implement Stone2 three-phase fluid-matrixinteractions for ECL problems

This commit is contained in:
Andreas Lauser 2015-07-28 17:24:22 +02:00
parent d46f4bafe3
commit 11ccc40e44
3 changed files with 481 additions and 0 deletions

View File

@ -0,0 +1,326 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright (C) 2008-2015 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
* \copydoc Opm::EclStone2Material
*/
#ifndef OPM_ECL_STONE2_MATERIAL_HPP
#define OPM_ECL_STONE2_MATERIAL_HPP
#include "EclStone2MaterialParams.hpp"
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <opm/material/common/ErrorMacros.hpp>
#include <algorithm>
namespace Opm {
/*!
* \ingroup material
*
* \brief Implements the second phase capillary pressure/relperm law suggested by Stone
* as used by the ECLipse simulator.
*
* This material law is valid for three fluid phases and only depends
* on the saturations.
*
* The required two-phase relations are supplied by means of template
* arguments and can be an arbitrary other material laws. (Provided
* that these only depend on saturation.)
*/
template <class TraitsT,
class GasOilMaterialLawT,
class OilWaterMaterialLawT,
class ParamsT = EclStone2MaterialParams<TraitsT,
typename GasOilMaterialLawT::Params,
typename OilWaterMaterialLawT::Params> >
class EclStone2Material : public TraitsT
{
public:
typedef GasOilMaterialLawT GasOilMaterialLaw;
typedef OilWaterMaterialLawT OilWaterMaterialLaw;
// some safety checks
static_assert(TraitsT::numPhases == 3,
"The number of phases considered by this capillary pressure "
"law is always three!");
static_assert(GasOilMaterialLaw::numPhases == 2,
"The number of phases considered by the gas-oil capillary "
"pressure law must be two!");
static_assert(OilWaterMaterialLaw::numPhases == 2,
"The number of phases considered by the oil-water capillary "
"pressure law must be two!");
static_assert(std::is_same<typename GasOilMaterialLaw::Scalar,
typename OilWaterMaterialLaw::Scalar>::value,
"The two two-phase capillary pressure laws must use the same "
"type of floating point values.");
static_assert(GasOilMaterialLaw::implementsTwoPhaseSatApi,
"The gas-oil material law must implement the two-phase saturation "
"only API to for the default Ecl capillary pressure law!");
static_assert(OilWaterMaterialLaw::implementsTwoPhaseSatApi,
"The oil-water material law must implement the two-phase saturation "
"only API to for the default Ecl capillary pressure law!");
typedef TraitsT Traits;
typedef ParamsT Params;
typedef typename Traits::Scalar Scalar;
static const int numPhases = 3;
static const int waterPhaseIdx = Traits::wettingPhaseIdx;
static const int oilPhaseIdx = Traits::nonWettingPhaseIdx;
static const int gasPhaseIdx = Traits::gasPhaseIdx;
//! Specify whether this material law implements the two-phase
//! convenience API
static const bool implementsTwoPhaseApi = false;
//! Specify whether this material law implements the two-phase
//! convenience API which only depends on the phase saturations
static const bool implementsTwoPhaseSatApi = false;
//! Specify whether the quantities defined by this material law
//! are saturation dependent
static const bool isSaturationDependent = true;
//! Specify whether the quantities defined by this material law
//! are dependent on the absolute pressure
static const bool isPressureDependent = false;
//! Specify whether the quantities defined by this material law
//! are temperature dependent
static const bool isTemperatureDependent = false;
