opm-core/opm/core/io/eclipse/BlackoilEclipseOutputWriter.cpp

547 lines
22 KiB
C++
Raw Normal View History

/*
Copyright 2013 Andreas Lauser
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "BlackoilEclipseOutputWriter.hpp"
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/format.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/DataMap.hpp>
#ifdef HAVE_ERT
#include <ert/ecl/fortio.h>
#include <ert/ecl/ecl_grid.h>
#include <ert/ecl/ecl_kw_magic.h>
#include <ert/ecl/ecl_kw.h>
#include <ert/ecl/ecl_sum.h>
#include <ert/ecl/ecl_util.h>
#include <ert/ecl/ecl_init_file.h>
#include <ert/ecl/ecl_file.h>
#include <ert/ecl/ecl_rst_file.h>
#endif
#include <memory> // unique_ptr
#include <utility> // move
using namespace Opm;
/// Smart pointer/handle class for ERT opaque types, such as ecl_kw_type*.
///
/// \tparam T Type of handle being wrapper
template <typename T>
struct EclipseHandle : private std::unique_ptr <T, void (*)(T*) throw()> {
// to save ourselves from some typing we introduce this alias
typedef std::unique_ptr <T, void (*)(T*) throw()> base;
/// Construct a new smart handle based on the returned value of
/// an allocation function and the corresponding destroyer function.
EclipseHandle (T* t, void (*destroy)(T*))
: base (t, destroy) { }
/// Convenience operator that lets us use this type as if
/// it was a handle directly.
operator T* () const { return base::get (); }
};
/**
* Eclipse "keyword" (i.e. named data) for a vector. (This class is
* different from EclKW in the constructors it provide).
*/
template <typename T>
struct EclipseKeyword : public EclipseHandle <ecl_kw_type> {
EclipseKeyword (const std::string& name, /// identification
const std::vector<T>& data, /// array holding values
const int num, /// actual number to take
const int offset, /// distance to first
const int stride) /// distance between each
// allocate handle and put in smart pointer base class
: EclipseHandle (ecl_kw_alloc (name.c_str(), num, type ()),
ecl_kw_free) {
// range cannot start outside of data set
assert(offset >= 0 && offset < data.size());
// don't jump out of the set when trying to
assert(stride > 0 && stride < data.size() - offset);
// fill it with values
for (int i = 0; i < num; ++i) {
// access from data store
const float value = data[i * stride + offset];
// write into memory represented by handle
ecl_kw_iset_float(*this, i, value);
}
}
/// Convenience constructor that takes the entire array
EclipseKeyword (const std::string& name,
const std::vector<T>& data)
: EclipseKeyword (name, data, data.size(), 0, 1) { }
/// Convenience constructor that gets the set of data
/// from the samely named item in the parser
EclipseKeyword (const std::string& name,
const EclipseGridParser& parser)
: EclipseKeyword (name, parser.getValue<T> (name)) { }
/// Constructor for optional fields
EclipseKeyword (const std::string& name)
: EclipseHandle (0, ecl_kw_free) {
static_cast<void> (name);
}
private:
/// Map the C++ data type (given by T) to an Eclipse type enum
static ecl_type_enum type ();
};
// specializations for known keyword types
template <> ecl_type_enum EclipseKeyword<int >::type () { return ECL_INT_TYPE ; }
template <> ecl_type_enum EclipseKeyword<double>::type () { return ECL_FLOAT_TYPE; }
/**
* Extract the current time from a timer object into the C type used by ERT.
*/
time_t current (const SimulatorTimer& timer) {
tm t = boost::posix_time::to_tm (timer.currentDateTime());
return mktime(&t);
}
namespace Opm {
void BlackoilEclipseOutputWriter::writeInitFile(const SimulatorTimer &timer)
{
startTime_ = current (timer);
#if HAVE_ERT
writeGridInitFile_(timer);
writeSummaryHeaderFile_(timer);
#else
OPM_THROW(std::runtime_error,
"The ERT libraries are required to write ECLIPSE output files.");
#endif // HAVE_ERT
}
/**
* Pointer to memory that holds the name to an Eclipse output file.
