Merge branch 'master' into ert
Conflicts: Makefile.am configure.ac examples/Makefile.am opm/core/GridManager.cpp opm/core/eclipse/EclipseGridParser.cpp opm/core/grid/cpgpreprocess/preprocess.h tests/Makefile.am
This commit is contained in:
commit
00bbfa06a8
12
.gitignore
vendored
12
.gitignore
vendored
@ -1,4 +1,5 @@
|
||||
*~
|
||||
.\#*
|
||||
*.o
|
||||
*.lo
|
||||
*.la
|
||||
@ -28,15 +29,26 @@ ltmain.sh
|
||||
m4/libtool.m4
|
||||
m4/lt*.m4
|
||||
missing
|
||||
tutorials/tutorial[1-4]
|
||||
|
||||
# Ignoring executables
|
||||
*_test
|
||||
examples/scaneclipsedeck
|
||||
examples/spu_2p
|
||||
examples/reorder-qfs
|
||||
examples/refine_wells
|
||||
examples/sim_2p_incomp_reorder
|
||||
examples/sim_wateroil
|
||||
examples/wells_example
|
||||
tests/test_cfs_tpfa
|
||||
tests/test_jacsys
|
||||
tests/test_readvector
|
||||
tests/test_sf2p
|
||||
tests/bo_fluid_p_and_z_deps
|
||||
tests/bo_fluid_pressuredeps
|
||||
tests/test_cartgrid
|
||||
tests/test_column_extract
|
||||
tests/test_lapack
|
||||
tests/test_read_vag
|
||||
tests/test_readpolymer
|
||||
tests/test_writeVtkData
|
||||
|
120
CMakeLists.txt
120
CMakeLists.txt
@ -2,8 +2,10 @@ cmake_minimum_required (VERSION 2.6)
|
||||
project (opm-core)
|
||||
|
||||
enable_language(Fortran)
|
||||
|
||||
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
SET(CMAKE_BUILD_TYPE "debug")
|
||||
SET(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -D_GLIBCXX_DEBUG -pg -Wall -fopenmp -ggdb")
|
||||
SET(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} -pg -Wall -fopenmp -ggdb")
|
||||
|
||||
set(Boost_USE_STATIC_LIBS ON)
|
||||
set(Boost_USE_MULTITHREADED ON)
|
||||
@ -16,94 +18,50 @@ include_directories(${PROJECT_SOURCE_DIR} ${Boost_INCLUDE_DIRS})
|
||||
|
||||
|
||||
# The opmcore library
|
||||
add_library(opmcore
|
||||
opm/core/eclipse/EclipseGridInspector.cpp
|
||||
opm/core/eclipse/EclipseGridParser.cpp
|
||||
opm/core/fluid/blackoil/BlackoilPvtProperties.cpp
|
||||
opm/core/fluid/blackoil/SinglePvtDead.cpp
|
||||
opm/core/fluid/blackoil/SinglePvtLiveGas.cpp
|
||||
opm/core/fluid/blackoil/SinglePvtLiveOil.cpp
|
||||
opm/core/fluid/blackoil/SinglePvtInterface.cpp
|
||||
opm/core/fluid/BlackoilPropertiesBasic.cpp
|
||||
opm/core/fluid/BlackoilPropertiesFromDeck.cpp
|
||||
opm/core/fluid/IncompPropertiesBasic.cpp
|
||||
opm/core/fluid/IncompPropertiesFromDeck.cpp
|
||||
opm/core/fluid/PvtPropertiesBasic.cpp
|
||||
opm/core/fluid/PvtPropertiesIncompFromDeck.cpp
|
||||
opm/core/fluid/RockBasic.cpp
|
||||
opm/core/fluid/RockFromDeck.cpp
|
||||
opm/core/fluid/SaturationPropsBasic.cpp
|
||||
opm/core/fluid/SaturationPropsFromDeck.cpp
|
||||
opm/core/utility/MonotCubicInterpolator.cpp
|
||||
opm/core/utility/parameters/Parameter.cpp
|
||||
opm/core/utility/parameters/ParameterGroup.cpp
|
||||
opm/core/utility/parameters/ParameterTools.cpp
|
||||
opm/core/utility/parameters/ParameterXML.cpp
|
||||
opm/core/utility/parameters/tinyxml/tinystr.cpp
|
||||
opm/core/utility/parameters/tinyxml/tinyxml.cpp
|
||||
opm/core/utility/parameters/tinyxml/tinyxmlerror.cpp
|
||||
opm/core/utility/parameters/tinyxml/tinyxmlparser.cpp
|
||||
opm/core/utility/cart_grid.c
|
||||
opm/core/utility/cpgpreprocess/geometry.c
|
||||
opm/core/utility/cpgpreprocess/preprocess.c
|
||||
opm/core/utility/cpgpreprocess/readvector.cpp
|
||||
opm/core/utility/cpgpreprocess/cgridinterface.c
|
||||
opm/core/utility/cpgpreprocess/sparsetable.c
|
||||
opm/core/utility/cpgpreprocess/facetopology.c
|
||||
opm/core/utility/cpgpreprocess/uniquepoints.c
|
||||
opm/core/utility/StopWatch.cpp
|
||||
opm/core/utility/newwells.c
|
||||
opm/core/utility/writeVtkData.cpp
|
||||
opm/core/GridManager.cpp
|
||||
opm/core/linalg/sparse_sys.c
|
||||
opm/core/pressure/cfsh.c
|
||||
opm/core/pressure/flow_bc.c
|
||||
opm/core/pressure/well.c
|
||||
opm/core/pressure/fsh_common_impl.c
|
||||
opm/core/pressure/fsh.c
|
||||
opm/core/pressure/tpfa/ifs_tpfa.c
|
||||
opm/core/pressure/tpfa/compr_source.c
|
||||
opm/core/pressure/tpfa/cfs_tpfa.c
|
||||
opm/core/pressure/tpfa/compr_bc.c
|
||||
opm/core/pressure/tpfa/compr_quant.c
|
||||
opm/core/pressure/tpfa/compr_quant_general.c
|
||||
opm/core/pressure/tpfa/cfs_tpfa_residual.c
|
||||
opm/core/pressure/tpfa/trans_tpfa.c
|
||||
opm/core/pressure/msmfem/coarse_conn.c
|
||||
opm/core/pressure/msmfem/partition.c
|
||||
opm/core/pressure/msmfem/hash_set.c
|
||||
opm/core/pressure/msmfem/ifsh_ms.c
|
||||
opm/core/pressure/msmfem/dfs.c
|
||||
opm/core/pressure/msmfem/coarse_sys.c
|
||||
opm/core/pressure/ifsh.c
|
||||
opm/core/pressure/IncompTpfa.cpp
|
||||
opm/core/pressure/mimetic/mimetic.c
|
||||
opm/core/pressure/mimetic/hybsys_global.c
|
||||
opm/core/pressure/mimetic/hybsys.c
|
||||
opm/core/transport/spu_explicit.c
|
||||
opm/core/transport/spu_implicit.c
|
||||
opm/core/transport/transport_source.c
|
||||
opm/core/transport/reorder/TransportModelInterface.cpp
|
||||
opm/core/transport/reorder/TransportModelTwophase.cpp
|
||||
opm/core/transport/reorder/reordersequence.cpp
|
||||
opm/core/transport/reorder/nlsolvers.c
|
||||
opm/core/transport/reorder/tarjan.c
|
||||
opm/core/linalg/call_umfpack.c
|
||||
opm/core/pressure/IncompTpfa.cpp
|
||||
opm/core/linalg/LinearSolverInterface.cpp
|
||||
opm/core/linalg/LinearSolverIstl.cpp
|
||||
opm/core/linalg/LinearSolverUmfpack.cpp
|
