBoreSH_MatthewsKelly( timeStepIndex, frameIndex, values );
values->front() = wbsCurveValuesAtMsl();
}
else
{
// Plotting parameters as curves
RigWbsParameter param;
if ( RigWbsParameter::findParameter( QString::fromStdString( resAddr.fieldName ), &param ) )
{
if ( param == RigWbsParameter::FG_Shale() )
{
wellBoreFGShale( timeStepIndex, frameIndex, values );
}
else
{
if ( param == RigWbsParameter::OBG0() )
{
frameIndex = 0;
}
calculateWbsParameterForAllSegments( param, timeStepIndex, frameIndex, values, true );
if ( param == RigWbsParameter::UCS() ) // UCS is reported as UCS/100
{
for ( double& value : *values )
{
if ( isValid( value ) ) value /= 100.0;
}
return RiaWellLogUnitTools<double>::barX100UnitString();
}
else if ( param == RigWbsParameter::DF() || param == RigWbsParameter::poissonRatio() )
{
return RiaWellLogUnitTools<double>::noUnitString();
}
}
}
}
return RiaWellLogUnitTools<double>::sg_emwUnitString();
}
else if ( resAddr.isValid() )
{
RigFemResultAddress convResAddr = resAddr;
// When showing POR results, always use the element nodal result,
// to get correct handling of elements without POR results
if ( convResAddr.fieldName == "POR-Bar" ) convResAddr.resultPosType = RIG_ELEMENT_NODAL;
CVF_ASSERT( resAddr.resultPosType != RIG_WELLPATH_DERIVED );
const std::vector<float>& resultValues = m_caseData->femPartResults()->resultValues( convResAddr, 0, timeStepIndex, frameIndex );
if ( !resultValues.empty() )
{
std::vector<float> interfaceValues = interpolateInterfaceValues( convResAddr, timeStepIndex, frameIndex, resultValues );
values->resize( interfaceValues.size(), std::numeric_limits<double>::infinity() );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
( *values )[intersectionIdx] = static_cast<double>( interfaceValues[intersectionIdx] );
}
}
}
return RiaWellLogUnitTools<double>::barUnitString();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigGeoMechWellLogExtractor::WbsParameterSource>
RigGeoMechWellLogExtractor::calculateWbsParameterForAllSegments( const RigWbsParameter& parameter,
WbsParameterSource primarySource,
int timeStepIndex,
int frameIndex,
std::vector<double>* outputValues,
bool allowNormalization )
{
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
std::vector<WbsParameterSource> finalSourcesPerSegment( intersections().size(), RigWbsParameter::UNDEFINED );
if ( primarySource == RigWbsParameter::UNDEFINED )
{
return finalSourcesPerSegment;
}
bool isPPResResult = parameter == RigWbsParameter::PP_Reservoir();
bool isPPresult = isPPResResult || parameter == RigWbsParameter::PP_NonReservoir();
std::vector<WbsParameterSource> allSources = parameter.sources();
auto primary_it = std::find( allSources.begin(), allSources.end(), primarySource );
CVF_ASSERT( primary_it != allSources.end() );
std::vector<double> gridValues;
if ( std::find( allSources.begin(), allSources.end(), RigWbsParameter::GRID ) != allSources.end() ||
parameter == RigWbsParameter::PP_Reservoir() )
{
RigFemResultAddress nativeAddr = parameter.femAddress( RigWbsParameter::GRID );
const std::vector<float>& unscaledResultValues = resultCollection->resultValues( nativeAddr, 0, timeStepIndex, frameIndex );
std::vector<float> interpolatedInterfaceValues =
interpolateInterfaceValues( nativeAddr, timeStepIndex, frameIndex, unscaledResultValues );
gridValues.resize( intersections().size(), std::numeric_limits<double>::infinity() );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
float averageUnscaledValue = std::numeric_limits<float>::infinity();
averageIntersectionValuesToSegmentValue( intersectionIdx,
interpolatedInterfaceValues,
std::numeric_limits<float>::infinity(),
&averageUnscaledValue );
gridValues[intersectionIdx] = static_cast<double>( averageUnscaledValue );
}
}
const std::vector<std::pair<double, double>>& lasFileValues = m_lasFileValues.at( parameter );
const double& userDefinedValue = m_userDefinedValues.at( parameter );
std::vector<float> elementPropertyValues;
if ( std::find( allSources.begin(), allSources.end(), RigWbsParameter::ELEMENT_PROPERTY_TABLE ) != allSources.end() )
{
const std::vector<float>* elementPropertyValuesInput = nullptr;
std::vector<float> tvdRKBs;
for ( double tvdValue : cellIntersectionTVDs() )
{
tvdRKBs.push_back( tvdValue + m_wellPathGeometry->rkbDiff() );
}
RigFemResultAddress elementPropertyAddr = parameter.femAddress( RigWbsParameter::ELEMENT_PROPERTY_TABLE );
elementPropertyValuesInput = &( resultCollection->resultValues( elementPropertyAddr, 0, timeStepIndex, frameIndex ) );
if ( elementPropertyValuesInput )
{
RiaWellLogUnitTools<float>::convertValues( tvdRKBs,
*elementPropertyValuesInput,
&elementPropertyValues,
parameter.units( RigWbsParameter::ELEMENT_PROPERTY_TABLE ),
parameterInputUnits( parameter ) );
}
}
std::vector<double> unscaledValues( intersections().size(), std::numeric_limits<double>::infinity() );
double waterDensityGCM3 = m_userDefinedValues[RigWbsParameter::waterDensity()];
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
// Loop from primary source and out for each value
for ( auto it = primary_it; it != allSources.end(); ++it )
{
if ( *it == RigWbsParameter::GRID ) // Priority 0: Grid
{
if ( intersectionIdx < static_cast<int64_t>( gridValues.size() ) &&