//! Specify whether the quantities defined by this material law
//! are dependent on the phase composition
static const bool isCompositionDependent = false;
/*!
* \brief Implements the default three phase capillary pressure law
* used by the ECLipse simulator.
*
* This material law is valid for three fluid phases and only
* depends on the saturations.
*
* The required two-phase relations are supplied by means of template
* arguments and can be an arbitrary other material laws.
*
* \param values Container for the return values
* \param params Parameters
* \param state The fluid state
*/
template <class ContainerT, class FluidState>
static void capillaryPressures(ContainerT &values,
const Params &params,
const FluidState &state)
{
typedef typename std::remove_reference<decltype(values[0])>::type Evaluation;
values[gasPhaseIdx] = pcgn<FluidState, Evaluation>(params, state);
values[oilPhaseIdx] = 0;
values[waterPhaseIdx] = - pcnw<FluidState, Evaluation>(params, state);
Valgrind::CheckDefined(values[gasPhaseIdx]);
Valgrind::CheckDefined(values[oilPhaseIdx]);
Valgrind::CheckDefined(values[waterPhaseIdx]);
}
/*!
* \brief Capillary pressure between the gas and the non-wetting
* liquid (i.e., oil) phase.
*
* This is defined as
* \f[
* p_{c,gn} = p_g - p_n
* \f]
*/
template <class FluidState, class Evaluation = typename FluidState::Scalar>
static Evaluation pcgn(const Params &params,
const FluidState &fs)
{
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
const auto& Sw = 1.0 - FsToolbox::template toLhs<Evaluation>(fs.saturation(gasPhaseIdx));
return GasOilMaterialLaw::twoPhaseSatPcnw(params.gasOilParams(), Sw);
}
/*!
* \brief Capillary pressure between the non-wetting liquid (i.e.,
* oil) and the wetting liquid (i.e., water) phase.
*
* This is defined as
* \f[
* p_{c,nw} = p_n - p_w
* \f]
*/
template <class FluidState, class Evaluation = typename FluidState::Scalar>
static Evaluation pcnw(const Params &params,
const FluidState &fs)
{
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
const auto& Sw = FsToolbox::template toLhs<Evaluation>(fs.saturation(waterPhaseIdx));
Valgrind::CheckDefined(Sw);
const auto& result = OilWaterMaterialLaw::twoPhaseSatPcnw(params.oilWaterParams(), Sw);
Valgrind::CheckDefined(result);
return result;
}
/*!
* \brief The inverse of the capillary pressure
*/
template <class ContainerT, class FluidState>
static void saturations(ContainerT &values,
const Params &params,
const FluidState &fs)
{
OPM_THROW(std::logic_error, "Not implemented: saturations()");
}
/*!
* \brief The saturation of the gas phase.
*/
template <class FluidState, class Evaluation = typename FluidState::Scalar>
static Evaluation Sg(const Params &params,
const FluidState &fluidState)
{
OPM_THROW(std::logic_error, "Not implemented: Sg()");
}
/*!
* \brief The saturation of the non-wetting (i.e., oil) phase.
*/
template <class FluidState, class Evaluation = typename FluidState::Scalar>
static Evaluation Sn(const Params &params,
const FluidState &fluidState)
{
OPM_THROW(std::logic_error, "Not implemented: Sn()");
}
/*!
* \brief The saturation of the wetting (i.e., water) phase.
*/
template <class FluidState, class Evaluation = typename FluidState::Scalar>
static Evaluation Sw(const Params &params,
const FluidState &fluidState)
{
OPM_THROW(std::logic_error, "Not implemented: Sw()");
}
/*!
* \brief The relative permeability of all phases.
*
* The relative permeability of the water phase it uses the same
* value as the relative permeability for water in the water-oil