||||
)
|
||||
FILE(GLOB_RECURSE C_FILES_CORE "opm/core/*.c")
|
||||
FILE(GLOB_RECURSE CPP_FILES_CORE "opm/core/*.cpp")
|
||||
FILE(GLOB_RECURSE REMOVE_FILES "processgrid.c")
|
||||
FILE(GLOB_RECURSE REMOVE_FILESMX "mx*.c")
|
||||
FILE(GLOB_RECURSE REMOVE_FILESAGMG "*AGMG.cpp" "*test*")
|
||||
list(REMOVE_ITEM C_FILES_CORE ${REMOVE_FILES} ${REMOVE_FILESMX} )
|
||||
list(REMOVE_ITEM CPP_FILES_CORE ${REMOVE_FILES} ${REMOVE_FILESAGMG})
|
||||
add_library(opmcore ${C_FILES_CORE} ${CPP_FILES_CORE} )
|
||||
|
||||
|
||||
target_link_libraries(opmcore
|
||||
${UMFPACK_LIBRARIES} ${LAPACK_LINKER_FLAGS} ${LAPACK_LIBRARIES} ${Boost_LIBRARIES}
|
||||
-lcholmod -lcamd -lccolamd -lmetis -ldunecommon
|
||||
)
|
||||
|
||||
FILE(GLOB CPP_EXAMPLES "examples/*.cpp")
|
||||
FILE(GLOB CPP_tests "tests/*.cpp")
|
||||
add_executable(spu_2p examples/spu_2p.cpp)
|
||||
add_executable(sim_2p_incomp_reorder examples/sim_2p_incomp_reorder.cpp)
|
||||
add_executable(sim_wateroil examples/sim_wateroil.cpp)
|
||||
|
||||
add_executable(pvt_test tests/pvt_test.cpp)
|
||||
add_executable(relperm_test tests/relperm_test.cpp)
|
||||
|
||||
target_link_libraries(spu_2p
|
||||
opmcore
|
||||
)
|
||||
target_link_libraries(sim_2p_incomp_reorder
|
||||
opmcore
|
||||
)
|
||||
|
||||
set_target_properties(opmcore spu_2p PROPERTIES COMPILE_FLAGS -m64 LINKER_LANGUAGE CXX LINK_FLAGS -m64)
|
||||
target_link_libraries(sim_wateroil
|
||||
opmcore
|
||||
)
|
||||
|
||||
target_link_libraries(pvt_test
|
||||
opmcore
|
||||
)
|
||||
target_link_libraries(relperm_test
|
||||
opmcore
|
||||
)
|
||||
|
||||
#set_target_properties(opmcore spu_2p PROPERTIES COMPILE_FLAGS -m64 LINKER_LANGUAGE CXX LINK_FLAGS -m64)
|
||||
#set_target_properties(opmcore sim_2p_incomp_reorder PROPERTIES COMPILE_FLAGS -m64 LINKER_LANGUAGE CXX LINK_FLAGS -m64)
|
||||
#set_target_properties(opmcore sim_wateroil PROPERTIES COMPILE_FLAGS -m64 LINKER_LANGUAGE CXX LINK_FLAGS -m64)
|
||||
#set_target_properties(opmcore pvt_test PROPERTIES COMPILE_FLAGS -m64 LINKER_LANGUAGE CXX LINK_FLAGS -m64)
|
||||
set_target_properties(opmcore relperm_test PROPERTIES COMPILE_FLAGS -m64 LINKER_LANGUAGE CXX LINK_FLAGS -m64)
|
||||
|
56
FindUmfPack.cmake
Normal file
56
FindUmfPack.cmake
Normal file
@ -0,0 +1,56 @@
|
||||
if (UMFPACK_INCLUDES AND UMFPACK_LIBRARIES)
|
||||
set(UMFPACK_FIND_QUIETLY TRUE)
|
||||
endif (UMFPACK_INCLUDES AND UMFPACK_LIBRARIES)
|
||||
|
||||
find_package(BLAS)
|
||||
|
||||
if(BLAS_FOUND)
|
||||
|
||||
find_path(UMFPACK_INCLUDES
|
||||
NAMES
|
||||
umfpack.h
|
||||
PATHS
|
||||
$ENV{UMFPACKDIR}
|
||||
${INCLUDE_INSTALL_DIR}
|
||||
PATH_SUFFIXES
|
||||
suitesparse
|
||||
)
|
||||
|
||||
find_library(UMFPACK_LIBRARIES umfpack PATHS $ENV{UMFPACKDIR} ${LIB_INSTALL_DIR})
|
||||
|
||||
if(UMFPACK_LIBRARIES)
|
||||
|
||||
get_filename_component(UMFPACK_LIBDIR ${UMFPACK_LIBRARIES} PATH)
|
||||
|
||||
find_library(AMD_LIBRARY amd PATHS ${UMFPACK_LIBDIR} $ENV{UMFPACKDIR} ${LIB_INSTALL_DIR})
|
||||
if (AMD_LIBRARY)
|
||||
set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${AMD_LIBRARY})
|
||||
#else (AMD_LIBRARY)
|
||||
# set(UMFPACK_LIBRARIES FALSE)
|
||||
endif (AMD_LIBRARY)
|
||||
|
||||
endif(UMFPACK_LIBRARIES)
|
||||
|
||||
if(UMFPACK_LIBRARIES)
|
||||
|
||||
find_library(COLAMD_LIBRARY colamd PATHS ${UMFPACK_LIBDIR} $ENV{UMFPACKDIR} ${LIB_INSTALL_DIR})
|
||||
if (COLAMD_LIBRARY)
|
||||
set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${COLAMD_LIBRARY})
|
||||
#else (COLAMD_LIBRARY)
|
||||
# set(UMFPACK_LIBRARIES FALSE)
|
||||
endif (COLAMD_LIBRARY)
|
||||
|
||||
endif(UMFPACK_LIBRARIES)
|
||||
|
||||
if(UMFPACK_LIBRARIES)
|
||||
set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${BLAS_LIBRARIES})
|
||||
endif(UMFPACK_LIBRARIES)
|
||||
|
||||
endif(BLAS_FOUND)
|
||||
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(UMFPACK DEFAULT_MSG
|
||||
UMFPACK_INCLUDES UMFPACK_LIBRARIES)
|
||||
|
||||
mark_as_advanced(UMFPACK_INCLUDES UMFPACK_LIBRARIES AMD_LIBRARY COLAMD_LIBRARY)
|
62
Makefile.am
62
Makefile.am
@ -6,34 +6,39 @@ SUBDIRS = . tests examples tutorials
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Declare products (i.e., the library)
|
||||
lib_LTLIBRARIES = libopmcore.la
|
||||
lib_LTLIBRARIES = lib/libopmcore.la
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Build-time flags needed to build libopmcore.la
|
||||
|
||||
AM_CPPFLAGS = \
|
||||
$(ERT_CPPFLAGS) \
|
||||
$(BOOST_CPPFLAGS)
|
||||
AM_CPPFLAGS = \
|
||||
$(ERT_CPPFLAGS) \
|
||||
$(OPM_BOOST_CPPFLAGS)
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Link-time flags needed both to successfully link the library and to
|
||||
# (transitively) convey inter-library dependency information.
|
||||
|
||||
libopmcore_la_LDFLAGS = \
|
||||
$(ERT_LDFLAGS) \
|
||||
$(BOOST_LDFLAGS) \
|
||||
$(BOOST_FILESYSTEM_LIB) \
|
||||
$(BOOST_SYSTEM_LIB) \
|
||||
$(BOOST_DATE_TIME_LIB) \
|
||||
lib_libopmcore_la_LDFLAGS = \
|
||||
$(ERT_LDFLAGS) \
|
||||
$(OPM_BOOST_LDFLAGS) \
|
||||
$(BOOST_FILESYSTEM_LIB) \
|
||||
$(BOOST_SYSTEM_LIB) \
|
||||
$(BOOST_DATE_TIME_LIB) \
|
||||
$(BOOST_UNIT_TEST_FRAMEWORK_LIB) \
|
||||
$(ERT_LIBS) $(LAPACK_LIBS) $(BLAS_LIBS) $(LIBS)
|
||||
$(ERT_LIBS) \
|
||||
$(LAPACK_LIBS) $(BLAS_LIBS) $(LIBS)
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Library constituents. SOURCES followed by HEADERS.