gridValues[intersectionIdx] != std::numeric_limits<double>::infinity() )
{
unscaledValues[intersectionIdx] = gridValues[intersectionIdx];
finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::GRID;
break;
}
}
else if ( *it == RigWbsParameter::LAS_FILE ) // Priority 1: Las-file value
{
if ( !lasFileValues.empty() )
{
double lasValue = getWellLogIntersectionValue( intersectionIdx, lasFileValues );
// Only accept las-values for PP_reservoir if the grid result is valid
bool validLasRegion = true;
if ( isPPResResult )
{
validLasRegion = intersectionIdx < static_cast<int64_t>( gridValues.size() ) &&
gridValues[intersectionIdx] != std::numeric_limits<double>::infinity();
}
if ( validLasRegion && lasValue != std::numeric_limits<double>::infinity() )
{
unscaledValues[intersectionIdx] = lasValue;
finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::LAS_FILE;
break;
}
}
}
else if ( *it == RigWbsParameter::ELEMENT_PROPERTY_TABLE ) // Priority 2: Element property table value
{
if ( !elementPropertyValues.empty() )
{
size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx];
if ( elmIdx < elementPropertyValues.size() )
{
unscaledValues[intersectionIdx] = elementPropertyValues[elmIdx];
finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::ELEMENT_PROPERTY_TABLE;
break;
}
}
}
else if ( *it == RigWbsParameter::HYDROSTATIC && isPPresult )
{
unscaledValues[intersectionIdx] =
userDefinedValue * hydroStaticPorePressureForIntersection( intersectionIdx, waterDensityGCM3 );
finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::HYDROSTATIC;
break;
}
else if ( *it == RigWbsParameter::USER_DEFINED )
{
unscaledValues[intersectionIdx] = userDefinedValue;
finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::USER_DEFINED;
break;
}
}
}
if ( allowNormalization && parameter.normalizeByHydrostaticPP() )
{
outputValues->resize( unscaledValues.size(), std::numeric_limits<double>::infinity() );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
RigWbsParameter::Source source = finalSourcesPerSegment[intersectionIdx];
if ( source == RigWbsParameter::ELEMENT_PROPERTY_TABLE || source == RigWbsParameter::GRID )
{
( *outputValues )[intersectionIdx] = unscaledValues[intersectionIdx] / hydroStaticPorePressureForSegment( intersectionIdx );
}
else
{
( *outputValues )[intersectionIdx] =
unscaledValues[intersectionIdx] / hydroStaticPorePressureForIntersection( intersectionIdx );
}
}
}
else
{
outputValues->swap( unscaledValues );
}
return finalSourcesPerSegment;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigGeoMechWellLogExtractor::WbsParameterSource>
RigGeoMechWellLogExtractor::calculateWbsParameterForAllSegments( const RigWbsParameter& parameter,
int timeStepIndex,
int frameIndex,
std::vector<double>* outputValues,
bool allowNormalization )
{
return calculateWbsParameterForAllSegments( parameter,
m_parameterSources.at( parameter ),
timeStepIndex,
frameIndex,
outputValues,
allowNormalization );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigGeoMechWellLogExtractor::WbsParameterSource>
RigGeoMechWellLogExtractor::calculateWbsParametersForAllSegments( const RigFemResultAddress& resAddr,
int timeStepIndex,
int frameIndex,
std::vector<double>* values,
bool allowNormalization )
{
CVF_ASSERT( values );
RigWbsParameter param;
if ( !RigWbsParameter::findParameter( QString::fromStdString( resAddr.fieldName ), &param ) )
{
CVF_ASSERT( false && "wbsParameters() called on something that isn't a wbs parameter" );
}
return calculateWbsParameterForAllSegments( param, m_userDefinedValues.at( param ), frameIndex, values, allowNormalization );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::wellPathAngles( const RigFemResultAddress& resAddr, std::vector<double>* values )
{
CVF_ASSERT( values );
CVF_ASSERT( resAddr.fieldName == "Azimuth" || resAddr.fieldName == "Inclination" );
values->resize( intersections().size(), 0.0f );
const double epsilon = 1.0e-6 * 360;
const cvf::Vec3d trueNorth( 0.0, 1.0, 0.0 );
const cvf::Vec3d up( 0.0, 0.0, 1.0 );
double previousAzimuth = 0.0;
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
cvf::Vec3d wellPathTangent = calculateWellPathTangent( intersectionIdx, TangentFollowWellPathSegments );
// Deviation from vertical. Since well path is tending downwards we compare with negative z.
double inclination = cvf::Math::toDegrees( std::acos( cvf::Vec3d( 0.0, 0.0, -1.0 ) * wellPathTangent.getNormalized() ) );
if ( resAddr.fieldName == "Azimuth" )
{
double azimuth = HUGE_VAL;
// Azimuth is not defined when well path is vertical. We define it as infinite to avoid it showing up in the
// plot.
if ( cvf::Math::valueInRange( inclination, epsilon, 180.0 - epsilon ) )
{
cvf::Vec3d projectedTangentXY = wellPathTangent;
projectedTangentXY.z() = 0.0;
// Do tangentXY to true north for clockwise angles.
double dotProduct = projectedTangentXY * trueNorth;
double crossProduct = ( projectedTangentXY ^ trueNorth ) * up;
// http://www.glossary.oilfield.slb.com/Terms/a/azimuth.aspx
azimuth = cvf::Math::toDegrees( std::atan2( crossProduct, dotProduct ) );
if ( azimuth < 0.0 )
{
// Straight atan2 gives angle from -PI to PI yielding angles from -180 to 180
// where the negative angles are counter clockwise.