*/
struct EclipseFileName : public EclipseHandle <const char> {
EclipseFileName (const std::string& outputDir,
const std::string& baseName,
ecl_file_enum type,
const SimulatorTimer& timer)
// filename formatting function returns a pointer to allocated
// memory that must be released with the free() function
: EclipseHandle (ecl_util_alloc_filename (outputDir.c_str(),
baseName.c_str(),
type,
false, // formatted?
timer.currentStepNum ()),
EclipseFileName::freestr) { }
private:
/// Facade which allows us to free a const char*
static void freestr (const char* ptr) {
::free (const_cast<char*>(ptr));
}
};
void BlackoilEclipseOutputWriter::writeReservoirState(const BlackoilState& reservoirState, const SimulatorTimer& timer)
{
#if HAVE_ERT
ecl_file_enum file_type = ECL_UNIFIED_RESTART_FILE; // Alternatively ECL_RESTART_FILE for multiple restart files.
EclipseFileName fileName (outputDir_,
baseName_,
ECL_UNIFIED_RESTART_FILE,
timer);
int phases = ECL_OIL_PHASE + ECL_GAS_PHASE + ECL_WATER_PHASE;
double days = Opm::unit::convert::to(timer.currentTime(), Opm::unit::day);
int nx = grid_.cartdims[0];
int ny = grid_.cartdims[1];
int nz = grid_.cartdims[2];
int nactive = grid_.number_of_cells;
ecl_rst_file_type* rst_file;
time_t curTime = current (timer);
if (timer.currentStepNum() > 0 && file_type == ECL_UNIFIED_RESTART_FILE)
rst_file = ecl_rst_file_open_append(fileName);
else
rst_file = ecl_rst_file_open_write(fileName);
ecl_rst_file_fwrite_header(rst_file, timer.currentStepNum(), curTime, days, nx, ny, nz, nactive, phases);
ecl_rst_file_start_solution(rst_file);
{
// convert the pressures from Pascals to bar because eclipse
// seems to write bars
std::vector<double> pressureBar(reservoirState.pressure());
auto it = pressureBar.begin();
const auto &endIt = pressureBar.end();
for (; it != endIt; ++it)
(*it) /= 1e5;
EclipseKeyword<double> pressure_kw ("PRESSURE", pressureBar);
ecl_rst_file_add_kw(rst_file, pressure_kw);
}
{
EclipseKeyword<double> swat_kw ("SWAT",
reservoirState.saturation(),
grid_.number_of_cells,
BlackoilPhases::Aqua,
BlackoilPhases::MaxNumPhases);
ecl_rst_file_add_kw(rst_file, swat_kw);
}
{
EclipseKeyword<double> soil_kw ("SOIL",
reservoirState.saturation(),
grid_.number_of_cells,
BlackoilPhases::Liquid,
BlackoilPhases::MaxNumPhases);
ecl_rst_file_add_kw(rst_file, soil_kw);
}
{
EclipseKeyword<double> sgas_kw ("SGAS",
reservoirState.saturation(),
grid_.number_of_cells,
BlackoilPhases::Vapour,
BlackoilPhases::MaxNumPhases);
ecl_rst_file_add_kw(rst_file, sgas_kw);
}
ecl_rst_file_end_solution(rst_file);
ecl_rst_file_close(rst_file);
#else
OPM_THROW(std::runtime_error,
"The ERT libraries are required to write ECLIPSE output files.");
#endif // HAVE_ERT
}
void BlackoilEclipseOutputWriter::writeWellState(const WellState& wellState, const SimulatorTimer& timer)
{
#if HAVE_ERT
time_t curTime = current (timer);
// create a new timestep for the summary file (at least if the
// timer was advanced since the last call to writeWellState())
ecl_sum_tstep_type* tstep=
ecl_sum_add_tstep(sumWriter_,
timer.currentStepNum() + 1,
(curTime - startTime_)/(24*60*60));
int numWells = accumulatedProducedFluids_.size();
for (int wellIdx = 0; wellIdx < numWells; ++wellIdx) {
// set the value for the well oil production rate. For this,
// be aware that the rates in the well state are _surface_
// volume rates...