|
||||
#
|
||||
# Please try to keep the list sorted.
|
||||
|
||||
libopmcore_la_SOURCES = \
|
||||
# List of sources that should be built but not distributed. See AGMG
|
||||
# support below for additional details.
|
||||
nodist_lib_libopmcore_la_SOURCES =
|
||||
|
||||
lib_libopmcore_la_SOURCES = \
|
||||
opm/core/GridManager.cpp \
|
||||
opm/core/eclipse/EclipseGridInspector.cpp \
|
||||
opm/core/eclipse/EclipseGridParser.cpp \
|
||||
@ -48,8 +53,11 @@ opm/core/fluid/RockCompressibility.cpp \
|
||||
opm/core/fluid/RockFromDeck.cpp \
|
||||
opm/core/fluid/SaturationPropsBasic.cpp \
|
||||
opm/core/fluid/SaturationPropsFromDeck.cpp \
|
||||
opm/core/fluid/SatFuncStone2.cpp \
|
||||
opm/core/fluid/SatFuncSimple.cpp \
|
||||
opm/core/fluid/blackoil/BlackoilPvtProperties.cpp \
|
||||
opm/core/fluid/blackoil/SinglePvtDead.cpp \
|
||||
opm/core/fluid/blackoil/SinglePvtDeadSpline.cpp \
|
||||
opm/core/fluid/blackoil/SinglePvtInterface.cpp \
|
||||
opm/core/fluid/blackoil/SinglePvtLiveGas.cpp \
|
||||
opm/core/fluid/blackoil/SinglePvtLiveOil.cpp \
|
||||
@ -90,9 +98,10 @@ opm/core/pressure/tpfa/compr_source.c \
|
||||
opm/core/pressure/tpfa/ifs_tpfa.c \
|
||||
opm/core/pressure/tpfa/trans_tpfa.c \
|
||||
opm/core/pressure/well.c \
|
||||
opm/core/simulator/SimulatorCompressibleTwophase.cpp \
|
||||
opm/core/simulator/SimulatorIncompTwophase.cpp \
|
||||
opm/core/simulator/SimulatorReport.cpp \
|
||||
opm/core/simulator/SimulatorTimer.cpp \
|
||||
opm/core/simulator/SimulatorTwophase.cpp \
|
||||
opm/core/transport/reorder/TransportModelCompressibleTwophase.cpp \
|
||||
opm/core/transport/reorder/TransportModelInterface.cpp \
|
||||
opm/core/transport/reorder/TransportModelTwophase.cpp \
|
||||
@ -142,13 +151,18 @@ opm/core/fluid/PvtPropertiesIncompFromDeck.hpp \
|
||||
opm/core/fluid/RockBasic.hpp \
|
||||
opm/core/fluid/RockCompressibility.hpp \
|
||||
opm/core/fluid/RockFromDeck.hpp \
|
||||
opm/core/fluid/SatFuncStone2.hpp \
|
||||
opm/core/fluid/SatFuncSimple.hpp \
|
||||
opm/core/fluid/SaturationPropsBasic.hpp \
|
||||
opm/core/fluid/SaturationPropsFromDeck.hpp \
|
||||
opm/core/fluid/SaturationPropsFromDeck_impl.hpp \
|
||||
opm/core/fluid/SaturationPropsInterface.hpp \
|
||||
opm/core/fluid/SimpleFluid2p.hpp \
|
||||
opm/core/fluid/blackoil/BlackoilPhases.hpp \
|
||||
opm/core/fluid/blackoil/BlackoilPvtProperties.hpp \
|
||||
opm/core/fluid/blackoil/SinglePvtConstCompr.hpp \
|
||||
opm/core/fluid/blackoil/SinglePvtDead.hpp \
|
||||
opm/core/fluid/blackoil/SinglePvtDeadSpline.hpp \
|
||||
opm/core/fluid/blackoil/SinglePvtInterface.hpp \
|
||||
opm/core/fluid/blackoil/SinglePvtLiveGas.hpp \
|
||||
opm/core/fluid/blackoil/SinglePvtLiveOil.hpp \
|
||||
@ -193,9 +207,10 @@ opm/core/pressure/tpfa/compr_source.h \
|
||||
opm/core/pressure/tpfa/ifs_tpfa.h \
|
||||
opm/core/pressure/tpfa/trans_tpfa.h \
|
||||
opm/core/simulator/BlackoilState.hpp \
|
||||
opm/core/simulator/SimulatorCompressibleTwophase.hpp \
|
||||
opm/core/simulator/SimulatorReport.hpp \
|
||||
opm/core/simulator/SimulatorIncompTwophase.hpp \
|
||||
opm/core/simulator/SimulatorTimer.hpp \
|
||||
opm/core/simulator/SimulatorTwophase.hpp \
|
||||
opm/core/simulator/TwophaseState.hpp \
|
||||
opm/core/simulator/WellState.hpp \
|
||||
opm/core/transport/CSRMatrixBlockAssembler.hpp \
|
||||
@ -219,9 +234,11 @@ opm/core/transport/spu_implicit.h \
|
||||
opm/core/transport/transport_source.h \
|
||||
opm/core/utility/Average.hpp \
|
||||
opm/core/utility/ColumnExtract.hpp \
|
||||
opm/core/utility/DataMap.hpp \
|
||||
opm/core/utility/ErrorMacros.hpp \
|
||||
opm/core/utility/Factory.hpp \
|
||||
opm/core/utility/MonotCubicInterpolator.hpp \
|
||||
opm/core/utility/NonuniformTableLinear.hpp \
|
||||
opm/core/utility/RootFinders.hpp \
|
||||
opm/core/utility/SparseTable.hpp \
|
||||
opm/core/utility/SparseVector.hpp \
|
||||
@ -246,7 +263,6 @@ opm/core/utility/parameters/ParameterXML.hpp \
|
||||
opm/core/utility/parameters/tinyxml/tinystr.h \
|
||||
opm/core/utility/parameters/tinyxml/tinyxml.h \
|
||||
opm/core/utility/writeVtkData.hpp \
|
||||
opm/core/utility/DataMap.hpp \
|
||||
opm/core/vag_format/vag.hpp \
|
||||
opm/core/well.h \
|
||||
opm/core/wells/InjectionSpecification.hpp \
|
||||
@ -259,7 +275,7 @@ opm/core/wells/WellsManager.hpp
|
||||
# Optional library constituents.
|
||||
|
||||
if UMFPACK
|
||||
libopmcore_la_SOURCES += \
|
||||
lib_libopmcore_la_SOURCES += \
|
||||
opm/core/linalg/call_umfpack.c \
|
||||
opm/core/linalg/LinearSolverUmfpack.cpp
|
||||
|
||||
@ -269,16 +285,16 @@ opm/core/linalg/LinearSolverUmfpack.hpp
|
||||
endif
|
||||
|
||||
if HAVE_ERT
|
||||
libopmcore_la_SOURCES += \
|
||||
lib_libopmcore_la_SOURCES += \
|
||||
opm/core/utility/writeECLData.cpp
|
||||
|
||||
nobase_include_HEADERS += \
|
||||
nobase_include_HEADERS += \
|
||||
opm/core/utility/writeECLData.hpp
|
||||
endif
|
||||
|
||||
|
||||
if DUNE_ISTL
|
||||
libopmcore_la_SOURCES += \
|
||||
lib_libopmcore_la_SOURCES += \
|
||||
opm/core/linalg/LinearSolverIstl.cpp
|
||||
|
||||
nobase_include_HEADERS += \
|
||||
@ -287,14 +303,16 @@ endif
|
||||
|
||||
|
||||
if BUILD_AGMG
|
||||
libopmcore_la_SOURCES += \
|
||||
nodist_lib_libopmcore_la_SOURCES += \
|
||||
$(AGMG_SRCDIR)/dagmg.f90 \
|
||||
$(AGMG_SRCDIR)/dagmg_mumps.f90 \
|
||||
$(AGMG_SRCDIR)/dagmg_mumps.f90
|
||||
|
||||
lib_libopmcore_la_SOURCES += \
|
||||
opm/core/linalg/LinearSolverAGMG.cpp
|
||||
|
||||
nobase_include_HEADERS += \
|
||||
opm/core/linalg/LinearSolverAGMG.hpp
|
||||
|
||||
libopmcore_la_LDFLAGS += \
|
||||
lib_libopmcore_la_LDFLAGS += \
|
||||
$(FCLIBS)
|
||||
endif
|
||||
|
125
README
Normal file
125
README
Normal file
@ -0,0 +1,125 @@
|
||||
Open Porous Media Core Library
|
||||
==============================
|
||||
|
||||
These are release notes for opm-core.
|
||||
|
||||
|
||||
CONTENT
|
||||
-------
|
||||
|
||||
opm-core is the core library within OPM and contains the following
|
||||
|
||||
* Eclipse deck input and preprosessing
|
||||
* Fluid properties (basic PVT models and rock properties)
|
||||
* Grid handling (cornerpoint grids, unstructured grid interface)
|
||||
* Linear Algebra (interface to different linear solvers)
|
||||
* Pressure solvers (various discretization schemes, flow models)
|
||||
* Simulators (some basic examples of simulators based on sequential splitting schemes)
|
||||
* Transport solvers (various discretization schemes, flow models)
|
||||
* Utilities (input and output processing, unit conversion)
|
||||
* Wells (basic well handling)
|
||||
|
||||
|
||||
LICENSE
|
||||
-------
|
||||
|
||||
The library is distributed under the GNU General Public License,
|
||||
version 3 or later (GPLv3+).
|
||||
|
||||
|
||||
PLATFORMS
|
||||
---------
|
||||
|
||||
The opm-core module is designed to run on Linux platforms. It is also
|
||||
regularly run on Mac OS X. No efforts have been made to ensure that
|
||||
the code will compile and run on windows platforms.
|
||||
|
||||
|
||||
DEPENDENCIES FOR DEBIAN BASED DISTRIBUTIONS (Debian Squeeze/Ubuntu Precise)
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
# packages necessary for building
|
||||
sudo apt-get install -y build-essential gfortran pkg-config libtool \
|
||||
automake autoconf
|
||||
|
||||
# packages necessary for documentation
|
||||
sudo apt-get install -y doxygen ghostscript texlive-latex-recommended pgf
|
||||
|
||||
# packages necessary for version control
|
||||
sudo apt-get install -y git-core git-svn subversion
|
||||
|
||||
# libraries necessary for DUNE
|
||||
sudo apt-get install -y libboost-all-dev libsuperlu3-dev libsuitesparse-dev
|
||||
|
||||
# libraries necessary for OPM
|
||||
sudo apt-get install -y libxml0-dev
|
||||
|
||||
|
||||
DEPENDENCIES FOR SUSE BASED DISTRIBUTIONS
|
||||
-----------------------------------------
|
||||
|
||||
# libraries
|
||||
sudo zypper install blas libblas3 lapack liblapack3 libboost libxml2 umfpack
|
||||
|
||||
# tools
|
||||
sudo zypper install gcc automake autoconf git doxygen
|
||||
|
||||
|
||||
RETRIEVING AND BUILDING DUNE PREREQUISITES
|
||||
------------------------------------------
|
||||
|
||||
(only necessary if you want to use opm-core as a dune module)
|
||||
|
||||
# trust DUNE certificate (sic)
|
||||
echo p | svn list https://svn.dune-project.org/svn/dune-common
|
||||
|
||||
# checkout DUNE libraries
|
||||
for module in common istl geometry grid localfunctions; do
|
||||
git svn clone -s \
|
||||
https://svn.dune-project.org/svn/dune-$module/branches/release-2.2/ \
|
||||
dune-$module
|
||||
done
|
||||
|
||||
# building DUNE libraries
|
||||
for module in common istl geometry grid localfunctions; do
|
||||
env CCACHE_DISABLE=1 dune-common/bin/dunecontrol --only=dune-$module \
|
||||
--configure-opts="--enable-fieldvector-size-is-method" \
|
||||
--make-opts="-j -l 0.8" autogen : configure : make
|
||||
done
|
||||
|
||||
|
||||
DOWNLOADING
|
||||
-----------
|
||||
|
||||
For a read-only download:
|
||||
git clone git://github.com/OPM/opm-core.git
|
||||
|
||||
If you want to contribute, fork OPM/opm-core on github.
