311 lines
10 KiB
C++
311 lines
10 KiB
C++
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||
|
// vi: set et ts=4 sw=4 sts=4:
|
||
|
/*****************************************************************************
|
||
|
* Copyright (C) 2010-2013 by Andreas Lauser *
|
||
|
* *
|
||
|
* This program is free software: you can redistribute it and/or modify *
|
||
|
* it under the terms of the GNU General Public License as published by *
|
||
|
* the Free Software Foundation, either version 2 of the License, or *
|
||
|
* (at your option) any later version. *
|
||
|
* *
|
||
|
* This program is distributed in the hope that it will be useful, *
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
|
* GNU General Public License for more details. *
|
||
|
* *
|
||
|
* You should have received a copy of the GNU General Public License *
|
||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
||
|
*****************************************************************************/
|
||
|
/*!
|
||
|
* \file
|
||
|
* \brief Define some often used mathematical functions
|
||
|
*/
|
||
|
#ifndef OPM_MATH_HH
|
||
|
#define OPM_MATH_HH
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <algorithm>
|
||
|
|
||
|
namespace Opm
|
||
|
{
|
||
|
/*!
|
||
|
* \ingroup Math
|
||
|
* \brief Invert a linear polynomial analytically
|
||
|
*
|
||
|
* The polynomial is defined as
|
||
|
* \f[ p(x) = a\; x + b \f]
|
||
|
*
|
||
|
* This method Returns the number of solutions which are in the real
|
||
|
* numbers, i.e. 1 except if the slope of the line is 0.
|
||
|
*
|
||
|
* \param sol Container into which the solutions are written
|
||
|
* \param a The coefficient for the linear term
|
||
|
* \param b The coefficient for the constant term
|
||
|
*/
|
||
|
template <class Scalar, class SolContainer>
|
||
|
int invertLinearPolynomial(SolContainer &sol,
|
||
|
Scalar a,
|
||
|
Scalar b)
|
||
|
{
|
||
|
if (a == 0.0)
|
||
|
return 0;
|
||
|
|
||
|
sol[0] = -b/a;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \ingroup Math
|
||
|
* \brief Invert a quadratic polynomial analytically
|
||
|
*
|
||
|
* The polynomial is defined as
|
||
|
* \f[ p(x) = a\; x^2 + + b\;x + c \f]
|
||
|
*
|
||
|
* This method teturns the number of solutions which are in the real
|
||
|
* numbers. The "sol" argument contains the real roots of the parabola
|
||
|
* in order with the smallest root first.
|
||
|
*
|
||
|
* \param sol Container into which the solutions are written
|
||
|
* \param a The coefficient for the quadratic term
|
||
|
* \param b The coefficient for the linear term
|
||
|
* \param c The coefficient for the constant term
|
||
|
*/
|
||
|
template <class Scalar, class SolContainer>
|
||
|
int invertQuadraticPolynomial(SolContainer &sol,
|
||
|
Scalar a,
|
||
|
Scalar b,
|
||
|
Scalar c)
|
||
|
{
|
||
|
// check for a line
|
||
|
if (a == 0.0)
|
||
|
return invertLinearPolynomial(sol, b, c);
|
||
|
|
||
|
// discriminant
|
||
|
Scalar Delta = b*b - 4*a*c;
|
||
|
if (Delta < 0)
|
||
|
return 0; // no real roots
|
||
|
|
||
|
Delta = std::sqrt(Delta);
|
||
|
sol[0] = (- b + Delta)/(2*a);
|
||
|
sol[1] = (- b - Delta)/(2*a);
|
||
|
|
||
|
// sort the result
|
||
|
if (sol[0] > sol[1])
|
||
|
std::swap(sol[0], sol[1]);
|
||
|
return 2; // two real roots
|
||
|
}
|
||
|
|
||
|
//! \cond SKIP_THIS
|
||
|
template <class Scalar, class SolContainer>
|
||
|
void invertCubicPolynomialPostProcess_(SolContainer &sol,
|
||
|
int numSol,
|
||
|
Scalar a,
|
||
|
Scalar b,
|
||
|
Scalar c,
|
||
|
Scalar d)
|
||
|
{
|
||
|
// do one Newton iteration on the analytic solution if the
|
||
|
// precision is increased
|
||
|
for (int i = 0; i < numSol; ++i) {
|
||
|
Scalar x = sol[i];
|
||
|
Scalar fOld = d + x*(c + x*(b + x*a));
|
||
|
|
||
|
Scalar fPrime = c + x*(2*b + x*3*a);
|
||
|
if (fPrime == 0.0)
|
||
|
continue;
|
||
|
x -= fOld/fPrime;
|
||
|
|
||
|
Scalar fNew = d + x*(c + x*(b + x*a));
|
||
|
if (std::abs(fNew) < std::abs(fOld))
|
||
|
sol[i] = x;
|
||
|
}
|
||
|
}
|
||
|
//! \endcond
|
||
|
|
||
|
/*!