double woprValue = wellState.wellRates()[wellIdx*3 + BlackoilPhases::Liquid];
woprValue *= - 1 * (24 * 60 * 60); // convert m^3/s of injected fluid to m^3/d of produced fluid
woprValue = std::max(0.0, woprValue);
int woprIdx = smspec_node_get_params_index(woprSmspec_[wellIdx]);
ecl_sum_tstep_iset(tstep, woprIdx, woprValue);
// set the value for the well gas production rate
double wgprValue = wellState.wellRates()[wellIdx*3 + BlackoilPhases::Vapour];
wgprValue *= - 1 * (24 * 60 * 60); // convert m^3/s of injected fluid to m^3/d of produced fluid
wgprValue = std::max(0.0, wgprValue);
int wgprIdx = smspec_node_get_params_index(wgprSmspec_[wellIdx]);
ecl_sum_tstep_iset(tstep, wgprIdx, wgprValue);
// water injection rate
double wwirValue = wellState.wellRates()[wellIdx*3 + BlackoilPhases::Aqua];
wwirValue *= 1 * (24 * 60 * 60); // convert m^3/s to m^3/d
wwirValue = std::max(0.0, wwirValue);
int wwirIdx = smspec_node_get_params_index(wwirSmspec_[wellIdx]);
ecl_sum_tstep_iset(tstep, wwirIdx, wwirValue);
// gas injection rate
double wgirValue = wellState.wellRates()[wellIdx*3 + BlackoilPhases::Vapour];
wgirValue *= - 1 * (24 * 60 * 60); // convert m^3/s of injected fluid to m^3/d of produced fluid
wgirValue = std::max(0.0, wgirValue);
int wgirIdx = smspec_node_get_params_index(wgirSmspec_[wellIdx]);
ecl_sum_tstep_iset(tstep, wgirIdx, wgirValue);
// accumulate injected produced fluids
for (int phaseIdx = 0; phaseIdx < /*numPhases=*/3; ++phaseIdx) {
// accumulate the produced/injected surface volumes
double injectedVolume = wellState.wellRates()[wellIdx*3 + phaseIdx];
injectedVolume *= timer.currentStepLength();
if (injectedVolume < 0)
accumulatedProducedFluids_[wellIdx][phaseIdx] += -injectedVolume;
else
accumulatedInjectedFluids_[wellIdx][phaseIdx] += injectedVolume;
int woptIdx = smspec_node_get_params_index(woptSmspec_[wellIdx]);
ecl_sum_tstep_iset(tstep, woptIdx, accumulatedProducedFluids_[wellIdx][BlackoilPhases::Liquid]);
int wgptIdx = smspec_node_get_params_index(wgptSmspec_[wellIdx]);
ecl_sum_tstep_iset(tstep, wgptIdx, accumulatedProducedFluids_[wellIdx][BlackoilPhases::Vapour]);
int wwitIdx = smspec_node_get_params_index(wwitSmspec_[wellIdx]);
ecl_sum_tstep_iset(tstep, wwitIdx, accumulatedInjectedFluids_[wellIdx][BlackoilPhases::Aqua]);
int wgitIdx = smspec_node_get_params_index(wgitSmspec_[wellIdx]);
ecl_sum_tstep_iset(tstep, wgitIdx, accumulatedProducedFluids_[wellIdx][BlackoilPhases::Vapour]);
}
}
ecl_sum_fwrite(sumWriter_);
#else
OPM_THROW(std::runtime_error,
"The ERT libraries are required to write ECLIPSE output files.");
#endif // HAVE_ERT
}
/**
* Representation of an Eclipse grid.