|
||||
|
||||
|
||||
BUILDING
|
||||
--------
|
||||
|
||||
(standalone opm-core:)
|
||||
|
||||
cd ../opm-core
|
||||
autoreconf -i
|
||||
./configure
|
||||
make
|
||||
sudo make install
|
||||
|
||||
(using opm-core as a dune module:)
|
||||
|
||||
# note: this is done from the parent directory of opm-core
|
||||
env CCACHE_DISABLE=1 dune-common/bin/dunecontrol --only=opm-core \
|
||||
--configure-opts="" --make-opts="-j -l 0.8" autogen : configure : make
|
||||
|
||||
|
||||
|
||||
DOCUMENTATION
|
||||
-------------
|
||||
|
||||
Efforts have been made to document the code with Doxygen.
|
||||
In order to build the documentation, enter the command
|
||||
$ doxygen
|
||||
in the topmost directory.
|
64
configure.ac
64
configure.ac
@ -8,6 +8,10 @@ AM_INIT_AUTOMAKE([-Wall -Werror foreign subdir-objects])
|
||||
|
||||
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
|
||||
|
||||
# Needed for automake since version 1.12 because extra-portability
|
||||
# warnings were then added to -Wall. Ifdef makes it backwards compatible.
|
||||
m4_ifdef([AM_PROG_AR], [AM_PROG_AR])
|
||||
|
||||
AC_CONFIG_MACRO_DIR([m4])
|
||||
AC_CONFIG_SRCDIR([opm/core/grid.h])
|
||||
AC_CONFIG_HEADERS([config.h])
|
||||
@ -28,60 +32,22 @@ m4_ifdef([LT_INIT],
|
||||
AC_PROG_FC[]dnl
|
||||
])[]dnl
|
||||
|
||||
# Checks for libraries.
|
||||
|
||||
# Bring in numerics support (standard library component)
|
||||
AC_SEARCH_LIBS([sqrt], [m])
|
||||
|
||||
OPM_LAPACK
|
||||
|
||||
AX_BOOST_BASE([1.37])
|
||||
AX_BOOST_SYSTEM
|
||||
AX_BOOST_DATE_TIME
|
||||
AX_BOOST_FILESYSTEM
|
||||
AX_BOOST_UNIT_TEST_FRAMEWORK
|
||||
|
||||
AX_DUNE_ISTL
|
||||
OPM_AGMG
|
||||
OPM_CORE_CHECKS
|
||||
|
||||
OPM_DYNLINK_BOOST_TEST
|
||||
|
||||
# Checks for header files.
|
||||
AC_CHECK_HEADERS([float.h limits.h stddef.h stdlib.h string.h])
|
||||
|
||||
AC_CHECK_HEADERS([suitesparse/umfpack.h],
|
||||
[umfpack_header=yes],
|
||||
[umfpack_header=no])
|
||||
|
||||
# Checks for typedefs, structures, and compiler characteristics.
|
||||
AC_HEADER_STDBOOL
|
||||
AC_TYPE_SIZE_T
|
||||
AC_CHECK_TYPES([ptrdiff_t])
|
||||
|
||||
# Checks for library functions.
|
||||
AC_CHECK_FUNCS([floor memset memmove strchr strtol sqrt pow])
|
||||
AC_FUNC_STRTOD
|
||||
|
||||
# Search for UMFPACK direct sparse solver.
|
||||
AC_SEARCH_LIBS([amd_free], [amd])
|
||||
AC_SEARCH_LIBS([camd_free], [camd])
|
||||
AC_SEARCH_LIBS([colamd_set_defaults], [colamd])
|
||||
AC_SEARCH_LIBS([ccolamd_set_defaults], [ccolamd])
|
||||
AC_SEARCH_LIBS([cholmod_l_start], [cholmod])
|
||||
AC_SEARCH_LIBS([umfpack_dl_solve], [umfpack],dnl
|
||||
[umfpack_lib=yes], [umfpack_lib=no])
|
||||
|
||||
AM_CONDITIONAL([UMFPACK],
|
||||
[test "x$umfpack_header" != "xno" -a "x$umfpack_lib" != "xno"])
|
||||
|
||||
m4_ifdef([AM_COND_IF],
|
||||
[AM_COND_IF([UMFPACK], [],
|
||||
[AC_MSG_NOTICE([Found no working installation of UMFPACK.
|
||||
UMFPACK support is disabled.])])
|
||||
])
|
||||
|
||||
ERT
|
||||
|
||||
dnl Substitute Autoconf's abs_*dir variables into the Makefiles for the
|
||||
dnl benefit of external code that uses these variables to derive
|
||||
dnl locations (e.g., Dune's DUNE_CHECK_MODULES macro). Automakes prior
|
||||
dnl to version 1.10 do not automatically substitute these variables into
|
||||
dnl output files.
|
||||
AC_SUBST([abs_srcdir])
|
||||
AC_SUBST([abs_builddir])
|
||||
AC_SUBST([abs_top_srcdir])
|
||||
AC_SUBST([abs_top_builddir])
|
||||
|
||||
AC_CONFIG_FILES([
|
||||
Makefile
|
||||
tests/Makefile
|
||||
|
7
dune.module
Normal file
7
dune.module
Normal file
@ -0,0 +1,7 @@
|
||||
#dune module information file#
|
||||
##############################
|
||||
|
||||
#Name of the module
|
||||
Module: opm-core
|
||||
Version: 0.1
|
||||
Maintainer: atgeirr@sintef.no
|
@ -1,15 +1,15 @@
|
||||
# Build-time flags needed to form example programs
|
||||
ERT_INCLUDE_PATH = $(ERT_ROOT)/include
|
||||
|
||||
AM_CPPFLAGS = \
|
||||
-I$(top_srcdir) \
|
||||
$(BOOST_CPPFLAGS) \
|
||||
AM_CPPFLAGS = \
|
||||
-I$(top_srcdir) \
|
||||
$(OPM_BOOST_CPPFLAGS) \
|
||||
-I$(ERT_INCLUDE_PATH)
|
||||
|
||||
# All targets link to the library
|
||||
LDADD = \
|
||||
$(top_builddir)/libopmcore.la \
|
||||
$(BOOST_FILESYSTEM_LIB) \
|
||||
LDADD = \
|
||||
$(top_builddir)/lib/libopmcore.la \
|
||||
$(BOOST_FILESYSTEM_LIB) \
|
||||
$(BOOST_SYSTEM_LIB)
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
@ -17,11 +17,12 @@ $(BOOST_SYSTEM_LIB)
|
||||
#
|
||||
# Please keep the list sorted.
|
||||
|
||||
noinst_PROGRAMS = \
|
||||
refine_wells \
|
||||
scaneclipsedeck \
|
||||
sim_2p_incomp_reorder \
|
||||
sim_wateroil \
|
||||
noinst_PROGRAMS = \
|
||||
refine_wells \
|
||||
scaneclipsedeck \
|
||||
sim_2p_comp_reorder \
|
||||
sim_2p_incomp_reorder \
|
||||
sim_wateroil \
|
||||
wells_example
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
@ -32,6 +33,7 @@ wells_example
|
||||
# Please maintain sort order from "noinst_PROGRAMS".
|
||||
|
||||
refine_wells_SOURCES = refine_wells.cpp
|
||||
sim_2p_comp_reorder_SOURCES = sim_2p_comp_reorder.cpp
|
||||
sim_2p_incomp_reorder_SOURCES = sim_2p_incomp_reorder.cpp
|
||||
sim_wateroil_SOURCES = sim_wateroil.cpp
|
||||
wells_example_SOURCES = wells_example.cpp
|
||||
@ -43,7 +45,7 @@ if UMFPACK
|
||||
noinst_PROGRAMS += spu_2p
|
||||
|
||||
spu_2p_SOURCES = spu_2p.cpp
|
||||
spu_2p_LDADD = \
|
||||
$(LDADD) \
|
||||
spu_2p_LDADD = \
|
||||
$(LDADD) \
|
||||
$(LAPACK_LIBS) $(BLAS_LIBS) $(LIBS)
|
||||
endif
|
||||
|
285
examples/sim_2p_comp_reorder.cpp
Normal file
285
examples/sim_2p_comp_reorder.cpp
Normal file
@ -0,0 +1,285 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#if HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif // HAVE_CONFIG_H
|
||||
|
||||
#include <opm/core/pressure/FlowBCManager.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/GridManager.hpp>
|
||||
#include <opm/core/newwells.h>
|
||||
#include <opm/core/wells/WellsManager.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/utility/initState.hpp>
|
||||
#include <opm/core/simulator/SimulatorReport.hpp>
|
||||
#include <opm/core/simulator/SimulatorTimer.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
|
||||
#include <opm/core/fluid/BlackoilPropertiesBasic.hpp>
|
||||
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
|
||||
#include <opm/core/fluid/RockCompressibility.hpp>
|
||||
|
||||
#include <opm/core/linalg/LinearSolverFactory.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/simulator/SimulatorCompressibleTwophase.hpp>
|
||||
|
||||
#include <boost/scoped_ptr.hpp>
|
||||
#include <boost/filesystem.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
|
||||
{
|
||||
if (param.anyUnused()) {
|
||||
std::cout << "-------------------- Unused parameters: --------------------\n";
|
||||
param.displayUsage();
|
||||
std::cout << "----------------------------------------------------------------" << std::endl;
|
||||
}
|
||||
}
|
||||
} // anon namespace
|
||||
|
||||
|
||||
|
||||
// ----------------- Main program -----------------
|
||||
int
|
||||
main(int argc, char** argv)
|
||||
{
|
||||
using namespace Opm;
|
||||
|
||||
std::cout << "\n================ Test program for weakly compressible two-phase flow ===============\n\n";
|
||||
parameter::ParameterGroup param(argc, argv, false);
|
||||
std::cout << "--------------- Reading parameters ---------------" << std::endl;
|
||||
|
||||
// If we have a "deck_filename", grid and props will be read from that.