|
||
|
* \ingroup Math
|
||
|
* \brief Invert a cubic polynomial analytically
|
||
|
*
|
||
|
* The polynomial is defined as
|
||
|
* \f[ p(x) = a\; x^3 + + b\;x^3 + c\;x + d \f]
|
||
|
*
|
||
|
* This method teturns the number of solutions which are in the real
|
||
|
* numbers. The "sol" argument contains the real roots of the cubic
|
||
|
* polynomial in order with the smallest root first.
|
||
|
*
|
||
|
* \param sol Container into which the solutions are written
|
||
|
* \param a The coefficient for the cubic term
|
||
|
* \param b The coefficient for the quadratic term
|
||
|
* \param c The coefficient for the linear term
|
||
|
* \param d The coefficient for the constant term
|
||
|
*/
|
||
|
template <class Scalar, class SolContainer>
|
||
|
int invertCubicPolynomial(SolContainer *sol,
|
||
|
Scalar a,
|
||
|
Scalar b,
|
||
|
Scalar c,
|
||
|
Scalar d)
|
||
|
{
|
||
|
// reduces to a quadratic polynomial
|
||
|
if (a == 0)
|
||
|
return invertQuadraticPolynomial(sol, b, c, d);
|
||
|
|
||
|
// normalize the polynomial
|
||
|
b /= a;
|
||
|
c /= a;
|
||
|
d /= a;
|
||
|
a = 1;
|
||
|
|
||
|
// get rid of the quadratic term by subsituting x = t - b/3
|
||
|
Scalar p = c - b*b/3;
|
||
|
Scalar q = d + (2*b*b*b - 9*b*c)/27;
|
||
|
|
||
|
if (p != 0.0 && q != 0.0) {
|
||
|
// At this point
|
||
|
//
|
||
|
// t^3 + p*t + q = 0
|
||
|
//
|
||
|
// with p != 0 and q != 0 holds. Introducing the variables u and v
|
||
|
// with the properties
|
||
|
//
|
||
|
// u + v = t and 3*u*v + p = 0
|
||
|
//
|
||
|
// leads to
|
||
|
//
|
||
|
// u^3 + v^3 + q = 0 .
|
||
|
//
|
||
|
// multiplying both sides with u^3 and taking advantage of the
|
||
|
// fact that u*v = -p/3 leads to
|
||
|
//
|
||
|
// u^6 + q*u^3 - p^3/27 = 0
|
||
|
//
|
||
|
// Now, substituting u^3 = w yields
|
||
|
//
|
||
|
// w^2 + q*w - p^3/27 = 0
|
||
|
//
|
||
|
// This is a quadratic equation with the solutions
|
||
|
//
|
||
|
// w = -q/2 + sqrt(q^2/4 + p^3/27) and
|
||
|
// w = -q/2 - sqrt(q^2/4 + p^3/27)
|
||
|
//
|
||
|
// Since w is equivalent to u^3 it is sufficient to only look at
|
||
|
// one of the two cases. Then, there are still 2 cases: positive
|
||
|
// and negative discriminant.
|
||
|
Scalar wDisc = q*q/4 + p*p*p/27;
|
||
|
if (wDisc >= 0) { // the positive discriminant case:
|
||
|
// calculate the cube root of - q/2 + sqrt(q^2/4 + p^3/27)
|
||
|
Scalar u = - q/2 + std::sqrt(wDisc);
|
||
|
if (u < 0) u = - std::pow(-u, 1.0/3);
|
||
|
else u = std::pow(u, 1.0/3);
|
||
|
|
||
|
// at this point, u != 0 since p^3 = 0 is necessary in order
|
||
|
// for u = 0 to hold, so
|
||
|
sol[0] = u - p/(3*u) - b/3;
|
||
|
// does not produce a division by zero. the remaining two
|
||
|
// roots of u are rotated by +- 2/3*pi in the complex plane
|
||
|
// and thus not considered here
|
||
|
invertCubicPolynomialPostProcess_(sol, 1, a, b, c, d);
|
||
|
return 1;
|
||
|
}
|
||
|
else { // the negative discriminant case:
|
||
|
Scalar uCubedRe = - q/2;
|
||
|
Scalar uCubedIm = std::sqrt(-wDisc);
|
||
|
// calculate the cube root of - q/2 + sqrt(q^2/4 + p^3/27)
|
||
|
Scalar uAbs = std::pow(std::sqrt(uCubedRe*uCubedRe + uCubedIm*uCubedIm), 1.0/3);
|
||
|
Scalar phi = std::atan2(uCubedIm, uCubedRe)/3;
|
||
|
|
||
|
// calculate the length and the angle of the primitive root
|
||
|
|
||
|
// with the definitions from above it follows that
|
||
|
//
|
||
|
// x = u - p/(3*u) - b/3
|
||
|
//
|
||
|
// where x and u are complex numbers. Rewritten in polar form
|
||
|
// this is equivalent to
|
||
|
//
|
||
|
// x = |u|*e^(i*phi) - p*e^(-i*phi)/(3*|u|) - b/3 .
