opm-core/opm/core/grid/CellQuadrature.hpp

261 lines
11 KiB
C++
Raw Normal View History

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_CELLQUADRATURE_HEADER_INCLUDED
#define OPM_CELLQUADRATURE_HEADER_INCLUDED
#include <opm/core/grid.h>
#include <opm/core/utility/ErrorMacros.hpp>
#include <algorithm>
#include <cmath>
namespace Opm
{
namespace {
/// Calculates the determinant of a 3 x 3 matrix, represented as
/// three three-dimensional arrays.
inline double determinantOf(const double* a0,
const double* a1,
const double* a2)
{
return
a0[0] * (a1[1] * a2[2] - a2[1] * a1[2]) -
a0[1] * (a1[0] * a2[2] - a2[0] * a1[2]) +
a0[2] * (a1[0] * a2[1] - a2[0] * a1[1]);
}
/// Computes the volume of a tetrahedron consisting of 4 vertices
/// with 3-dimensional coordinates
inline double tetVolume(const double* p0,
const double* p1,
const double* p2,
const double* p3)
{
double a[3] = { p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2] };
double b[3] = { p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2] };
double c[3] = { p3[0] - p0[0], p3[1] - p0[1], p3[2] - p0[2] };
return std::fabs(determinantOf(a, b, c) / 6.0);
}
/// Calculates the area of a triangle consisting of 3 vertices
/// with 2-dimensional coordinates
inline double triangleArea2d(const double* p0,
const double* p1,
const double* p2)
{
double a[2] = { p1[0] - p0[0], p1[1] - p0[1] };
double b[2] = { p2[0] - p0[0], p2[1] - p0[1] };
double a_cross_b = a[0]*b[1] - a[1]*b[0];
return 0.5*std::fabs(a_cross_b);
}
} // anonymous namespace
/// A class providing numerical quadrature for cells.
/// In general: \int_{cell} g(x) dx = \sum_{i=0}^{n-1} w_i g(x_i).
/// Note that this class does multiply weights by cell volume,
/// so weights always sum to cell volume.
///
/// Degree 1 method:
/// Midpoint (centroid) method.
/// n = 1, w_0 = cell volume, x_0 = cell centroid
///
/// Degree 2 method for 2d (but see the note):
/// Based on subdivision of the cell into triangles,
/// with the centroid as a common vertex, and the triangle
/// edge midpoint rule.
/// Triangle i consists of the centroid C, nodes N_i and N_{i+1}.
/// Its area is A_i.
/// n = 2 * nn (nn = num nodes in face)
/// For i = 0..(nn-1):
/// w_i = 1/3 A_i.
/// w_{nn+i} = 1/3 A_{i-1} + 1/3 A_i
/// x_i = (N_i + N_{i+1})/2
/// x_{nn+i} = (C + N_i)/2
/// All N and A indices are interpreted cyclic, modulus nn.
/// Note: for simplicity of implementation, we currently use
/// n = 3 * nn
/// For i = 0..(nn-1):
/// w_{3*i + {0,1,2}} = 1/3 A_i
/// x_{3*i} = (N_i + N_{i+1})/2
/// x_{3*i + {1,2}} = (C + N_{i,i+1})/2
/// This is simpler, because we can implement it easily
/// based on iteration over faces without requiring any
/// particular (cyclic) ordering.
///
/// Degree 2 method for 3d:
/// Based on subdivision of each cell face into triangles
/// with the face centroid as a common vertex, and then
/// subdividing the cell into tetrahedra with the cell
/// centroid as a common vertex. Then apply the tetrahedron
/// rule with the following 4 nodes (uniform weights):
/// a = 0.138196601125010515179541316563436
/// x_i has all barycentric coordinates = a, except for
/// the i'th coordinate which is = 1 - 3a.
/// This rule is from http://nines.cs.kuleuven.be/ecf,
/// it is the second degree 2 4-point rule for tets,
/// referenced to Stroud(1971).
