opm-common/tests/test_RFT.cpp

433 lines
15 KiB
C++
Raw Normal View History

/*
Copyright 2015 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#define BOOST_TEST_MODULE EclipseRFTWriter
#include <boost/test/unit_test.hpp>
#include <opm/io/eclipse/ERft.hpp>
#include <opm/io/eclipse/OutputStream.hpp>
#include <opm/output/data/Solution.hpp>
#include <opm/output/data/Wells.hpp>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/output/eclipse/InteHEAD.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/EclipseGrid.hpp>
#include <opm/parser/eclipse/EclipseState/IOConfig/IOConfig.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <cstddef>
#include <ctime>
#include <map>
#include <iomanip>
#include <ostream>
#include <string>
#include <tuple>
#include <unordered_map>
#include <utility>
#include <vector>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/filesystem.hpp>
using namespace Opm;
namespace std { // hack...
// For printing ERft::RftDate objects. Needed by EQUAL_COLLECTIONS.
static ostream& operator<<(ostream& os, const tuple<int,int,int>& d)
{
os << setw(4) << get<0>(d)
<< "-" << setw(2) << setfill('0') << get<1>(d)
<< "-" << setw(2) << setfill('0') << get<2>(d);
return os;
}
}
namespace {
class RSet
{
public:
explicit RSet(std::string base)
: odir_(boost::filesystem::temp_directory_path() /
boost::filesystem::unique_path("rset-%%%%"))
, base_(std::move(base))
{
boost::filesystem::create_directories(this->odir_);
}
~RSet()
{
boost::filesystem::remove_all(this->odir_);
}
std::string outputDir() const
{
return this->odir_.string();
}
operator ::Opm::EclIO::OutputStream::ResultSet() const
{
return { this->odir_.string(), this->base_ };
}
private:
boost::filesystem::path odir_;
std::string base_;
};
class RFTRresults
{
public:
explicit RFTRresults(const ::Opm::EclIO::ERft& rft,
const std::string& well,
const ::Opm::EclIO::ERft::RftDate& date);
float depth(const int i, const int j, const int k) const
{
return this->depth_[this->conIx(i, j, k)];
}
float pressure(const int i, const int j, const int k) const
{
return this->press_[this->conIx(i, j, k)];
}
float sgas(const int i, const int j, const int k) const
{
return this->sgas_[this->conIx(i, j, k)];
}
float swat(const int i, const int j, const int k) const
{
return this->swat_[this->conIx(i, j, k)];
}
private:
std::vector<float> depth_;
std::vector<float> press_;
std::vector<float> sgas_;
std::vector<float> swat_;
std::map<std::tuple<int, int, int>, std::size_t> xConIx_;
std::size_t conIx(const int i, const int j, const int k) const;
};
RFTRresults::RFTRresults(const ::Opm::EclIO::ERft& rft,
const std::string& well,
const ::Opm::EclIO::ERft::RftDate& date)
{
BOOST_REQUIRE(rft.hasRft(well, date));
BOOST_REQUIRE(rft.hasArray("CONIPOS", well, date));
BOOST_REQUIRE(rft.hasArray("CONJPOS", well, date));
BOOST_REQUIRE(rft.hasArray("CONKPOS", well, date));
const auto& I = rft.getRft<int>("CONIPOS", well, date);
const auto& J = rft.getRft<int>("CONJPOS", well, date);
const auto& K = rft.getRft<int>("CONKPOS", well, date);
for (auto ncon = I.size(), con = 0*ncon; con < ncon; ++con) {
this->xConIx_[std::make_tuple(I[con], J[con], K[con])] = con;
}
BOOST_REQUIRE(rft.hasArray("DEPTH" , well, date));
BOOST_REQUIRE(rft.hasArray("PRESSURE", well, date));
BOOST_REQUIRE(rft.hasArray("SGAS" , well, date));
BOOST_REQUIRE(rft.hasArray("SWAT" , well, date));
this->depth_ = rft.getRft<float>("DEPTH" , well, date);
this->press_ = rft.getRft<float>("PRESSURE", well, date);
this->sgas_ = rft.getRft<float>("SGAS" , well, date);
this->swat_ = rft.getRft<float>("SWAT" , well, date);
}
std::size_t RFTRresults::conIx(const int i, const int j, const int k) const
{
auto conIx = this->xConIx_.find(std::make_tuple(i, j, k));
if (conIx == this->xConIx_.end()) {
BOOST_FAIL("Invalid IJK Tuple (" << i << ", "