* law with \f$S_o = 1 - S_w\f$. The gas relative permebility is
* taken from the gas-oil material law, but with \f$S_o = 1 -
* S_g\f$. The relative permeability of the oil phase is
* calculated using the relative permeabilities of the oil phase
* in the two two-phase systems.
*
* A more detailed description can be found in the "Three phase
* oil relative permeability models" section of the ECLipse
* technical description.
*/
template <class ContainerT, class FluidState>
static void relativePermeabilities(ContainerT &values,
const Params &params,
const FluidState &fluidState)
{
typedef typename std::remove_reference<decltype(values[0])>::type Evaluation;
values[waterPhaseIdx] = krw<FluidState, Evaluation>(params, fluidState);
values[oilPhaseIdx] = krn<FluidState, Evaluation>(params, fluidState);
values[gasPhaseIdx] = krg<FluidState, Evaluation>(params, fluidState);
}
/*!
* \brief The relative permeability of the gas phase.
*/
template <class FluidState, class Evaluation = typename FluidState::Scalar>
static Evaluation krg(const Params &params,
const FluidState &fluidState)
{
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
const Evaluation& Sw = 1 - FsToolbox::template toLhs<Evaluation>(fluidState.saturation(gasPhaseIdx));
return GasOilMaterialLaw::twoPhaseSatKrn(params.gasOilParams(), Sw);
}
/*!
* \brief The relative permeability of the wetting phase.
*/
template <class FluidState, class Evaluation = typename FluidState::Scalar>
static Evaluation krw(const Params &params,
const FluidState &fluidState)
{
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
const Evaluation& Sw = FsToolbox::template toLhs<Evaluation>(fluidState.saturation(waterPhaseIdx));
return OilWaterMaterialLaw::twoPhaseSatKrw(params.oilWaterParams(), Sw);
}
/*!
* \brief The relative permeability of the non-wetting (i.e., oil) phase.
*/
template <class FluidState, class Evaluation = typename FluidState::Scalar>
static Evaluation krn(const Params &params,
const FluidState &fluidState)
{
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
Scalar Swco = params.Swl();
const Evaluation& Sw = FsToolbox::template toLhs<Evaluation>(fluidState.saturation(waterPhaseIdx));
const Evaluation& Sg = FsToolbox::template toLhs<Evaluation>(fluidState.saturation(gasPhaseIdx));
Scalar krocw = OilWaterMaterialLaw::twoPhaseSatKrn(params.oilWaterParams(), Swco);
Evaluation krow = OilWaterMaterialLaw::twoPhaseSatKrn(params.oilWaterParams(), Sw);
Evaluation krw = OilWaterMaterialLaw::twoPhaseSatKrw(params.oilWaterParams(), Sw);
Evaluation krg = GasOilMaterialLaw::twoPhaseSatKrn(params.gasOilParams(), 1 - Sg);
Evaluation krog = GasOilMaterialLaw::twoPhaseSatKrw(params.gasOilParams(), 1 - Sg);
return krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
}
/*!
* \brief Update the hysteresis parameters after a time step.
*
* This assumes that the nested two-phase material laws are parameters for
* EclHysteresisLaw. If they are not, calling this methid will cause a compiler
* error. (But not calling it will still work.)
*/
template <class FluidState>
static void updateHysteresis(Params &params, const FluidState &fluidState)
{
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
Scalar Sw = FsToolbox::value(fluidState.saturation(waterPhaseIdx));
Scalar Sg = FsToolbox::value(fluidState.saturation(gasPhaseIdx));
params.oilWaterParams().update(/*pcSw=*/Sw, /*krwSw=*/Sw, /*krnSw=*/Sw);
params.gasOilParams().update(/*pcSw=*/1 - Sg, /*krwSw=*/1 - Sg, /*krnSw=*/1 - Sg);
}
};
} // namespace Opm
#endif