/// The tetrahedra are numbered T_{i,j}, and are given by the
/// cell centroid C, the face centroid FC_i, and two nodes
/// of face i: FN_{i,j}, FN_{i,j+1}.
class CellQuadrature
{
public:
CellQuadrature(const UnstructuredGrid& grid,
const int cell,
const int degree)
: grid_(grid), cell_(cell), degree_(degree)
{
if (grid.dimensions > 3) {
2013-08-28 06:59:03 -05:00
OPM_THROW(std::runtime_error, "CellQuadrature only implemented for up to 3 dimensions.");
}
if (degree > 2) {
2013-08-28 06:59:03 -05:00
OPM_THROW(std::runtime_error, "CellQuadrature exact for polynomial degrees > 1 not implemented.");
}
}
int numQuadPts() const
{
if (degree_ < 2 || grid_.dimensions == 1) {
return 1;
}
// Degree 2 case.
if (grid_.dimensions == 2) {
return 3*(grid_.cell_facepos[cell_ + 1] - grid_.cell_facepos[cell_]);
}
assert(grid_.dimensions == 3);
int sumnodes = 0;
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
const int face = grid_.cell_faces[hf];
sumnodes += grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
}
return 4*sumnodes;
}
void quadPtCoord(const int index, double* coord) const
{
const int dim = grid_.dimensions;
const double* cc = grid_.cell_centroids + dim*cell_;
if (degree_ < 2) {
std::copy(cc, cc + dim, coord);
return;
}
// Degree 2 case.
if (dim == 2) {
if (index % 3 == 0) {
// Boundary midpoint. This is the face centroid.
const int hface = grid_.cell_facepos[cell_] + index/3;
const int face = grid_.cell_faces[hface];
const double* fc = grid_.face_centroids + dim*face;
std::copy(fc, fc + dim, coord);
} else {
// Interiour midpoint. This is the average of the
// cell centroid and a face node (they should
// always have two nodes in 2d).
const int hface = grid_.cell_facepos[cell_] + index/3;
const int face = grid_.cell_faces[hface];
const int nodeoff = (index % 3) - 1; // == 0 or 1
const int node = grid_.face_nodes[grid_.face_nodepos[face] + nodeoff];
const double* nc = grid_.node_coordinates + dim*node;
for (int dd = 0; dd < dim; ++dd) {
coord[dd] = 0.5*(nc[dd] + cc[dd]);
}
}
return;
}
assert(dim == 3);
int tetindex = index / 4;
const int subindex = index % 4;
const double* nc = grid_.node_coordinates;
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
const int face = grid_.cell_faces[hf];
const int nfn = grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
if (nfn <= tetindex) {
// Our tet is not associated with this face.
tetindex -= nfn;
continue;
}
const double* fc = grid_.face_centroids + dim*face;
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face];
const int node0 = fnodes[tetindex];
const int node1 = fnodes[(tetindex + 1) % nfn];
const double* n0c = nc + dim*node0;
const double* n1c = nc + dim*node1;
const double a = 0.138196601125010515179541316563436;
// Barycentric coordinates of our point in the tet.
double baryc[4] = { a, a, a, a };
baryc[subindex] = 1.0 - 3.0*a;
for (int dd = 0; dd < dim; ++dd) {
coord[dd] = baryc[0]*cc[dd] + baryc[1]*fc[dd] + baryc[2]*n0c[dd] + baryc[3]*n1c[dd];
}
return;
}
2013-08-28 06:59:03 -05:00
OPM_THROW(std::runtime_error, "Should never reach this point.");
}
double quadPtWeight(const int index) const
{
if (degree_ < 2) {
return grid_.cell_volumes[cell_];
}
// Degree 2 case.
const int dim = grid_.dimensions;
const double* cc = grid_.cell_centroids + dim*cell_;
if (dim == 2) {
const int hface = grid_.cell_facepos[cell_] + index/3;
const int face = grid_.cell_faces[hface];
const int* nptr = grid_.face_nodes + grid_.face_nodepos[face];
const double* nc0 = grid_.node_coordinates + dim*nptr[0];
const double* nc1 = grid_.node_coordinates + dim*nptr[1];
return triangleArea2d(nc0, nc1, cc)/3.0;
}
assert(dim == 3);
int tetindex = index / 4;
const double* nc = grid_.node_coordinates;
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
const int face = grid_.cell_faces[hf];
const int nfn = grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
if (nfn <= tetindex) {
// Our tet is not associated with this face.
tetindex -= nfn;
continue;
}
const double* fc = grid_.face_centroids + dim*face;
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face];
const int node0 = fnodes[tetindex];
const int node1 = fnodes[(tetindex + 1) % nfn];
const double* n0c = nc + dim*node0;
const double* n1c = nc + dim*node1;
return 0.25*tetVolume(cc, fc, n0c, n1c);
}
2013-08-28 06:59:03 -05:00
OPM_THROW(std::runtime_error, "Should never reach this point.");
}
private:
const UnstructuredGrid& grid_;
const int cell_;
const int degree_;
};
} // namespace Opm
#endif // OPM_CELLQUADRATURE_HEADER_INCLUDED