<< j << ", " << k << ')');
}
return conIx->second;
}
void verifyRFTFile(const std::string& rft_filename)
{
using RftDate = ::Opm::EclIO::ERft::RftDate;
const auto rft = ::Opm::EclIO::ERft{ rft_filename };
const auto xRFT = RFTRresults {
rft, "OP_1", RftDate{ 2008, 10, 10 }
};
const auto tol = 1.0e-5;
BOOST_CHECK_CLOSE(xRFT.pressure(9, 9, 1), 0.0 , tol);
BOOST_CHECK_CLOSE(xRFT.pressure(9, 9, 2), 1.0e-5, tol);
BOOST_CHECK_CLOSE(xRFT.pressure(9, 9, 3), 2.0e-5, tol);
BOOST_CHECK_CLOSE(xRFT.sgas(9, 9, 1), 0.0, tol);
BOOST_CHECK_CLOSE(xRFT.sgas(9, 9, 2), 0.2, tol);
BOOST_CHECK_CLOSE(xRFT.sgas(9, 9, 3), 0.4, tol);
BOOST_CHECK_CLOSE(xRFT.swat(9, 9, 1), 0.0, tol);
BOOST_CHECK_CLOSE(xRFT.swat(9, 9, 2), 0.1, tol);
BOOST_CHECK_CLOSE(xRFT.swat(9, 9, 3), 0.2, tol);
BOOST_CHECK_CLOSE(xRFT.depth(9, 9, 1), 1*0.250 + 0.250/2, tol);
BOOST_CHECK_CLOSE(xRFT.depth(9, 9, 2), 2*0.250 + 0.250/2, tol);
BOOST_CHECK_CLOSE(xRFT.depth(9, 9, 3), 3*0.250 + 0.250/2, tol);
}
data::Solution createBlackoilState(int timeStepIdx, int numCells)
{
std::vector< double > pressure( numCells );
std::vector< double > swat( numCells, 0 );
std::vector< double > sgas( numCells, 0 );
for (int i = 0; i < numCells; ++i) {
pressure[i] = timeStepIdx*1e5 + 1e4 + i;
}
data::Solution sol;
sol.insert( "PRESSURE", UnitSystem::measure::pressure, pressure , data::TargetType::RESTART_SOLUTION );
sol.insert( "SWAT", UnitSystem::measure::identity, swat , data::TargetType::RESTART_SOLUTION );
sol.insert( "SGAS", UnitSystem::measure::identity, sgas, data::TargetType::RESTART_SOLUTION );
return sol;
}
std::time_t timeStamp(const ::Opm::EclIO::ERft::RftDate& date)
{
auto tp = std::tm{};
tp.tm_year = std::get<0>(date) - 1900;
tp.tm_mon = std::get<1>(date) - 1; // 0..11
tp.tm_mday = std::get<2>(date); // 1..31
return ::Opm::RestartIO::makeUTCTime(tp);
}
} // Anonymous namespace
BOOST_AUTO_TEST_CASE(test_RFT)
{
const auto rset = RSet{ "TESTRFT" };
const auto eclipse_data_filename = std::string{ "testrft.DATA" };
const auto deck = Parser{}.parseFile(eclipse_data_filename);
auto eclipseState = EclipseState { deck };
eclipseState.getIOConfig().setOutputDir(rset.outputDir());
{
/* eclipseWriter is scoped here to ensure it is destroyed after the
* file itself has been written, because we're going to reload it
* immediately. first upon destruction can we guarantee it being
* written to disk and flushed.
*/
const auto& grid = eclipseState.getInputGrid();
const auto numCells = grid.getCartesianSize( );
const Schedule schedule(deck, eclipseState);
const SummaryConfig summary_config( deck, schedule, eclipseState.getTableManager( ));
2017-10-02 05:40:28 -05:00
EclipseIO eclipseWriter( eclipseState, grid, schedule, summary_config );
const auto start_time = schedule.posixStartTime();
const auto step_time = timeStamp(::Opm::EclIO::ERft::RftDate{ 2008, 10, 10 });
SummaryState st;
data::Rates r1, r2;
r1.set( data::Rates::opt::wat, 4.11 );
r1.set( data::Rates::opt::oil, 4.12 );
r1.set( data::Rates::opt::gas, 4.13 );
r2.set( data::Rates::opt::wat, 4.21 );
r2.set( data::Rates::opt::oil, 4.22 );
r2.set( data::Rates::opt::gas, 4.23 );
2018-06-10 13:54:34 -05:00
std::vector<Opm::data::Connection> well1_comps(9);
for (size_t i = 0; i < 9; ++i) {
Opm::data::Connection well_comp { grid.getGlobalIndex(8,8,i) ,r1, 0.0 , 0.0, (double)i, 0.1*i,0.2*i, 1.2e3};
well1_comps[i] = std::move(well_comp);
}
2018-06-10 13:54:34 -05:00
std::vector<Opm::data::Connection> well2_comps(6);
for (size_t i = 0; i < 6; ++i) {
Opm::data::Connection well_comp { grid.getGlobalIndex(3,3,i+3) ,r2, 0.0 , 0.0, (double)i, i*0.1,i*0.2, 0.15};
well2_comps[i] = std::move(well_comp);
}
Opm::data::Solution solution = createBlackoilState(2, numCells);
Opm::data::Wells wells;
using SegRes = decltype(wells["w"].segments);