|
||
|
//
|
||
|
// Factoring out the e^ terms and subtracting the additional
|
||
|
// terms, yields
|
||
|
//
|
||
|
// x = (e^(i*phi) + e^(-i*phi))*(|u| - p/(3*|u|)) - y - b/3
|
||
|
//
|
||
|
// with
|
||
|
//
|
||
|
// y = - |u|*e^(-i*phi) + p*e^(i*phi)/(3*|u|) .
|
||
|
//
|
||
|
// The crucial observation is the fact that y is the conjugate
|
||
|
// of - x + b/3. This means that after taking advantage of the
|
||
|
// relation
|
||
|
//
|
||
|
// e^(i*phi) + e^(-i*phi) = 2*cos(phi)
|
||
|
//
|
||
|
// the equation
|
||
|
//
|
||
|
// x = 2*cos(phi)*(|u| - p / (3*|u|)) - conj(x) - 2*b/3
|
||
|
//
|
||
|
// holds. Since |u|, p, b and cos(phi) are real numbers, it
|
||
|
// follows that Im(x) = - Im(x) and thus Im(x) = 0. This
|
||
|
// implies
|
||
|
//
|
||
|
// Re(x) = x = cos(phi)*(|u| - p / (3*|u|)) - b/3 .
|
||
|
//
|
||
|
// Considering the fact that u is a cubic root, we have three
|
||
|
// values for phi which differ by 2/3*pi. This allows to
|
||
|
// calculate the three real roots of the polynomial:
|
||
|
for (int i = 0; i < 3; ++i) {
|
||
|
sol[i] = std::cos(phi)*(uAbs - p/(3*uAbs)) - b/3;
|
||
|
phi += 2*M_PI/3;
|
||
|
}
|
||
|
|
||
|
// post process the obtained solution to increase numerical
|
||
|
// precision
|
||
|
invertCubicPolynomialPostProcess_(sol, 3, a, b, c, d);
|
||
|
|
||
|
// sort the result
|
||
|
std::sort(sol, sol + 3);
|
||
|
|
||
|
return 3;
|
||
|
}
|
||
|
}
|
||
|
// Handle some (pretty unlikely) special cases required to avoid
|
||
|
// divisions by zero in the code above...
|
||
|
else if (p == 0.0 && q == 0.0) {
|
||
|
// t^3 = 0, i.e. triple root at t = 0
|
||
|
sol[0] = sol[1] = sol[2] = 0.0 - b/3;
|
||
|
return 3;
|
||
|
}
|
||
|
else if (p == 0.0 && q != 0.0) {
|
||
|
// t^3 + q = 0,
|
||
|
//
|
||
|
// i. e. single real root at t=curt(q)
|
||
|
Scalar t;
|
||
|
if (-q > 0) t = std::pow(-q, 1./3);
|
||
|
else t = - std::pow(q, 1./3);
|
||
|
sol[0] = t - b/3;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
assert(p != 0.0 && q == 0.0);
|
||
|
|
||
|
// t^3 + p*t = 0 = t*(t^2 + p),
|
||
|
//
|
||
|
// i. e. roots at t = 0, t^2 + p = 0
|
||
|
if (p > 0) {
|
||
|
sol[0] = 0.0 - b/3;
|
||
|
return 1; // only a single real root at t=0
|
||
|
}
|
||
|
|
||
|
// two additional real roots at t = sqrt(-p) and t = -sqrt(-p)
|
||
|
sol[0] = -std::sqrt(-p) - b/3;;
|
||
|
sol[1] = 0.0 - b/3;
|
||
|
sol[2] = std::sqrt(-p) - b/3;
|
||
|
|
||
|
return 3;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif
|