// To get all positive clockwise angles, we add 360 degrees to negative angles.
azimuth = azimuth + 360.0;
}
}
// Make azimuth continuous in most cases
if ( azimuth - previousAzimuth > 300.0 )
{
azimuth -= 360.0;
}
else if ( previousAzimuth - azimuth > 300.0 )
{
azimuth += 360.0;
}
( *values )[intersectionIdx] = azimuth;
previousAzimuth = azimuth;
}
else
{
( *values )[intersectionIdx] = inclination;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigGeoMechWellLogExtractor::WbsParameterSource>
RigGeoMechWellLogExtractor::wellPathScaledCurveData( const RigFemResultAddress& resAddr,
int timeStepIndex,
int frameIndex,
std::vector<double>* values,
bool forceGridSourceForPPReservoir /*=false*/ )
{
CVF_ASSERT( values );
values->resize( intersections().size(), std::numeric_limits<double>::infinity() );
std::vector<WbsParameterSource> sources( intersections().size(), RigWbsParameter::UNDEFINED );
if ( resAddr.fieldName == RiaResultNames::wbsPPResult().toStdString() )
{
// Las or element property table values
std::vector<double> ppSandValues( intersections().size(), std::numeric_limits<double>::infinity() );
std::vector<double> ppShaleValues( intersections().size(), std::numeric_limits<double>::infinity() );
std::vector<WbsParameterSource> ppSandSources;
if ( forceGridSourceForPPReservoir )
{
ppSandSources =
calculateWbsParameterForAllSegments( RigWbsParameter::PP_Reservoir(), RigWbsParameter::GRID, frameIndex, &ppSandValues, true );
}
else
{
ppSandSources =
calculateWbsParameterForAllSegments( RigWbsParameter::PP_Reservoir(), timeStepIndex, frameIndex, &ppSandValues, true );
}
std::vector<WbsParameterSource> ppShaleSources =
calculateWbsParameterForAllSegments( RigWbsParameter::PP_NonReservoir(), 0, 0, &ppShaleValues, true );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
if ( ( *values )[intersectionIdx] == std::numeric_limits<double>::infinity() )
{
if ( ppSandValues[intersectionIdx] != std::numeric_limits<double>::infinity() )
{
( *values )[intersectionIdx] = ppSandValues[intersectionIdx];
sources[intersectionIdx] = ppSandSources[intersectionIdx];
}
else if ( ppShaleValues[intersectionIdx] != std::numeric_limits<double>::infinity() )
{
( *values )[intersectionIdx] = ppShaleValues[intersectionIdx];
sources[intersectionIdx] = ppShaleSources[intersectionIdx];
}
else
{
( *values )[intersectionIdx] = 1.0;
sources[intersectionIdx] = RigWbsParameter::HYDROSTATIC;
}
}
}
}
else if ( resAddr.fieldName == RiaResultNames::wbsOBGResult().toStdString() )
{
sources = calculateWbsParameterForAllSegments( RigWbsParameter::OBG(), timeStepIndex, frameIndex, values, true );
}
else
{
sources = calculateWbsParameterForAllSegments( RigWbsParameter::SH(), timeStepIndex, frameIndex, values, true );
}
return sources;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::wellBoreWallCurveData( const RigFemResultAddress& resAddr,
int timeStepIndex,
int frameIndex,
std::vector<double>* values )
{
CVF_ASSERT( values );
CVF_ASSERT( resAddr.fieldName == RiaResultNames::wbsFGResult().toStdString() ||
resAddr.fieldName == RiaResultNames::wbsSFGResult().toStdString() );
// The result addresses needed
RigFemResultAddress stressResAddr( RIG_ELEMENT_NODAL, "ST", "" );
RigFemResultAddress porBarResAddr( RIG_ELEMENT_NODAL, "POR-Bar", "" );
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
// Load results
std::vector<caf::Ten3f> vertexStressesFloat = resultCollection->tensors( stressResAddr, 0, timeStepIndex, frameIndex );
if ( !vertexStressesFloat.size() ) return;
std::vector<caf::Ten3d> vertexStresses;
vertexStresses.reserve( vertexStressesFloat.size() );
for ( const caf::Ten3f& floatTensor : vertexStressesFloat )
{
vertexStresses.push_back( caf::Ten3d( floatTensor ) );
}
std::vector<caf::Ten3d> interpolatedInterfaceStressBar =
interpolateInterfaceValues( stressResAddr, timeStepIndex, frameIndex, vertexStresses );
values->resize( intersections().size(), std::numeric_limits<float>::infinity() );
std::vector<double> ppSandAllSegments( intersections().size(), std::numeric_limits<double>::infinity() );
std::vector<WbsParameterSource> ppSources =
calculateWbsParameterForAllSegments( RigWbsParameter::PP_Reservoir(), RigWbsParameter::GRID, frameIndex, &ppSandAllSegments, false );
std::vector<double> poissonAllSegments( intersections().size(), std::numeric_limits<double>::infinity() );
calculateWbsParameterForAllSegments( RigWbsParameter::poissonRatio(), timeStepIndex, frameIndex, &poissonAllSegments, false );
std::vector<double> ucsAllSegments( intersections().size(), std::numeric_limits<double>::infinity() );
calculateWbsParameterForAllSegments( RigWbsParameter::UCS(), timeStepIndex, frameIndex, &ucsAllSegments, false );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
// FG is for sands, SFG for shale. Sands has valid PP, shale does not.
