258 lines
9.7 KiB
C++
258 lines
9.7 KiB
C++
|
/*
|
||
|
Copyright 2010, 2011, 2012 SINTEF ICT, Applied Mathematics.
|
||
|
|
||
|
This file is part of the Open Porous Media project (OPM).
|
||
|
|
||
|
OPM is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
OPM is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
|
||
|
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
|
||
|
#include <opm/core/utility/buildUniformMonotoneTable.hpp>
|
||
|
#include <opm/core/utility/ErrorMacros.hpp>
|
||
|
#include <iostream>
|
||
|
|
||
|
namespace Opm
|
||
|
{
|
||
|
|
||
|
/// Default constructor.
|
||
|
SaturationPropsFromDeck::SaturationPropsFromDeck()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/// Initialize from deck.
|
||
|
void SaturationPropsFromDeck::init(const Dune::EclipseGridParser& deck)
|
||
|
{
|
||
|
phase_usage_ = phaseUsageFromDeck(deck);
|
||
|
|
||
|
// Extract input data.
|
||
|
// Oil phase should be active.
|
||
|
if (!phase_usage_.phase_used[Liquid]) {
|
||
|
THROW("SaturationPropsFromDeck::init() -- oil phase must be active.");
|
||
|
}
|
||
|
const int samples = 200;
|
||
|
if (phase_usage_.phase_used[Aqua]) {
|
||
|
const Dune::SWOF::table_t& swof_table = deck.getSWOF().swof_;
|
||
|
if (swof_table.size() != 1) {
|
||
|
THROW("We must have exactly one SWOF table.");
|
||
|
}
|
||
|
const std::vector<double>& sw = swof_table[0][0];
|
||
|
const std::vector<double>& krw = swof_table[0][1];
|
||
|
const std::vector<double>& krow = swof_table[0][2];
|
||
|
const std::vector<double>& pcow = swof_table[0][3];
|
||
|
buildUniformMonotoneTable(sw, krw, samples, krw_);
|
||
|
buildUniformMonotoneTable(sw, krow, samples, krow_);
|
||
|
buildUniformMonotoneTable(sw, pcow, samples, pcow_);
|
||
|
krocw_ = krow[0]; // At connate water -> ecl. SWOF
|
||
|
}
|
||
|
if (phase_usage_.phase_used[Vapour]) {
|
||
|
const Dune::SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
|
||
|
if (sgof_table.size() != 1) {
|
||
|
THROW("We must have exactly one SGOF table.");
|
||
|
}
|
||
|
const std::vector<double>& sg = sgof_table[0][0];
|
||
|
const std::vector<double>& krg = sgof_table[0][1];
|
||
|
const std::vector<double>& krog = sgof_table[0][2];
|
||
|
const std::vector<double>& pcog = sgof_table[0][3];
|
||
|
buildUniformMonotoneTable(sg, krg, samples, krg_);
|
||
|
buildUniformMonotoneTable(sg, krog, samples, krog_);
|
||
|
buildUniformMonotoneTable(sg, pcog, samples, pcog_);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Relative permeability.
|
||
|
/// \param[in] n Number of data points.
|
||
|
/// \param[in] s Array of nP saturation values.
|
||
|
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
|
||
|
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
|
||
|
/// array must be valid before calling.
|
||
|
/// The P^2 derivative matrix is
|
||
|
/// m_{ij} = \frac{dkr_i}{ds^j},
|
||
|
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||
|
void SaturationPropsFromDeck::relperm(const int n,
|
||
|
const double* s,
|
||
|
double* kr,
|
||
|
double* dkrds) const
|
||
|
{
|
||
|
const int np = phase_usage_.num_phases;
|
||
|
if (dkrds) {
|
||
|
#pragma omp parallel for
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
evalKrDeriv(s + np*i, kr + np*i, dkrds + np*np*i);
|
||
|
}
|
||
|
} else {
|
||
|
#pragma omp parallel for
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
evalKr(s + np*i, kr + np*i);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Capillary pressure.
|
||
|
/// \param[in] n Number of data points.
|
||
|
/// \param[in] s Array of nP saturation values.
|
||
|
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
|
||
|
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
|
||
|
/// array must be valid before calling.
|
||
|
/// The P^2 derivative matrix is
|
||
|
/// m_{ij} = \frac{dpc_i}{ds^j},
|
||
|
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||
|
void SaturationPropsFromDeck::capPress(const int n,
|
||
|
const double* s,
|
||
|
double* pc,
|
||
|
double* dpcds) const
|
||
|
{
|
||
|
const int np = phase_usage_.num_phases;
|
||
|
if (dpcds) {
|
||
|
#pragma omp parallel for
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
evalPcDeriv(s + np*i, pc + np*i, dpcds + np*np*i);
|
||
|
}
|
||
|
} else {
|
||
|
#pragma omp parallel for
|
||
|
for (int i = 0; i < n; ++i) {
|
||
|
evalPc(s + np*i, pc + np*i);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void SaturationPropsFromDeck::evalKr(const double* s, double* kr) const
|
||
|
{
|
||
|
if (phase_usage_.num_phases == 3) {
|
||
|
// Stone-II relative permeability model.
|
||
|
double sw = s[Aqua];
|
||
|
double sg = s[Vapour];
|
||
|
double krw = krw_(sw);
|
||
|
double krg = krg_(sg);
|
||
|
double krow = krow_(sw + sg); // = 1 - so
|
||
|
double krog = krog_(sg); // = 1 - so - sw
|
||
|
double krocw = krocw_;
|
||
|
kr[Aqua] = krw;
|
||
|
kr[Vapour] = krg;
|
||
|
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
|
||
|
if (kr[Liquid] < 0.0) {
|
||
|
kr[Liquid] = 0.0;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
// We have a two-phase situation. We know that oil is active.