|
||||
bool use_deck = param.has("deck_filename");
|
||||
boost::scoped_ptr<EclipseGridParser> deck;
|
||||
boost::scoped_ptr<GridManager> grid;
|
||||
boost::scoped_ptr<BlackoilPropertiesInterface> props;
|
||||
boost::scoped_ptr<RockCompressibility> rock_comp;
|
||||
BlackoilState state;
|
||||
// bool check_well_controls = false;
|
||||
// int max_well_control_iterations = 0;
|
||||
double gravity[3] = { 0.0 };
|
||||
if (use_deck) {
|
||||
std::string deck_filename = param.get<std::string>("deck_filename");
|
||||
deck.reset(new EclipseGridParser(deck_filename));
|
||||
// Grid init
|
||||
grid.reset(new GridManager(*deck));
|
||||
// Rock and fluid init
|
||||
props.reset(new BlackoilPropertiesFromDeck(*deck, *grid->c_grid(), param));
|
||||
// check_well_controls = param.getDefault("check_well_controls", false);
|
||||
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
|
||||
// Rock compressibility.
|
||||
rock_comp.reset(new RockCompressibility(*deck));
|
||||
// Gravity.
|
||||
gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
|
||||
// Init state variables (saturation and pressure).
|
||||
if (param.has("init_saturation")) {
|
||||
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
|
||||
} else {
|
||||
initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
|
||||
}
|
||||
initBlackoilSurfvol(*grid->c_grid(), *props, state);
|
||||
} else {
|
||||
// Grid init.
|
||||
const int nx = param.getDefault("nx", 100);
|
||||
const int ny = param.getDefault("ny", 100);
|
||||
const int nz = param.getDefault("nz", 1);
|
||||
const double dx = param.getDefault("dx", 1.0);
|
||||
const double dy = param.getDefault("dy", 1.0);
|
||||
const double dz = param.getDefault("dz", 1.0);
|
||||
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
|
||||
// Rock and fluid init.
|
||||
props.reset(new BlackoilPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
||||
// Rock compressibility.
|
||||
rock_comp.reset(new RockCompressibility(param));
|
||||
// Gravity.
|
||||
gravity[2] = param.getDefault("gravity", 0.0);
|
||||
// Init state variables (saturation and pressure).
|
||||
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
|
||||
initBlackoilSurfvol(*grid->c_grid(), *props, state);
|
||||
}
|
||||
|
||||
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
|
||||
const double *grav = use_gravity ? &gravity[0] : 0;
|
||||
|
||||
// Initialising src
|
||||
int num_cells = grid->c_grid()->number_of_cells;
|
||||
std::vector<double> src(num_cells, 0.0);
|
||||
if (use_deck) {
|
||||
// Do nothing, wells will be the driving force, not source terms.
|
||||
} else {
|
||||
// Compute pore volumes, in order to enable specifying injection rate
|
||||
// terms of total pore volume.
|
||||
std::vector<double> porevol;
|
||||
if (rock_comp->isActive()) {
|
||||
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
|
||||
} else {
|
||||
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
|
||||
}
|
||||
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
|
||||
const double default_injection = use_gravity ? 0.0 : 0.1;
|
||||
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
|
||||
*tot_porevol_init/unit::day;
|
||||
src[0] = flow_per_sec;
|
||||
src[num_cells - 1] = -flow_per_sec;
|
||||
}
|
||||
|
||||
// Boundary conditions.
|
||||
FlowBCManager bcs;
|
||||
if (param.getDefault("use_pside", false)) {
|
||||
int pside = param.get<int>("pside");
|
||||
double pside_pressure = param.get<double>("pside_pressure");
|
||||
bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
|
||||
}
|
||||
|
||||
// Linear solver.
|
||||
LinearSolverFactory linsolver(param);
|
||||
|
||||
// Write parameters used for later reference.
|
||||
bool output = param.getDefault("output", true);
|
||||
std::ofstream epoch_os;
|
||||
std::string output_dir;
|
||||
if (output) {
|
||||
output_dir =
|
||||
param.getDefault("output_dir", std::string("output"));
|
||||
boost::filesystem::path fpath(output_dir);
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
std::string filename = output_dir + "/epoch_timing.param";
|
||||
epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
|
||||
// open file to clean it. The file is appended to in SimulatorTwophase
|
||||
filename = output_dir + "/step_timing.param";
|
||||
std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
|
||||
step_os.close();
|
||||
param.writeParam(output_dir + "/simulation.param");
|
||||
}
|
||||
|
||||
|
||||
std::cout << "\n\n================ Starting main simulation loop ===============\n"
|
||||
<< " (number of epochs: "
|
||||
<< (use_deck ? deck->numberOfEpochs() : 1) << ")\n\n" << std::flush;
|
||||
|
||||
SimulatorReport rep;
|
||||
if (!use_deck) {
|
||||
// Simple simulation without a deck.
|
||||
WellsManager wells; // no wells.
|
||||
SimulatorCompressibleTwophase simulator(param,
|
||||
*grid->c_grid(),
|
||||
*props,
|
||||
rock_comp->isActive() ? rock_comp.get() : 0,
|
||||
wells,
|
||||
src,
|
||||
bcs.c_bcs(),
|
||||
linsolver,
|
||||
grav);
|
||||
SimulatorTimer simtimer;
|
||||
simtimer.init(param);
|
||||
warnIfUnusedParams(param);
|
||||
WellState well_state;
|
||||
well_state.init(0, state);
|
||||
rep = simulator.run(simtimer, state, well_state);
|
||||
} else {
|
||||
// With a deck, we may have more epochs etc.
|
||||
WellState well_state;
|
||||
int step = 0;
|
||||
SimulatorTimer simtimer;
|
||||
// Use timer for last epoch to obtain total time.
|
||||
deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
|
||||
simtimer.init(*deck);
|
||||
const double total_time = simtimer.totalTime();
|
||||
for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
|
||||
// Set epoch index.
|
||||
deck->setCurrentEpoch(epoch);
|
||||
|
||||
// Update the timer.
|
||||
if (deck->hasField("TSTEP")) {
|
||||
simtimer.init(*deck);
|
||||
} else {
|
||||
if (epoch != 0) {
|
||||
THROW("No TSTEP in deck for epoch " << epoch);
|
||||
}
|
||||
simtimer.init(param);
|
||||
}
|
||||
simtimer.setCurrentStepNum(step);
|
||||
simtimer.setTotalTime(total_time);
|
||||
|
||||
// Report on start of epoch.
|
||||
std::cout << "\n\n-------------- Starting epoch " << epoch << " --------------"
|
||||
<< "\n (number of steps: "
|
||||
<< simtimer.numSteps() - step << ")\n\n" << std::flush;
|
||||
|
||||
// Create new wells, well_state
|
||||
WellsManager wells(*deck, *grid->c_grid(), props->permeability());
|
||||
// @@@ HACK: we should really make a new well state and
|
||||
// properly transfer old well state to it every epoch,
|
||||
// since number of wells may change etc.
|
||||
if (epoch == 0) {
|
||||
well_state.init(wells.c_wells(), state);
|
||||
}
|
||||
|
||||
// Create and run simulator.
|
||||
SimulatorCompressibleTwophase simulator(param,
|
||||
*grid->c_grid(),
|
||||
*props,
|
||||
rock_comp->isActive() ? rock_comp.get() : 0,
|
||||
wells,
|
||||
src,
|
||||
bcs.c_bcs(),
|
||||
linsolver,
|
||||
grav);
|
||||
if (epoch == 0) {
|
||||
warnIfUnusedParams(param);
|
||||
}
|
||||
SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);
|
||||
if (output) {
|
||||
epoch_rep.reportParam(epoch_os);
|
||||
}
|
||||
// Update total timing report and remember step number.