bool isFGregion = ppSources[intersectionIdx] == RigWbsParameter::GRID;
double hydroStaticPorePressureBar = hydroStaticPorePressureForSegment( intersectionIdx );
double porePressureBar = ppSandAllSegments[intersectionIdx];
if ( porePressureBar == std::numeric_limits<double>::infinity() )
{
porePressureBar = hydroStaticPorePressureBar;
}
double poissonRatio = poissonAllSegments[intersectionIdx];
double ucsBar = ucsAllSegments[intersectionIdx];
caf::Ten3d segmentStress;
bool validSegmentStress =
averageIntersectionValuesToSegmentValue( intersectionIdx, interpolatedInterfaceStressBar, caf::Ten3d::invalid(), &segmentStress );
cvf::Vec3d wellPathTangent = calculateWellPathTangent( intersectionIdx, TangentConstantWithinCell );
caf::Ten3d wellPathStressFloat = transformTensorToWellPathOrientation( wellPathTangent, segmentStress );
caf::Ten3d wellPathStressDouble( wellPathStressFloat );
RigGeoMechBoreHoleStressCalculator sigmaCalculator( wellPathStressDouble, porePressureBar, poissonRatio, ucsBar, 32 );
double resultValue = std::numeric_limits<double>::infinity();
if ( resAddr.fieldName == RiaResultNames::wbsFGResult().toStdString() )
{
if ( isFGregion && validSegmentStress )
{
resultValue = sigmaCalculator.solveFractureGradient();
}
}
else
{
CVF_ASSERT( resAddr.fieldName == RiaResultNames::wbsSFGResult().toStdString() );
if ( !isFGregion && validSegmentStress )
{
resultValue = sigmaCalculator.solveStassiDalia();
}
}
if ( resultValue != std::numeric_limits<double>::infinity() )
{
if ( hydroStaticPorePressureBar > 1.0e-8 )
{
resultValue /= hydroStaticPorePressureBar;
}
}
( *values )[intersectionIdx] = resultValue;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::wellBoreFGShale( int timeStepIndex, int frameIndex, std::vector<double>* values )
{
if ( values->empty() ) values->resize( intersections().size(), std::numeric_limits<double>::infinity() );
WbsParameterSource source = m_parameterSources.at( RigWbsParameter::FG_Shale() );
if ( source == RigWbsParameter::DERIVED_FROM_K0FG )
{
std::vector<double> PP0; // results
std::vector<double> K0_FG, OBG0; // parameters
RigFemResultAddress ppAddr( RIG_WELLPATH_DERIVED, RiaResultNames::wbsPPResult().toStdString(), "" );
wellPathScaledCurveData( ppAddr, 0, 0, &PP0, true );
calculateWbsParameterForAllSegments( RigWbsParameter::K0_FG(), timeStepIndex, frameIndex, &K0_FG, true );
calculateWbsParameterForAllSegments( RigWbsParameter::OBG0(), 0, 0, &OBG0, true );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
if ( !isValid( ( *values )[intersectionIdx] ) )
{
if ( isValid( PP0[intersectionIdx] ) && isValid( OBG0[intersectionIdx] ) && isValid( K0_FG[intersectionIdx] ) )
{
( *values )[intersectionIdx] =
( K0_FG[intersectionIdx] * ( OBG0[intersectionIdx] - PP0[intersectionIdx] ) + PP0[intersectionIdx] );
}
}
}
}
else
{
std::vector<double> SH;
calculateWbsParameterForAllSegments( RigWbsParameter::SH(), timeStepIndex, frameIndex, &SH, true );
CVF_ASSERT( SH.size() == intersections().size() );
double multiplier = m_userDefinedValues.at( RigWbsParameter::FG_Shale() );
CVF_ASSERT( multiplier != std::numeric_limits<double>::infinity() );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
if ( !isValid( ( *values )[intersectionIdx] ) )
{
if ( isValid( SH[intersectionIdx] ) )
{
( *values )[intersectionIdx] = SH[intersectionIdx] * multiplier;
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::wellBoreSH_MatthewsKelly( int timeStepIndex, int frameIndex, std::vector<double>* values )
{
std::vector<double> PP, PP0; // results
std::vector<double> K0_SH, OBG0, DF; // parameters
RigFemResultAddress ppAddr( RIG_WELLPATH_DERIVED, RiaResultNames::wbsPPResult().toStdString(), "" );
curveData( ppAddr, timeStepIndex, frameIndex, &PP );
curveData( ppAddr, 0, 0, &PP0 );
calculateWbsParameterForAllSegments( RigWbsParameter::K0_SH(), timeStepIndex, frameIndex, &K0_SH, true );
calculateWbsParameterForAllSegments( RigWbsParameter::OBG0(), 0, 0, &OBG0, true );
calculateWbsParameterForAllSegments( RigWbsParameter::DF(), timeStepIndex, frameIndex, &DF, true );
values->resize( intersections().size(), std::numeric_limits<double>::infinity() );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
if ( isValid( PP[intersectionIdx] ) && isValid( PP0[intersectionIdx] ) && isValid( OBG0[intersectionIdx] ) &&
isValid( K0_SH[intersectionIdx] ) && isValid( DF[intersectionIdx] ) )