wells["OP_1"] = { std::move(r1), 1.0, 1.1, 3.1, 1, std::move(well1_comps), SegRes{} };
wells["OP_2"] = { std::move(r2), 1.0, 1.1, 3.2, 1, std::move(well2_comps), SegRes{} };
RestartValue restart_value(std::move(solution), std::move(wells));
eclipseWriter.writeTimeStep( st,
2,
false,
step_time - start_time,
std::move(restart_value));
}
verifyRFTFile(Opm::EclIO::OutputStream::outputFileName(rset, "RFT"));
}
namespace {
void verifyRFTFile2(const std::string& rft_filename)
{
using RftDate = Opm::EclIO::ERft::RftDate;
const auto rft = ::Opm::EclIO::ERft{ rft_filename };
auto dates = std::unordered_map<
std::string, std::vector<RftDate>
>{};
for (const auto& wellDate : rft.listOfRftReports()) {
dates[wellDate.first].push_back(wellDate.second);
}
// Well OP_1
{
auto op_1 = dates.find("OP_1");
if (op_1 == dates.end()) {
BOOST_FAIL("Missing RFT Data for Well OP_1");
}
const auto expect = std::vector<Opm::EclIO::ERft::RftDate> {
RftDate{ 2008, 10, 10 },
};
BOOST_CHECK_EQUAL_COLLECTIONS(op_1->second.begin(),
op_1->second.end(),
expect.begin(), expect.end());
}
// Well OP_2
{
auto op_2 = dates.find("OP_2");
if (op_2 == dates.end()) {
BOOST_FAIL("Missing RFT Data for Well OP_2");
}
const auto expect = std::vector<RftDate> {
RftDate{ 2008, 10, 10 },
RftDate{ 2008, 11, 10 },
};
BOOST_CHECK_EQUAL_COLLECTIONS(op_2->second.begin(),
op_2->second.end(),
expect.begin(), expect.end());
}
}
}
BOOST_AUTO_TEST_CASE(test_RFT2)
{
const auto rset = RSet{ "TESTRFT" };
const auto eclipse_data_filename = std::string{ "testrft.DATA" };
const auto deck = Parser().parseFile( eclipse_data_filename );
auto eclipseState = EclipseState(deck);
eclipseState.getIOConfig().setOutputDir(rset.outputDir());
{
/* eclipseWriter is scoped here to ensure it is destroyed after the
* file itself has been written, because we're going to reload it
* immediately. first upon destruction can we guarantee it being
* written to disk and flushed.
*/
const auto& grid = eclipseState.getInputGrid();
const auto numCells = grid.getCartesianSize( );
Schedule schedule(deck, eclipseState);
SummaryConfig summary_config( deck, schedule, eclipseState.getTableManager( ));
SummaryState st;
const auto start_time = schedule.posixStartTime();
const auto& time_map = schedule.getTimeMap( );
for (int counter = 0; counter < 2; counter++) {
EclipseIO eclipseWriter( eclipseState, grid, schedule, summary_config );
for (size_t step = 0; step < time_map.size(); step++) {
const auto step_time = time_map[step];
data::Rates r1, r2;
r1.set( data::Rates::opt::wat, 4.11 );
r1.set( data::Rates::opt::oil, 4.12 );
r1.set( data::Rates::opt::gas, 4.13 );
r2.set( data::Rates::opt::wat, 4.21 );
r2.set( data::Rates::opt::oil, 4.22 );
r2.set( data::Rates::opt::gas, 4.23 );
2018-06-10 13:54:34 -05:00
std::vector<Opm::data::Connection> well1_comps(9);
for (size_t i = 0; i < 9; ++i) {
Opm::data::Connection well_comp { grid.getGlobalIndex(8,8,i) ,r1, 0.0 , 0.0, (double)i, 0.1*i,0.2*i, 3.14e5};
well1_comps[i] = std::move(well_comp);
}
2018-06-10 13:54:34 -05:00
std::vector<Opm::data::Connection> well2_comps(6);
for (size_t i = 0; i < 6; ++i) {
Opm::data::Connection well_comp { grid.getGlobalIndex(3,3,i+3) ,r2, 0.0 , 0.0, (double)i, i*0.1,i*0.2, 355.113};
well2_comps[i] = std::move(well_comp);
}
Opm::data::Wells wells;
Opm::data::Solution solution = createBlackoilState(2, numCells);
using SegRes = decltype(wells["w"].segments);
wells["OP_1"] = { std::move(r1), 1.0, 1.1, 3.1, 1, std::move(well1_comps), SegRes{} };
wells["OP_2"] = { std::move(r2), 1.0, 1.1, 3.2, 1, std::move(well2_comps), SegRes{} };
RestartValue restart_value(std::move(solution), std::move(wells));
eclipseWriter.writeTimeStep( st,
step,
false,
step_time - start_time,
std::move(restart_value));
}
verifyRFTFile2(Opm::EclIO::OutputStream::outputFileName(rset, "RFT"));
}
}
}