|
||||
rep += epoch_rep;
|
||||
step = simtimer.currentStepNum();
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "\n\n================ End of simulation ===============\n\n";
|
||||
rep.report(std::cout);
|
||||
|
||||
if (output) {
|
||||
std::string filename = output_dir + "/walltime.param";
|
||||
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
|
||||
rep.reportParam(tot_os);
|
||||
}
|
||||
|
||||
}
|
@ -43,9 +43,10 @@
|
||||
|
||||
#include <opm/core/simulator/TwophaseState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/simulator/SimulatorTwophase.hpp>
|
||||
#include <opm/core/simulator/SimulatorIncompTwophase.hpp>
|
||||
|
||||
#include <boost/scoped_ptr.hpp>
|
||||
#include <boost/filesystem.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
@ -53,6 +54,18 @@
|
||||
#include <numeric>
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
|
||||
{
|
||||
if (param.anyUnused()) {
|
||||
std::cout << "-------------------- Unused parameters: --------------------\n";
|
||||
param.displayUsage();
|
||||
std::cout << "----------------------------------------------------------------" << std::endl;
|
||||
}
|
||||
}
|
||||
} // anon namespace
|
||||
|
||||
|
||||
|
||||
// ----------------- Main program -----------------
|
||||
@ -81,9 +94,7 @@ main(int argc, char** argv)
|
||||
// Grid init
|
||||
grid.reset(new GridManager(*deck));
|
||||
// Rock and fluid init
|
||||
const int* gc = grid->c_grid()->global_cell;
|
||||
std::vector<int> global_cell(gc, gc + grid->c_grid()->number_of_cells);
|
||||
props.reset(new IncompPropertiesFromDeck(*deck, global_cell));
|
||||
props.reset(new IncompPropertiesFromDeck(*deck, *grid->c_grid()));
|
||||
// check_well_controls = param.getDefault("check_well_controls", false);
|
||||
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
|
||||
// Rock compressibility.
|
||||
@ -157,17 +168,28 @@ main(int argc, char** argv)
|
||||
// Linear solver.
|
||||
LinearSolverFactory linsolver(param);
|
||||
|
||||
// Warn if any parameters are unused.
|
||||
// if (param.anyUnused()) {
|
||||
// std::cout << "-------------------- Unused parameters: --------------------\n";
|
||||
// param.displayUsage();
|
||||
// std::cout << "----------------------------------------------------------------" << std::endl;
|
||||
// }
|
||||
|
||||
// Write parameters used for later reference.
|
||||
// if (output) {
|
||||
// param.writeParam(output_dir + "/spu_2p.param");
|
||||
// }
|
||||
bool output = param.getDefault("output", true);
|
||||
std::ofstream epoch_os;
|
||||
std::string output_dir;
|
||||
if (output) {
|
||||
output_dir =
|
||||
param.getDefault("output_dir", std::string("output"));
|
||||
boost::filesystem::path fpath(output_dir);
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
std::string filename = output_dir + "/epoch_timing.param";
|
||||
epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
|
||||
// open file to clean it. The file is appended to in SimulatorTwophase
|
||||
filename = output_dir + "/step_timing.param";
|
||||
std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
|
||||
step_os.close();
|
||||
param.writeParam(output_dir + "/simulation.param");
|
||||
}
|
||||
|
||||
|
||||
std::cout << "\n\n================ Starting main simulation loop ===============\n"
|
||||
@ -177,17 +199,19 @@ main(int argc, char** argv)
|
||||
SimulatorReport rep;
|
||||
if (!use_deck) {
|
||||
// Simple simulation without a deck.
|
||||
SimulatorTwophase simulator(param,
|
||||
*grid->c_grid(),
|
||||
*props,
|
||||
rock_comp->isActive() ? rock_comp.get() : 0,
|
||||
0, // wells
|
||||
src,
|
||||
bcs.c_bcs(),
|
||||
linsolver,
|
||||
grav);
|
||||
WellsManager wells; // no wells.
|
||||
SimulatorIncompTwophase simulator(param,
|
||||
*grid->c_grid(),
|
||||
*props,
|
||||
rock_comp->isActive() ? rock_comp.get() : 0,
|
||||
wells,
|
||||
src,
|
||||
bcs.c_bcs(),
|
||||
linsolver,
|
||||
grav);
|
||||
SimulatorTimer simtimer;
|
||||
simtimer.init(param);
|
||||
warnIfUnusedParams(param);
|
||||
WellState well_state;
|
||||
well_state.init(0, state);
|
||||
rep = simulator.run(simtimer, state, well_state);
|
||||
@ -221,7 +245,7 @@ main(int argc, char** argv)
|
||||
<< "\n (number of steps: "
|
||||
<< simtimer.numSteps() - step << ")\n\n" << std::flush;
|
||||
|
||||
// Create new wells, well_satate
|
||||
// Create new wells, well_state
|
||||
WellsManager wells(*deck, *grid->c_grid(), props->permeability());
|
||||
// @@@ HACK: we should really make a new well state and
|
||||
// properly transfer old well state to it every epoch,
|
||||
@ -231,17 +255,22 @@ main(int argc, char** argv)
|
||||
}
|
||||
|
||||
// Create and run simulator.
|
||||
SimulatorTwophase simulator(param,
|
||||
*grid->c_grid(),
|
||||
*props,
|
||||
rock_comp->isActive() ? rock_comp.get() : 0,
|
||||
wells.c_wells(),
|
||||
src,
|
||||
bcs.c_bcs(),
|
||||
linsolver,
|
||||
grav);
|
||||
SimulatorIncompTwophase simulator(param,
|
||||
*grid->c_grid(),
|
||||
*props,
|
||||
rock_comp->isActive() ? rock_comp.get() : 0,
|
||||
wells,
|
||||
src,
|
||||
bcs.c_bcs(),
|
||||
linsolver,
|
||||
grav);
|
||||
if (epoch == 0) {
|
||||
warnIfUnusedParams(param);
|
||||
}
|
||||
SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);
|
||||
|
||||
if (output) {
|
||||
epoch_rep.reportParam(epoch_os);
|
||||
}
|
||||
// Update total timing report and remember step number.
|
||||
rep += epoch_rep;
|
||||
step = simtimer.currentStepNum();
|
||||
@ -250,4 +279,11 @@ main(int argc, char** argv)
|
||||
|
||||
std::cout << "\n\n================ End of simulation ===============\n\n";
|
||||
rep.report(std::cout);
|
||||
|
||||
if (output) {
|
||||
std::string filename = output_dir + "/walltime.param";
|
||||
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
|
||||
rep.reportParam(tot_os);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -68,8 +68,6 @@
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
#define TRANSPORT_SOLVER_FIXED 1
|
||||
|
||||
|
||||
template <class State>
|
||||
static void outputState(const UnstructuredGrid& grid,
|
||||
@ -143,7 +141,6 @@ main(int argc, char** argv)
|
||||
std::cout << "--------------- Reading parameters ---------------" << std::endl;
|
||||
|
||||
// Reading various control parameters.
|
||||
const bool use_reorder = param.getDefault("use_reorder", true);
|
||||
const bool output = param.getDefault("output", true);
|
||||
std::string output_dir;
|
||||
int output_interval = 1;
|
||||
@ -178,9 +175,7 @@ main(int argc, char** argv)
|
||||
// Grid init
|
||||
grid.reset(new Opm::GridManager(deck));
|
||||
// Rock and fluid init
|
||||
const int* gc = grid->c_grid()->global_cell;
|
||||
std::vector<int> global_cell(gc, gc + grid->c_grid()->number_of_cells);
|
||||
props.reset(new Opm::BlackoilPropertiesFromDeck(deck, global_cell));
|
||||
props.reset(new BlackoilPropertiesFromDeck(deck, *grid->c_grid(), param));
|
||||
// Wells init.
|
||||
wells.reset(new Opm::WellsManager(deck, *grid->c_grid(), props->permeability()));
|
||||
check_well_controls = param.getDefault("check_well_controls", false);
|
||||
@ -233,28 +228,8 @@ main(int argc, char** argv)
|
||||
}
|
||||
}
|
||||
bool use_segregation_split = false;
|
||||
bool use_column_solver = false;
|
||||
bool use_gauss_seidel_gravity = false;
|
||||
if (use_gravity && use_reorder) {
|
||||
if (use_gravity) {
|
||||
use_segregation_split = param.getDefault("use_segregation_split", use_segregation_split);
|
||||
if (use_segregation_split) {
|
||||
use_column_solver = param.getDefault("use_column_solver", use_column_solver);
|
||||
if (use_column_solver) {
|
||||
use_gauss_seidel_gravity = param.getDefault("use_gauss_seidel_gravity", use_gauss_seidel_gravity);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check that rock compressibility is not used with solvers that do not handle it.
|
||||
// int nl_pressure_maxiter = 0;
|
||||
// double nl_pressure_tolerance = 0.0;
|
||||
if (rock_comp->isActive()) {
|
||||
THROW("No rock compressibility in comp. pressure solver yet.");
|
||||
if (!use_reorder) {
|
||||
THROW("Cannot run implicit (non-reordering) transport solver with rock compressibility yet.");
|
||||
}
|
||||
// nl_pressure_maxiter = param.getDefault("nl_pressure_maxiter", 10);
|
||||
// nl_pressure_tolerance = param.getDefault("nl_pressure_tolerance", 1.0); // in Pascal
|
||||
}
|
||||
|
||||
// Source-related variables init.
|
||||
@ -266,11 +241,11 @@ main(int argc, char** argv)
|
||||
// Extra rock init.