{
( *values )[intersectionIdx] = ( K0_SH[intersectionIdx] * ( OBG0[intersectionIdx] - PP0[intersectionIdx] ) +
PP0[intersectionIdx] + DF[intersectionIdx] * ( PP[intersectionIdx] - PP0[intersectionIdx] ) );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigGeoMechCaseData* RigGeoMechWellLogExtractor::caseData()
{
return m_caseData.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::setWbsLasValues( const RigWbsParameter& parameter, const std::vector<std::pair<double, double>>& values )
{
m_lasFileValues[parameter] = values;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::setWbsParametersSource( RigWbsParameter parameter, WbsParameterSource source )
{
m_parameterSources[parameter] = source;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::setWbsUserDefinedValue( RigWbsParameter parameter, double userDefinedValue )
{
m_userDefinedValues[parameter] = userDefinedValue;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RigGeoMechWellLogExtractor::parameterInputUnits( const RigWbsParameter& parameter )
{
if ( parameter == RigWbsParameter::PP_NonReservoir() || parameter == RigWbsParameter::PP_Reservoir() || parameter == RigWbsParameter::UCS() )
{
return RiaWellLogUnitTools<double>::barUnitString();
}
else if ( parameter == RigWbsParameter::poissonRatio() || parameter == RigWbsParameter::DF() )
{
return RiaWellLogUnitTools<double>::noUnitString();
}
else if ( parameter == RigWbsParameter::waterDensity() )
{
return RiaWellLogUnitTools<double>::gPerCm3UnitString();
}
return RiaWellLogUnitTools<double>::sg_emwUnitString();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigGeoMechWellLogExtractor::porePressureSourceRegions( int timeStepIndex, int frameIndex )
{
RigFemResultAddress ppResAddr( RIG_ELEMENT_NODAL, RiaResultNames::wbsPPResult().toStdString(), "" );
std::vector<double> values;
std::vector<WbsParameterSource> sources = wellPathScaledCurveData( ppResAddr, timeStepIndex, frameIndex, &values );
std::vector<double> doubleSources( sources.size(), 0.0 );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
doubleSources[intersectionIdx] = static_cast<double>( sources[intersectionIdx] );
}
return doubleSources;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigGeoMechWellLogExtractor::poissonSourceRegions( int timeStepIndex, int frameIndex )
{
std::vector<double> outputValues;
std::vector<WbsParameterSource> sources =
calculateWbsParameterForAllSegments( RigWbsParameter::poissonRatio(), timeStepIndex, frameIndex, &outputValues, false );
std::vector<double> doubleSources( sources.size(), 0.0 );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
doubleSources[intersectionIdx] = static_cast<double>( sources[intersectionIdx] );
}
return doubleSources;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigGeoMechWellLogExtractor::ucsSourceRegions( int timeStepIndex, int frameIndex )
{
std::vector<double> outputValues;
std::vector<WbsParameterSource> sources =
calculateWbsParameterForAllSegments( RigWbsParameter::UCS(), timeStepIndex, frameIndex, &outputValues, true );
std::vector<double> doubleSources( sources.size(), 0.0 );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
doubleSources[intersectionIdx] = static_cast<double>( sources[intersectionIdx] );
}
return doubleSources;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
template <typename T>
T RigGeoMechWellLogExtractor::interpolateGridResultValue( RigFemResultPosEnum resultPosType,
const std::vector<T>& gridResultValues,
int64_t intersectionIdx ) const
{
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx];
RigElementType elmType = femPart->elementType( elmIdx );
if ( !( elmType == HEX8 || elmType == HEX8P ) ) return T();
if ( resultPosType == RIG_FORMATION_NAMES )
{
resultPosType = RIG_ELEMENT_NODAL; // formation indices are stored per element node result.
}
if ( resultPosType == RIG_ELEMENT )
{
return gridResultValues[elmIdx];
}
cvf::StructGridInterface::FaceType cellFace = intersectedCellFaces()[intersectionIdx];
if ( cellFace == cvf::StructGridInterface::NO_FACE )
{
if ( resultPosType == RIG_ELEMENT_NODAL_FACE )
{
return std::numeric_limits<T>::infinity(); // undefined value. ELEMENT_NODAL_FACE values are only defined on
// a face.
}
// TODO: Should interpolate within the whole hexahedron. This requires converting to locals coordinates.
// For now just pick the average value for the cell.