|
||
|
if (phase_usage_.phase_used[Aqua]) {
|
||
|
int wpos = phase_usage_.phase_pos[Aqua];
|
||
|
int opos = phase_usage_.phase_pos[Liquid];
|
||
|
double sw = s[wpos];
|
||
|
double krw = krw_(sw);
|
||
|
double krow = krow_(sw);
|
||
|
kr[wpos] = krw;
|
||
|
kr[opos] = krow;
|
||
|
} else {
|
||
|
ASSERT(phase_usage_.phase_used[Vapour]);
|
||
|
int gpos = phase_usage_.phase_pos[Vapour];
|
||
|
int opos = phase_usage_.phase_pos[Liquid];
|
||
|
double sg = s[gpos];
|
||
|
double krg = krg_(sg);
|
||
|
double krog = krog_(sg);
|
||
|
kr[gpos] = krg;
|
||
|
kr[opos] = krog;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void SaturationPropsFromDeck::evalKrDeriv(const double* s, double* kr, double* dkrds) const
|
||
|
{
|
||
|
const int np = phase_usage_.num_phases;
|
||
|
std::fill(dkrds, dkrds + np*np, 0.0);
|
||
|
|
||
|
if (np == 3) {
|
||
|
// Stone-II relative permeability model.
|
||
|
double sw = s[Aqua];
|
||
|
double sg = s[Vapour];
|
||
|
double krw = krw_(sw);
|
||
|
double dkrww = krw_.derivative(sw);
|
||
|
double krg = krg_(sg);
|
||
|
double dkrgg = krg_.derivative(sg);
|
||
|
double krow = krow_(sw + sg);
|
||
|
double dkrow = krow_.derivative(sw + sg);
|
||
|
double krog = krog_(sg);
|
||
|
double dkrog = krog_.derivative(sg);
|
||
|
double krocw = krocw_;
|
||
|
kr[Aqua] = krw;
|
||
|
kr[Vapour] = krg;
|
||
|
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
|
||
|
if (kr[Liquid] < 0.0) {
|
||
|
kr[Liquid] = 0.0;
|
||
|
}
|
||
|
dkrds[Aqua + Aqua*np] = dkrww;
|
||
|
dkrds[Vapour + Vapour*np] = dkrgg;
|
||
|
dkrds[Liquid + Aqua*np] = krocw*((dkrow/krocw + dkrww)*(krog/krocw + krg) - dkrww);
|
||
|
dkrds[Liquid + Vapour*np] = krocw*((krow/krocw + krw)*(dkrog/krocw + dkrgg) - dkrgg)
|
||
|
+ krocw*((dkrow/krocw + krw)*(krog/krocw + krg) - dkrgg);
|
||
|
return;
|
||
|
}
|
||
|
// We have a two-phase situation. We know that oil is active.
|
||
|
if (phase_usage_.phase_used[Aqua]) {
|
||
|
int wpos = phase_usage_.phase_pos[Aqua];
|
||
|
int opos = phase_usage_.phase_pos[Liquid];
|
||
|
double sw = s[wpos];
|
||
|
double krw = krw_(sw);
|
||
|
double dkrww = krw_.derivative(sw);
|
||
|
double krow = krow_(sw);
|
||
|
double dkrow = krow_.derivative(sw);
|
||
|
kr[wpos] = krw;
|
||
|
kr[opos] = krow;
|
||
|
dkrds[wpos + wpos*np] = dkrww;
|
||
|
dkrds[opos + wpos*np] = dkrow; // Row opos, column wpos, fortran order.
|
||
|
} else {
|
||
|
ASSERT(phase_usage_.phase_used[Vapour]);
|
||
|
int gpos = phase_usage_.phase_pos[Vapour];
|
||
|
int opos = phase_usage_.phase_pos[Liquid];
|
||
|
double sg = s[gpos];
|
||
|
double krg = krg_(sg);
|
||
|
double dkrgg = krg_.derivative(sg);
|
||
|
double krog = krog_(sg);
|
||
|
double dkrog = krog_.derivative(sg);
|
||
|
kr[gpos] = krg;
|
||
|
kr[opos] = krog;
|
||
|
dkrds[gpos + gpos*np] = dkrgg;
|
||
|
dkrds[opos + gpos*np] = dkrog;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
void SaturationPropsFromDeck::evalPc(const double* s, double* pc) const
|
||
|
{
|
||
|
pc[phase_usage_.phase_pos[Liquid]] = 0.0;
|
||
|
if (phase_usage_.phase_used[Aqua]) {
|
||
|
int pos = phase_usage_.phase_pos[Aqua];
|
||
|
pc[pos] = pcow_(s[pos]);
|
||
|
}
|
||
|
if (phase_usage_.phase_used[Vapour]) {
|
||
|
int pos = phase_usage_.phase_pos[Vapour];
|
||
|
pc[pos] = pcog_(s[pos]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void SaturationPropsFromDeck::evalPcDeriv(const double* /*s*/, double* /*pc*/, double* /*dpcds*/) const
|
||
|
{
|
||
|
THROW("Evaluation of capillary pressure derivatives not yet implemented.");
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
} // namespace Opm
|
||
|
|
||
|
|