View File

@ -0,0 +1,145 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright (C) 2015 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
* \copydoc Opm::EclStone2MaterialParams
*/
#ifndef OPM_ECL_STONE2_MATERIAL_PARAMS_HPP
#define OPM_ECL_STONE2_MATERIAL_PARAMS_HPP
#include <type_traits>
#include <cassert>
#include <memory>
namespace Opm {
/*!
* \brief Default implementation for the parameters required by the
* three-phase capillary pressure/relperm Stone 2 model used by
* Eclipse.
*
* Essentially, this class just stores the two parameter objects for
* the twophase capillary pressure laws.
*/
template<class Traits, class GasOilParamsT, class OilWaterParamsT>
class EclStone2MaterialParams
{
typedef typename Traits::Scalar Scalar;
enum { numPhases = 3 };
public:
typedef GasOilParamsT GasOilParams;
typedef OilWaterParamsT OilWaterParams;
/*!
* \brief The default constructor.
*/
EclStone2MaterialParams()
{
#ifndef NDEBUG
finalized_ = false;
#endif
}
/*!
* \brief Finish the initialization of the parameter object.
*/
void finalize()
{
#ifndef NDEBUG
finalized_ = true;
#endif
}
/*!
* \brief The parameter object for the gas-oil twophase law.
*/
const GasOilParams& gasOilParams() const
{ assertFinalized_(); return *gasOilParams_; }
/*!
* \brief The parameter object for the gas-oil twophase law.
*/
GasOilParams& gasOilParams()
{ assertFinalized_(); return *gasOilParams_; }
/*!
* \brief Set the parameter object for the gas-oil twophase law.
*/
void setGasOilParams(std::shared_ptr<GasOilParams> val)
{ gasOilParams_ = val; }
/*!
* \brief The parameter object for the oil-water twophase law.
*/
const OilWaterParams& oilWaterParams() const
{ assertFinalized_(); return *oilWaterParams_; }
/*!
* \brief The parameter object for the oil-water twophase law.
*/
OilWaterParams& oilWaterParams()
{ assertFinalized_(); return *oilWaterParams_; }
/*!
* \brief Set the parameter object for the oil-water twophase law.
*/
void setOilWaterParams(std::shared_ptr<OilWaterParams> val)
{ oilWaterParams_ = val; }
/*!
* \brief Set the saturation of "connate" water.
*
* According to
*
* http://www.glossary.oilfield.slb.com/en/Terms/c/connate_water.aspx
*
* the connate water is the water which is trapped in the pores of the rock during
* the rock's formation. For our application, this is basically a reduction of the
* rock's porosity...
*/
void setSwl(Scalar val)
{ Swl_ = val; }
/*!
* \brief Return the saturation of "connate" water.
*/
Scalar Swl() const
{ assertFinalized_(); return Swl_; }
private:
#ifndef NDEBUG
void assertFinalized_() const
{ assert(finalized_); }
bool finalized_;
#else
void assertFinalized_() const
{ }
#endif
std::shared_ptr<GasOilParams> gasOilParams_;
std::shared_ptr<OilWaterParams> oilWaterParams_;
Scalar Swl_;
};
} // namespace Opm
#endif

View File

@ -46,6 +46,7 @@
#include <opm/material/fluidmatrixinteractions/EclHysteresisTwoPhaseLaw.hpp>
#include <opm/material/fluidmatrixinteractions/EclDefaultMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EclStone1Material.hpp>
#include <opm/material/fluidmatrixinteractions/EclStone2Material.hpp>
// include the helper classes to construct traits
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
@ -333,6 +334,15 @@ int main(int argc, char **argv)
testThreePhaseApi<MaterialLaw, ThreePhaseFluidState>();
//testThreePhaseSatApi<MaterialLaw, ThreePhaseFluidState>();
}
{
typedef Opm::BrooksCorey<TwoPhaseTraits> TwoPhaseMaterial;
typedef Opm::EclStone2Material<ThreePhaseTraits,
/*GasOilMaterial=*/TwoPhaseMaterial,
/*OilWaterMaterial=*/TwoPhaseMaterial> MaterialLaw;
testGenericApi<MaterialLaw, ThreePhaseFluidState>();
testThreePhaseApi<MaterialLaw, ThreePhaseFluidState>();
//testThreePhaseSatApi<MaterialLaw, ThreePhaseFluidState>();
}
{
typedef Opm::ThreePhaseParkerVanGenuchten<ThreePhaseTraits> MaterialLaw;
testGenericApi<MaterialLaw, ThreePhaseFluidState>();