size_t gridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType, static_cast<int>( elmIdx ), 0 );
T sumOfVertexValues = gridResultValues[gridResultValueIdx];
for ( int i = 1; i < 8; ++i )
{
gridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType, static_cast<int>( elmIdx ), i );
sumOfVertexValues = sumOfVertexValues + gridResultValues[gridResultValueIdx];
}
return sumOfVertexValues * ( 1.0 / 8.0 );
}
int faceNodeCount = 0;
const int* elementLocalIndicesForFace = RigFemTypes::localElmNodeIndicesForFace( elmType, cellFace, &faceNodeCount );
const int* elmNodeIndices = femPart->connectivities( elmIdx );
cvf::Vec3d v0( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[0]]] );
cvf::Vec3d v1( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[1]]] );
cvf::Vec3d v2( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[2]]] );
cvf::Vec3d v3( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[3]]] );
std::vector<size_t> nodeResIdx( 4, cvf::UNDEFINED_SIZE_T );
for ( size_t i = 0; i < nodeResIdx.size(); ++i )
{
if ( resultPosType == RIG_ELEMENT_NODAL_FACE )
{
nodeResIdx[i] = gridResultIndexFace( elmIdx, cellFace, static_cast<int>( i ) );
}
else
{
nodeResIdx[i] =
femPart->resultValueIdxFromResultPosType( resultPosType, static_cast<int>( elmIdx ), elementLocalIndicesForFace[i] );
}
}
std::vector<T> nodeResultValues;
nodeResultValues.reserve( 4 );
for ( size_t i = 0; i < nodeResIdx.size(); ++i )
{
nodeResultValues.push_back( gridResultValues[nodeResIdx[i]] );
}
T interpolatedValue = cvf::GeometryTools::interpolateQuad<T>( v0,
nodeResultValues[0],
v1,
nodeResultValues[1],
v2,
nodeResultValues[2],
v3,
nodeResultValues[3],
intersections()[intersectionIdx] );
return interpolatedValue;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigGeoMechWellLogExtractor::gridResultIndexFace( size_t elementIdx, cvf::StructGridInterface::FaceType cellFace, int faceLocalNodeIdx ) const
{
CVF_ASSERT( cellFace != cvf::StructGridInterface::NO_FACE && faceLocalNodeIdx < 4 );
return elementIdx * 24 + static_cast<int>( cellFace ) * 4 + faceLocalNodeIdx;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::calculateIntersection()
{
CVF_ASSERT( m_caseData->femParts()->partCount() == 1 );
std::map<RigMDCellIdxEnterLeaveKey, HexIntersectionInfo> uniqueIntersections;
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
for ( size_t wpp = 0; wpp < m_wellPathGeometry->wellPathPoints().size() - 1; ++wpp )
{
std::vector<HexIntersectionInfo> intersections;
cvf::Vec3d p1 = m_wellPathGeometry->wellPathPoints()[wpp];
cvf::Vec3d p2 = m_wellPathGeometry->wellPathPoints()[wpp + 1];
cvf::BoundingBox bb;
bb.add( p1 );
bb.add( p2 );
std::vector<size_t> closeCells = findCloseCells( bb );
cvf::Vec3d hexCorners[8];
for ( size_t ccIdx = 0; ccIdx < closeCells.size(); ++ccIdx )
{
RigElementType elmType = femPart->elementType( closeCells[ccIdx] );
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
const int* cornerIndices = femPart->connectivities( closeCells[ccIdx] );
hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] );
hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] );
hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] );
hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] );
hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] );
hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] );
hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] );
hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] );
// int intersectionCount = RigHexIntersector::lineHexCellIntersection(p1, p2, hexCorners,
// closeCells[ccIdx], &intersections);
RigHexIntersectionTools::lineHexCellIntersection( p1, p2, hexCorners, closeCells[ccIdx], &intersections );
}
// Now, with all the intersections of this piece of line, we need to
// sort them in order, and set the measured depth and corresponding cell index
// Inserting the intersections in this map will remove identical intersections
// and sort them according to MD, CellIdx, Leave/enter
double md1 = m_wellPathGeometry->measuredDepths()[wpp];
double md2 = m_wellPathGeometry->measuredDepths()[wpp + 1];
const double tolerance = 0.1;
insertIntersectionsInMap( intersections, p1, md1, p2, md2, tolerance, &uniqueIntersections );
}
this->populateReturnArrays( uniqueIntersections );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RigGeoMechWellLogExtractor::findCloseCells( const cvf::BoundingBox& bb )
{
std::vector<size_t> closeCells;
if ( m_caseData->femParts()->partCount() )
{
m_caseData->femParts()->part( 0 )->findIntersectingCells( bb, &closeCells );
}
return closeCells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RigGeoMechWellLogExtractor::calculateLengthInCell( size_t cellIndex, const cvf::Vec3d& startPoint, const cvf::Vec3d& endPoint ) const
{
std::array<cvf::Vec3d, 8> hexCorners;
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
const int* cornerIndices = femPart->connectivities( cellIndex );
hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] );
hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] );
hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] );
hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] );
hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] );
hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] );
hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] );
hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] );
return RigWellPathIntersectionTools::calculateLengthInCell( hexCorners, startPoint, endPoint );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RigGeoMechWellLogExtractor::calculateWellPathTangent( int64_t intersectionIdx, WellPathTangentCalculation calculationType ) const
{
if ( calculationType == TangentFollowWellPathSegments )
{
cvf::Vec3d segmentStart, segmentEnd;
m_wellPathGeometry->twoClosestPoints( intersections()[intersectionIdx], &segmentStart, &segmentEnd );
return ( segmentEnd - segmentStart ).getNormalized();
}
else
{
cvf::Vec3d wellPathTangent;
if ( intersectionIdx % 2 == 0 )
{
wellPathTangent = intersections()[intersectionIdx + 1] - intersections()[intersectionIdx];
}
else
{
wellPathTangent = intersections()[intersectionIdx] - intersections()[intersectionIdx - 1];
}
CVF_ASSERT( wellPathTangent.length() > 1.0e-7 );
return wellPathTangent.getNormalized();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
caf::Ten3d RigGeoMechWellLogExtractor::transformTensorToWellPathOrientation( const cvf::Vec3d& wellPathTangent, const caf::Ten3d& tensor )
{
// Create local coordinate system for well path segment
cvf::Vec3d local_z = wellPathTangent;
cvf::Vec3d local_x = local_z.perpendicularVector().getNormalized();
cvf::Vec3d local_y = ( local_z ^ local_x ).getNormalized();
// Calculate the rotation matrix from global i, j, k to local x, y, z.