*/
struct EclipseGrid : public EclipseHandle <ecl_grid_type> {
/// Create a grid based on the keywords available in input file
static EclipseGrid make (const EclipseGridParser& parser) {
if (parser.hasField("DXV")) {
// make sure that the DYV and DZV keywords are present if the
// DXV keyword is used in the deck...
assert(parser.hasField("DYV"));
assert(parser.hasField("DZV"));
const auto& dxv = parser.getFloatingPointValue("DXV");
const auto& dyv = parser.getFloatingPointValue("DYV");
const auto& dzv = parser.getFloatingPointValue("DZV");
return EclipseGrid (dxv, dyv, dzv);
}
else if (parser.hasField("ZCORN")) {
struct grdecl g = parser.get_grdecl ();
EclipseKeyword<double> coord_kw (COORD_KW, parser);
EclipseKeyword<double> zcorn_kw (ZCORN_KW, parser);
EclipseKeyword<double> actnum_kw (ACTNUM_KW, parser);
EclipseKeyword<double> mapaxes_kw (MAPAXES_KW);
if (g.mapaxes) {
mapaxes_kw = std::move (EclipseKeyword<double> (MAPAXES_KW, parser));
}
return EclipseGrid (g.dims, zcorn_kw, coord_kw, actnum_kw, mapaxes_kw);
}
else {
OPM_THROW(std::runtime_error,
"Can't create an ERT grid (no supported keywords found in deck)");
}
}
private:
// each of these cases could have been their respective subclass,
// but there is not any polymorphism on each of these grid types
// once we have the handle
// setup smart pointer for Cartesian grid
EclipseGrid (const std::vector<double>& dxv,
const std::vector<double>& dyv,
const std::vector<double>& dzv)
: EclipseHandle (ecl_grid_alloc_dxv_dyv_dzv (dxv.size (),
dyv.size (),
dzv.size (),
&dxv[0],
&dyv[0],
&dzv[0],
NULL),
ecl_grid_free) { }
// setup smart pointer for cornerpoint grid
EclipseGrid (const int dims[],
const EclipseKeyword<double>& coord,
const EclipseKeyword<double>& zcorn,
const EclipseKeyword<double>& actnum,
const EclipseKeyword<double>& mapaxes)
: EclipseHandle (ecl_grid_alloc_GRDECL_kw(dims[0],
dims[1],
dims[2],
zcorn,
coord,
actnum,
mapaxes),
ecl_grid_free) { }
};
#if HAVE_ERT
void BlackoilEclipseOutputWriter::writeGridInitFile_(const SimulatorTimer &timer)
{
int phases = ECL_OIL_PHASE + ECL_GAS_PHASE + ECL_WATER_PHASE;
bool endian_flip = true;//ECL_ENDIAN_FLIP;
bool fmt_file = false;
ecl_grid_type* ecl_grid = EclipseGrid::make (eclipseParser_);
EclipseFileName gridFileName (outputDir_,
baseName_,
ECL_EGRID_FILE,
timer);
fortio_type* fortio;
ecl_grid_fwrite_EGRID(ecl_grid, gridFileName);
EclipseFileName initFileName (outputDir_,
baseName_,
ECL_INIT_FILE,
timer);
if (!ecl_util_fmt_file(initFileName, &fmt_file)) {
OPM_THROW(std::runtime_error,
"Could not determine formatted/unformatted status of file:" << initFileName << " non-standard name?" << std::endl);
}
fortio = fortio_open_writer(initFileName, fmt_file, endian_flip);
{
time_t start_date = current (timer);
EclipseKeyword<double> poro_kw (PORO_KW, eclipseParser_);
ecl_init_file_fwrite_header(fortio, ecl_grid, poro_kw, phases, start_date);
}
/* This collection of keywords is somewhat arbitrary and random. */
EclipseKeyword<double> permx_kw ("PERMX", eclipseParser_);