|
||||
std::vector<double> porevol;
|
||||
if (rock_comp->isActive()) {
|
||||
THROW("CompressibleTpfa solver does not handle this.");
|
||||
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
|
||||
} else {
|
||||
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
|
||||
}
|
||||
std::vector<double> initial_porevol = porevol;
|
||||
double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
|
||||
|
||||
|
||||
@ -297,21 +272,20 @@ main(int argc, char** argv)
|
||||
const double nl_press_change_tol = param.getDefault("nl_press_change_tol", 10.0);
|
||||
const int nl_press_maxiter = param.getDefault("nl_press_maxiter", 20);
|
||||
const double *grav = use_gravity ? &gravity[0] : 0;
|
||||
Opm::CompressibleTpfa psolver(*grid->c_grid(), *props, linsolver,
|
||||
Opm::CompressibleTpfa psolver(*grid->c_grid(), *props, rock_comp.get(), linsolver,
|
||||
nl_press_res_tol, nl_press_change_tol, nl_press_maxiter,
|
||||
grav, wells->c_wells());
|
||||
// Reordering solver.
|
||||
#if TRANSPORT_SOLVER_FIXED
|
||||
const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9);
|
||||
const int nl_maxiter = param.getDefault("nl_maxiter", 30);
|
||||
Opm::TransportModelCompressibleTwophase reorder_model(*grid->c_grid(), *props, nl_tolerance, nl_maxiter);
|
||||
if (use_gauss_seidel_gravity) {
|
||||
if (use_segregation_split) {
|
||||
reorder_model.initGravity(grav);
|
||||
}
|
||||
#endif // TRANSPORT_SOLVER_FIXED
|
||||
|
||||
// Column-based gravity segregation solver.
|
||||
std::vector<std::vector<int> > columns;
|
||||
if (use_column_solver) {
|
||||
if (use_segregation_split) {
|
||||
Opm::extractColumn(*grid->c_grid(), columns);
|
||||
}
|
||||
|
||||
@ -414,24 +388,30 @@ main(int argc, char** argv)
|
||||
Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0,
|
||||
wells->c_wells(), well_state.perfRates(), reorder_src);
|
||||
|
||||
// Compute new porevolumes after pressure solve, if necessary.
|
||||
if (rock_comp->isActive()) {
|
||||
initial_porevol = porevol;
|
||||
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
|
||||
}
|
||||
// Solve transport.
|
||||
transport_timer.start();
|
||||
#if TRANSPORT_SOLVER_FIXED
|
||||
double stepsize = simtimer.currentStepLength();
|
||||
if (num_transport_substeps != 1) {
|
||||
stepsize /= double(num_transport_substeps);
|
||||
std::cout << "Making " << num_transport_substeps << " transport substeps." << std::endl;
|
||||
}
|
||||
for (int tr_substep = 0; tr_substep < num_transport_substeps; ++tr_substep) {
|
||||
reorder_model.solve(&state.faceflux()[0], &state.pressure()[0], &state.surfacevol()[0],
|
||||
&porevol[0], &reorder_src[0], stepsize, state.saturation());
|
||||
// Note that for now we do not handle rock compressibility,
|
||||
// although the transport solver should be able to.
|
||||
reorder_model.solve(&state.faceflux()[0], &state.pressure()[0],
|
||||
&porevol[0], &initial_porevol[0], &reorder_src[0], stepsize,
|
||||
state.saturation(), state.surfacevol());
|
||||
// Opm::computeInjectedProduced(*props, state.saturation(), reorder_src, stepsize, injected, produced);
|
||||
if (use_segregation_split) {
|
||||
THROW("Segregation not implemented yet.");
|
||||
// reorder_model.solveGravity(columns, &porevol[0], stepsize, state.saturation());
|
||||
reorder_model.solveGravity(columns, &state.pressure()[0], &initial_porevol[0],
|
||||
stepsize, state.saturation(), state.surfacevol());
|
||||
}
|
||||
}
|
||||
#endif // TRANSPORT_SOLVER_FIXED
|
||||
transport_timer.stop();
|
||||
double tt = transport_timer.secsSinceStart();
|
||||
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
|
||||
|
@ -317,9 +317,7 @@ main(int argc, char** argv)
|
||||
// Grid init
|
||||
grid.reset(new Opm::GridManager(deck));
|
||||
// Rock and fluid init
|
||||
const int* gc = grid->c_grid()->global_cell;
|
||||
std::vector<int> global_cell(gc, gc + grid->c_grid()->number_of_cells);
|
||||
props.reset(new Opm::IncompPropertiesFromDeck(deck, global_cell));
|
||||
props.reset(new Opm::IncompPropertiesFromDeck(deck, *grid->c_grid()));
|
||||
// Wells init.
|
||||
wells.reset(new Opm::WellsManager(deck, *grid->c_grid(), props->permeability()));
|
||||
check_well_controls = param.getDefault("check_well_controls", false);
|
||||
@ -503,7 +501,7 @@ main(int argc, char** argv)
|
||||
|
||||
// Write parameters used for later reference.
|
||||
if (output) {
|
||||
param.writeParam(output_dir + "/spu_2p.param");
|
||||
param.writeParam(output_dir + "/simulation.param");
|
||||
}
|
||||
|
||||
// Main simulation loop.
|
||||
|
@ -38,10 +38,8 @@ int main(int argc, char** argv)
|
||||
// Finally handle the wells
|
||||
WellsManager wells(parser, *grid.c_grid(), NULL);
|
||||
|
||||
std::vector<int> global_cells(grid.c_grid()->global_cell, grid.c_grid()->global_cell + grid.c_grid()->number_of_cells);
|
||||
|
||||
double gravity[3] = {0.0, 0.0, parameters.getDefault<double>("gravity", 0.0)};
|
||||
IncompPropertiesFromDeck incomp_properties(parser, global_cells);
|
||||
IncompPropertiesFromDeck incomp_properties(parser, *grid.c_grid());
|
||||
|
||||
RockCompressibility rock_comp(parser);
|
||||
|
||||
|
@ -1,6 +1,24 @@
|
||||
|
||||
# This script generate the illustration pictures for the documentation.
|
||||
#
|
||||
# To run this script, you have to install paraview, see:
|
||||
#
|
||||
# http://www.paraview.org/paraview/resources/software.php
|
||||
#
|
||||
# Eventually, set up the paths (figure_path, tutorial_data_path, tutorial_path) according to your own installation.
|
||||
# (The default values should be ok.)
|
||||
#
|
||||
# Make sure that pvpython is in your path of executables.
|
||||
#
|
||||
# Run the following command at the root of the directory where
|
||||
# opm-core is installed (which also corresponds to the directory where
|
||||
# generate_doc_figures is located):
|
||||
#
|
||||
# pvpython generate_doc_figures.py
|
||||
#
|
||||
|
||||
from subprocess import call
|
||||
from paraview.simple import *
|
||||
# from paraview import servermanager
|
||||
from os import remove, mkdir, curdir
|
||||
from os.path import join, isdir
|
||||
|
||||
@ -13,7 +31,6 @@ collected_garbage_file = []
|
||||
if not isdir(figure_path):
|
||||
mkdir(figure_path)
|
||||
|
||||
# connection = servermanager.Connect()
|
||||
|
||||
# tutorial 1
|
||||
call(join(tutorial_path, "tutorial1"))