cvf::Mat4d rotationMatrix = cvf::Mat4d::fromCoordSystemAxes( &local_x, &local_y, &local_z );
return tensor.rotated( rotationMatrix.toMatrix3() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3f RigGeoMechWellLogExtractor::cellCentroid( size_t intersectionIdx ) const
{
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx];
RigElementType elmType = femPart->elementType( elmIdx );
int elementNodeCount = RigFemTypes::elementNodeCount( elmType );
const int* elmNodeIndices = femPart->connectivities( elmIdx );
cvf::Vec3f centroid( 0.0, 0.0, 0.0 );
for ( int i = 0; i < elementNodeCount; ++i )
{
centroid += nodeCoords[elmNodeIndices[i]];
}
return centroid / elementNodeCount;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigGeoMechWellLogExtractor::getWellLogIntersectionValue( size_t intersectionIdx,
const std::vector<std::pair<double, double>>& wellLogValues ) const
{
const double eps = 1.0e-4;
double intersection_md = cellIntersectionMDs()[intersectionIdx];
for ( size_t i = 0; i < wellLogValues.size() - 1; ++i )
{
double las_md_i = wellLogValues[i].first;
double las_md_ip1 = wellLogValues[i + 1].first;
if ( cvf::Math::valueInRange( intersection_md, las_md_i, las_md_ip1 ) )
{
double dist_i = std::abs( intersection_md - las_md_i );
double dist_ip1 = std::abs( intersection_md - las_md_ip1 );
if ( dist_i < eps )
{
return wellLogValues[i].second;
}
else if ( dist_ip1 < eps )
{
return wellLogValues[i + 1].second;
}
else
{
RiaWeightedMeanCalculator<double> averageCalc;
averageCalc.addValueAndWeight( wellLogValues[i].second, 1.0 / dist_i );
averageCalc.addValueAndWeight( wellLogValues[i + 1].second, 1.0 / dist_ip1 );
return averageCalc.weightedMean();
}
}
}
// If we found no match, check first and last value within a threshold.
if ( !wellLogValues.empty() )
{
const double relativeEps = 1.0e-3 * std::max( 1.0, intersection_md );
if ( std::abs( wellLogValues.front().first - intersection_md ) < relativeEps )
{
return wellLogValues.front().second;
}
else if ( std::abs( wellLogValues.back().first - intersection_md ) < relativeEps )
{
return wellLogValues.back().second;
}
}
return std::numeric_limits<double>::infinity();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigGeoMechWellLogExtractor::pascalToBar( double pascalValue )
{
return pascalValue * 1.0e-5;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
template <typename T>
bool RigGeoMechWellLogExtractor::averageIntersectionValuesToSegmentValue( size_t intersectionIdx,
const std::vector<T>& values,
const T& invalidValue,
T* averagedCellValue ) const
{
CVF_ASSERT( values.size() >= 2 );
*averagedCellValue = invalidValue;
T value1, value2;
cvf::Vec3d centroid( cellCentroid( intersectionIdx ) );
double dist1 = 0.0, dist2 = 0.0;
if ( intersectionIdx % 2 == 0 )
{
value1 = values[intersectionIdx];
value2 = values[intersectionIdx + 1];
dist1 = ( centroid - intersections()[intersectionIdx] ).length();
dist2 = ( centroid - intersections()[intersectionIdx + 1] ).length();
}
else
{
value1 = values[intersectionIdx - 1];
value2 = values[intersectionIdx];
dist1 = ( centroid - intersections()[intersectionIdx - 1] ).length();
dist2 = ( centroid - intersections()[intersectionIdx] ).length();
}
if ( invalidValue == value1 || invalidValue == value2 )
{
return false;
}
RiaWeightedMeanCalculator<T> averageCalc;
averageCalc.addValueAndWeight( value1, dist2 );
averageCalc.addValueAndWeight( value2, dist1 );
if ( averageCalc.validAggregatedWeight() )
{
*averagedCellValue = averageCalc.weightedMean();
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
template <typename T>
std::vector<T> RigGeoMechWellLogExtractor::interpolateInterfaceValues( RigFemResultAddress nativeAddr,
int timeStepIndex,
int frameIndex,
const std::vector<T>& unscaledResultValues )
{
std::vector<T> interpolatedInterfaceValues;
initializeResultValues( interpolatedInterfaceValues, intersections().size() );
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
#pragma omp parallel for
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
{
size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx];
RigElementType elmType = femPart->elementType( elmIdx );
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
interpolatedInterfaceValues[intersectionIdx] =
interpolateGridResultValue<T>( nativeAddr.resultPosType, unscaledResultValues, intersectionIdx );
}
return interpolatedInterfaceValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::initializeResultValues( std::vector<float>& resultValues, size_t resultCount )
{
resultValues.resize( resultCount, std::numeric_limits<float>::infinity() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::initializeResultValues( std::vector<caf::Ten3d>& resultValues, size_t resultCount )
{
resultValues.resize( resultCount );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigGeoMechWellLogExtractor::smoothSegments( std::vector<double>* mds,
std::vector<double>* tvds,
std::vector<double>* values,
const std::vector<double>& interfaceShValues,
const std::vector<unsigned char>& smoothSegments,
const double smoothingThreshold )
{
const double eps = 1.0e-6;
double maxOriginalMd = ( *mds )[0];
double maxOriginalTvd = ( !tvds->empty() ) ? ( *tvds )[0] : 0.0;
for ( int64_t i = 1; i < static_cast<int64_t>( mds->size() - 1 ); ++i )
{
double originalMD = ( *mds )[i];
double originalTVD = ( !tvds->empty() ) ? ( *tvds )[i] : 0.0;