EclipseKeyword<double> permy_kw ("PERMY", eclipseParser_);
EclipseKeyword<double> permz_kw ("PERMZ", eclipseParser_);
ecl_kw_fwrite(permx_kw, fortio);
ecl_kw_fwrite(permy_kw, fortio);
ecl_kw_fwrite(permz_kw, fortio);
fortio_fclose(fortio);
}
void BlackoilEclipseOutputWriter::writeSummaryHeaderFile_(const SimulatorTimer &timer)
{
std::string caseName;
if (!outputDir_.empty())
caseName += outputDir_ + "/";
caseName += baseName_;
if (sumWriter_)
ecl_sum_free(sumWriter_);
// allocate the data structure for the writer
sumWriter_ =
ecl_sum_alloc_writer(caseName.c_str(),
/*formattedOutput=*/false,
/*unifiedOutput=*/true,
/*joinString=*/":",
startTime_,
grid_.cartdims[0],grid_.cartdims[1],grid_.cartdims[2]);
// initialize the accumulated masses to zero
const auto &wellSpecs = eclipseParser_.getWELSPECS().welspecs;
int numWells = wellSpecs.size();
accumulatedProducedFluids_.resize(numWells);
accumulatedInjectedFluids_.resize(numWells);
for (int wellIdx = 0; wellIdx < numWells; ++wellIdx) {
for (int phaseIdx = 0; phaseIdx < /*numPhases=*/3; ++phaseIdx) {
accumulatedProducedFluids_[wellIdx][phaseIdx] = 0;
accumulatedInjectedFluids_[wellIdx][phaseIdx] = 0;
}
}
woprSmspec_.resize(numWells);
woptSmspec_.resize(numWells);
wgprSmspec_.resize(numWells);
wgptSmspec_.resize(numWells);
wwirSmspec_.resize(numWells);
wwitSmspec_.resize(numWells);
wgirSmspec_.resize(numWells);
wgitSmspec_.resize(numWells);
auto wellIt = wellSpecs.begin();
const auto &wellEndIt = wellSpecs.end();
for (int wellIdx = 0; wellIt != wellEndIt; ++wellIt, ++wellIdx) {
// add the variables which ought to be included in the summary
// file
woprSmspec_[wellIdx] = ecl_sum_add_var(sumWriter_,
/*varName=*/"WOPR",
/*wellGroupName=*/wellIt->name_.c_str(),
/*num=*/0,
/*unit=*/"SM3/DAY",
/*defaultValue=*/0.0);
woptSmspec_[wellIdx] = ecl_sum_add_var(sumWriter_,
/*varName=*/"WOPT",
/*wellGroupName=*/wellIt->name_.c_str(),
/*num=*/0,
/*unit=*/"SM3",
/*defaultValue=*/0.0);
wgprSmspec_[wellIdx] = ecl_sum_add_var(sumWriter_,
/*varName=*/"WGPR",
/*wellGroupName=*/wellIt->name_.c_str(),
/*num=*/0,
/*unit=*/"SM3/DAY",
/*defaultValue=*/0.0);
wgptSmspec_[wellIdx] = ecl_sum_add_var(sumWriter_,
/*varName=*/"WGPT",
/*wellGroupName=*/wellIt->name_.c_str(),
/*num=*/0,
/*unit=*/"SM3",
/*defaultValue=*/0.0);
wwirSmspec_[wellIdx] = ecl_sum_add_var(sumWriter_,
/*varName=*/"WWIR",
/*wellGroupName=*/wellIt->name_.c_str(),
/*num=*/0,
/*unit=*/"SM3/DAY",
/*defaultValue=*/0.0);
wwitSmspec_[wellIdx] = ecl_sum_add_var(sumWriter_,
/*varName=*/"WWIT",
/*wellGroupName=*/wellIt->name_.c_str(),
/*num=*/0,
/*unit=*/"SM3",
/*defaultValue=*/0.0);
wgirSmspec_[wellIdx] = ecl_sum_add_var(sumWriter_,
/*varName=*/"WGIR",
/*wellGroupName=*/wellIt->name_.c_str(),
/*num=*/0,
/*unit=*/"SM3/DAY",
/*defaultValue=*/0.0);
wgitSmspec_[wellIdx] = ecl_sum_add_var(sumWriter_,
/*varName=*/"WGIT",
/*wellGroupName=*/wellIt->name_.c_str(),
/*num=*/0,
/*unit=*/"SM3",
/*defaultValue=*/0.0);
}
ecl_sum_fwrite(sumWriter_);
}
#endif // HAVE_ERT
} // namespace Opm