bool smoothSegment = smoothSegments[i] != 0u;
double diffMd = std::fabs( ( *mds )[i + 1] - ( *mds )[i] ) / std::max( eps, ( *mds )[i] );
double diffSh = std::fabs( interfaceShValues[i + 1] - interfaceShValues[i] ) / std::max( eps, interfaceShValues[i] );
bool leapSh = diffSh > smoothingThreshold && diffMd < eps;
if ( smoothSegment )
{
if ( leapSh )
{
// Update depth of current
if ( i == 1 )
{
( *mds )[i] = maxOriginalMd;
if ( !tvds->empty() )
{
( *tvds )[i] = maxOriginalTvd;
}
}
else
{
( *mds )[i] = 0.5 * ( ( *mds )[i] + maxOriginalMd );
if ( !tvds->empty() )
{
( *tvds )[i] = 0.5 * ( ( *tvds )[i] + maxOriginalTvd );
}
}
}
else
{
// Update depth of current
( *mds )[i] = ( *mds )[i - 1];
if ( !tvds->empty() )
{
( *tvds )[i] = ( *tvds )[i - 1];
}
}
double diffMd_m1 = std::fabs( ( *mds )[i] - ( *mds )[i - 1] );
if ( diffMd_m1 < ( *mds )[i] * eps && ( *values )[i - 1] != std::numeric_limits<double>::infinity() )
{
( *values )[i] = ( *values )[i - 1];
}
}
if ( leapSh )
{
maxOriginalMd = std::max( maxOriginalMd, originalMD );
maxOriginalTvd = std::max( maxOriginalTvd, originalTVD );
}
}
}
//--------------------------------------------------------------------------------------------------
/// Note that this is unsigned char because std::vector<bool> is not thread safe
//--------------------------------------------------------------------------------------------------
std::vector<unsigned char> RigGeoMechWellLogExtractor::determineFilteringOrSmoothing( const std::vector<double>& porePressures )
{
std::vector<unsigned char> smoothOrFilterSegments( porePressures.size(), false );
#pragma omp parallel for
for ( int64_t i = 1; i < static_cast<int64_t>( porePressures.size() - 1 ); ++i )
{
bool validPP_im1 = porePressures[i - 1] >= 0.0 && porePressures[i - 1] != std::numeric_limits<double>::infinity();
bool validPP_i = porePressures[i] >= 0.0 && porePressures[i] != std::numeric_limits<double>::infinity();
bool validPP_ip1 = porePressures[i + 1] >= 0.0 && porePressures[i + 1] != std::numeric_limits<double>::infinity();
bool anyValidPP = validPP_im1 || validPP_i || validPP_ip1;
smoothOrFilterSegments[i] = !anyValidPP;
}
return smoothOrFilterSegments;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigGeoMechWellLogExtractor::hydroStaticPorePressureForIntersection( size_t intersectionIdx, double waterDensityGCM3 ) const
{
double trueVerticalDepth = cellIntersectionTVDs()[intersectionIdx];
double effectiveDepthMeters = trueVerticalDepth + m_wellPathGeometry->rkbDiff();
return hydroStaticPorePressureAtDepth( effectiveDepthMeters, waterDensityGCM3 );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigGeoMechWellLogExtractor::hydroStaticPorePressureForSegment( size_t intersectionIdx, double waterDensityGCM3 ) const
{
cvf::Vec3f centroid = cellCentroid( intersectionIdx );
double trueVerticalDepth = -centroid.z();
double effectiveDepthMeters = trueVerticalDepth + m_wellPathGeometry->rkbDiff();
return hydroStaticPorePressureAtDepth( effectiveDepthMeters, waterDensityGCM3 );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigGeoMechWellLogExtractor::hydroStaticPorePressureAtDepth( double effectiveDepthMeters, double waterDensityGCM3 )
{
double hydroStaticPorePressurePascal = effectiveDepthMeters * GRAVITY_ACCEL * waterDensityGCM3 * 1000;
double hydroStaticPorePressureBar = pascalToBar( hydroStaticPorePressurePascal );
return hydroStaticPorePressureBar;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigGeoMechWellLogExtractor::wbsCurveValuesAtMsl() const
{
double waterDensityGCM3 = m_userDefinedValues.at( RigWbsParameter::waterDensity() );
double rkbDiff = m_wellPathGeometry->rkbDiff();
if ( rkbDiff == std::numeric_limits<double>::infinity() )
{
rkbDiff = 0.0;
}
if ( m_waterDepth + rkbDiff < 1.0e-8 )
{
return waterDensityGCM3;
}
return waterDensityGCM3 * m_waterDepth / ( m_waterDepth + rkbDiff );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigGeoMechWellLogExtractor::isValid( double value )
{
return value != std::numeric_limits<double>::infinity();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigGeoMechWellLogExtractor::isValid( float value )
{
return value != std::numeric_limits<float>::infinity();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigGeoMechWellLogExtractor::calculateWaterDepth() const
{
// Need a well path with intersections to generate a precise water depth
if ( cellIntersectionTVDs().empty() || m_wellPathGeometry->wellPathPoints().empty() )
{
return std::numeric_limits<double>::infinity();
}
// Only calculate water depth if the well path starts outside the model.
cvf::BoundingBox boundingBox = m_caseData->femParts()->boundingBox();
if ( boundingBox.contains( m_wellPathGeometry->wellPathPoints().front() ) )
{
return std::numeric_limits<double>::infinity();
}
// Water depth is always the first intersection with model for geo mech models.
double waterDepth = cellIntersectionTVDs().front();
return waterDepth;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigGeoMechWellLogExtractor::estimateWaterDepth() const
{
// Estimate water depth using bounding box. This will be imprecise
// for models with a slanting top layer.
cvf::BoundingBox boundingBox = m_caseData->femParts()->boundingBox();
return std::abs( boundingBox.max().z() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigGeoMechWellLogExtractor::waterDepth() const
{
return m_waterDepth;
}