|
||||
|
10
m4/agmg.m4
10
m4/agmg.m4
@ -11,10 +11,14 @@ AC_DEFUN([OPM_AGMG],dnl
|
||||
[AS_IF([test -f "$with_agmg/dagmg.f90"],dnl
|
||||
[AC_SUBST([AGMG_SRCDIR], [$with_agmg])[]dnl
|
||||
AC_DEFINE([HAVE_AGMG], [1],dnl
|
||||
[Define to `1' if Notay's AGMG solver is included])[]dnl
|
||||
[Define to 1 if Notay's AGMG solver is included.])[]dnl
|
||||
build_agmg="yes"],dnl
|
||||
[build_agmg="no"])],dnl
|
||||
[build_agmg="no"])[]dnl
|
||||
[AC_DEFINE([HAVE_AGMG], [0],dnl
|
||||
[Define to 0 if Notay's AGMG solver is unavailable.])[]dnl
|
||||
build_agmg="no"])],dnl
|
||||
[AC_DEFINE([HAVE_AGMG], [0],dnl
|
||||
[Define to 0 if Notay's AGMG solver is unwanted.])[]dnl
|
||||
build_agmg="no"])[]dnl
|
||||
|
||||
AS_IF([test x"$build_agmg" = x"yes"],dnl
|
||||
[AC_PROG_FC_C_O[]dnl
|
||||
|
@ -55,11 +55,11 @@ AC_DEFUN([AX_BOOST_DATE_TIME],
|
||||
if test "x$want_boost" = "xyes"; then
|
||||
AC_REQUIRE([AC_PROG_CC])
|
||||
CPPFLAGS_SAVED="$CPPFLAGS"
|
||||
CPPFLAGS="$CPPFLAGS $BOOST_CPPFLAGS"
|
||||
CPPFLAGS="$CPPFLAGS $OPM_BOOST_CPPFLAGS"
|
||||
export CPPFLAGS
|
||||
|
||||
LDFLAGS_SAVED="$LDFLAGS"
|
||||
LDFLAGS="$LDFLAGS $BOOST_LDFLAGS"
|
||||
LDFLAGS="$LDFLAGS $OPM_BOOST_LDFLAGS"
|
||||
export LDFLAGS
|
||||
|
||||
AC_CACHE_CHECK(whether the Boost::Date_Time library is available,
|
||||
@ -74,7 +74,7 @@ AC_DEFUN([AX_BOOST_DATE_TIME],
|
||||
])
|
||||
if test "x$ax_cv_boost_date_time" = "xyes"; then
|
||||
AC_DEFINE(HAVE_BOOST_DATE_TIME,,[define if the Boost::Date_Time library is available])
|
||||
BOOSTLIBDIR=`echo $BOOST_LDFLAGS | sed -e 's/@<:@^\/@:>@*//'`
|
||||
BOOSTLIBDIR=`echo $OPM_BOOST_LDFLAGS | sed -e 's/@<:@^\/@:>@*//'`
|
||||
ax_lib="-lboost_date_time"
|
||||
|
||||
if test "x$ax_boost_user_date_time_lib" = "x"; then
|
||||
|
@ -56,11 +56,11 @@ AC_DEFUN([AX_BOOST_FILESYSTEM],
|
||||
if test "x$want_boost" = "xyes"; then
|
||||
AC_REQUIRE([AC_PROG_CC])
|
||||
CPPFLAGS_SAVED="$CPPFLAGS"
|
||||
CPPFLAGS="$CPPFLAGS $BOOST_CPPFLAGS"
|
||||
CPPFLAGS="$CPPFLAGS $OPM_BOOST_CPPFLAGS"
|
||||
export CPPFLAGS
|
||||
|
||||
LDFLAGS_SAVED="$LDFLAGS"
|
||||
LDFLAGS="$LDFLAGS $BOOST_LDFLAGS"
|
||||
LDFLAGS="$LDFLAGS $OPM_BOOST_LDFLAGS"
|
||||
export LDFLAGS
|
||||
|
||||
LIBS_SAVED=$LIBS
|
||||
@ -79,7 +79,7 @@ AC_DEFUN([AX_BOOST_FILESYSTEM],
|
||||
])
|
||||
if test "x$ax_cv_boost_filesystem" = "xyes"; then
|
||||
AC_DEFINE(HAVE_BOOST_FILESYSTEM,,[define if the Boost::Filesystem library is available])
|
||||
BOOSTLIBDIR=`echo $BOOST_LDFLAGS | sed -e 's/@<:@^\/@:>@*//'`
|
||||
BOOSTLIBDIR=`echo $OPM_BOOST_LDFLAGS | sed -e 's/@<:@^\/@:>@*//'`
|
||||
ax_lib="-lboost_filesystem"
|
||||
if test "x$ax_boost_user_filesystem_lib" = "x"; then
|
||||
for libextension in `ls $BOOSTLIBDIR/libboost_filesystem*.so* $BOOSTLIBDIR/libboost_filesystem*.dylib* $BOOSTLIBDIR/libboost_filesystem*.a* 2>/dev/null | sed 's,.*/,,' | sed -e 's;^lib\(boost_filesystem.*\)\.so.*$;\1;' -e 's;^lib\(boost_filesystem.*\)\.a*$;\1;' -e 's;^lib\(boost_filesystem.*\)\.dylib$;\1;'` ; do
|
||||
|
@ -57,11 +57,11 @@ AC_DEFUN([AX_BOOST_SYSTEM],
|
||||
AC_REQUIRE([AC_PROG_CC])
|
||||
AC_REQUIRE([AC_CANONICAL_BUILD])
|
||||
CPPFLAGS_SAVED="$CPPFLAGS"
|
||||
CPPFLAGS="$CPPFLAGS $BOOST_CPPFLAGS"
|
||||
CPPFLAGS="$CPPFLAGS $OPM_BOOST_CPPFLAGS"
|
||||
export CPPFLAGS
|
||||
|
||||
LDFLAGS_SAVED="$LDFLAGS"
|
||||
LDFLAGS="$LDFLAGS $BOOST_LDFLAGS"
|
||||
LDFLAGS="$LDFLAGS $OPM_BOOST_LDFLAGS"
|
||||
export LDFLAGS
|
||||
|
||||
AC_CACHE_CHECK(whether the Boost::System library is available,
|
||||
@ -76,10 +76,10 @@ AC_DEFUN([AX_BOOST_SYSTEM],
|
||||
AC_LANG_POP([C++])
|
||||
])
|
||||
if test "x$ax_cv_boost_system" = "xyes"; then
|
||||
AC_SUBST(BOOST_CPPFLAGS)
|
||||
AC_SUBST(OPM_BOOST_CPPFLAGS)
|
||||
|
||||
AC_DEFINE(HAVE_BOOST_SYSTEM,,[define if the Boost::System library is available])
|
||||
BOOSTLIBDIR=`echo $BOOST_LDFLAGS | sed -e 's/@<:@^\/@:>@*//'`
|
||||
BOOSTLIBDIR=`echo $OPM_BOOST_LDFLAGS | sed -e 's/@<:@^\/@:>@*//'`
|
||||
ax_lib="-lboost_system"
|
||||
|
||||
LDFLAGS_SAVE=$LDFLAGS
|
||||
|
@ -54,11 +54,11 @@ AC_DEFUN([AX_BOOST_UNIT_TEST_FRAMEWORK],
|
||||
if test "x$want_boost" = "xyes"; then
|
||||
AC_REQUIRE([AC_PROG_CC])
|
||||
CPPFLAGS_SAVED="$CPPFLAGS"
|
||||
CPPFLAGS="$CPPFLAGS $BOOST_CPPFLAGS"
|
||||
CPPFLAGS="$CPPFLAGS $OPM_BOOST_CPPFLAGS"
|
||||
export CPPFLAGS
|
||||
|
||||
LDFLAGS_SAVED="$LDFLAGS"
|
||||
LDFLAGS="$LDFLAGS $BOOST_LDFLAGS"
|
||||
LDFLAGS="$LDFLAGS $OPM_BOOST_LDFLAGS"
|
||||
export LDFLAGS
|
||||
|
||||
AC_CACHE_CHECK(whether the Boost::Unit_Test_Framework library is available,
|
||||
@ -72,7 +72,7 @@ AC_DEFUN([AX_BOOST_UNIT_TEST_FRAMEWORK],
|
||||
])
|
||||
if test "x$ax_cv_boost_unit_test_framework" = "xyes"; then
|
||||
AC_DEFINE(HAVE_BOOST_UNIT_TEST_FRAMEWORK,,[define if the Boost::Unit_Test_Framework library is available])
|
||||
BOOSTLIBDIR=`echo $BOOST_LDFLAGS | sed -e 's/@<:@^\/@:>@*//'`
|
||||
BOOSTLIBDIR=`echo $OPM_BOOST_LDFLAGS | sed -e 's/@<:@^\/@:>@*//'`
|
||||
ax_lib="-lboost_unit_test_framework"
|
||||
|
||||
if test "x$ax_boost_user_unit_test_framework_lib" = "x"; then
|
||||
|
@ -31,7 +31,9 @@ AC_DEFUN([AX_DUNE_ISTL],
|
||||
"x$ax_cv_dune_common_available" = "xyes"],dnl
|
||||
[AC_DEFINE([HAVE_DUNE_ISTL], [1],dnl
|
||||
[Define to 1 if `dune-istl' is available])
|
||||
])[]dnl
|
||||
],dnl
|
||||
[AC_DEFINE([HAVE_DUNE_ISTL], [0],dnl
|
||||
[Define to 0 if `dune-istl' is unavailable.])])[]dnl
|
||||
|
||||
AM_CONDITIONAL([DUNE_ISTL],
|
||||
[test "x$ax_cv_dune_istl_available" = "xyes" -a \
|
||||
|
@ -4,7 +4,7 @@
|
||||
#
|
||||
# SYNOPSIS
|
||||
#
|
||||
# AX_BOOST_BASE([MINIMUM-VERSION], [ACTION-IF-FOUND], [ACTION-IF-NOT-FOUND])
|
||||
# OPM_BOOST_BASE([MINIMUM-VERSION], [ACTION-IF-FOUND], [ACTION-IF-NOT-FOUND])
|
||||
#
|
||||
# DESCRIPTION
|
||||
#
|
||||
@ -17,11 +17,11 @@
|
||||
#
|
||||
# This macro calls:
|
||||
#
|
||||
# AC_SUBST(BOOST_CPPFLAGS) / AC_SUBST(BOOST_LDFLAGS)
|
||||
# AC_SUBST(OPM_BOOST_CPPFLAGS) / AC_SUBST(OPM_BOOST_LDFLAGS)
|
||||
#
|
||||
# And sets:
|
||||
#
|
||||
# HAVE_BOOST
|
||||
# OPM_HAVE_BOOST
|
||||
#
|
||||
# LICENSE
|
||||
#
|
||||
@ -35,7 +35,7 @@
|
||||
|
||||
#serial 20
|
||||
|
||||
AC_DEFUN([AX_BOOST_BASE],
|
||||
AC_DEFUN([OPM_BOOST_BASE],
|
||||
[
|
||||
AC_ARG_WITH([boost],
|
||||
[AS_HELP_STRING([--with-boost@<:@=ARG@:>@],
|
||||
@ -99,10 +99,10 @@ if test "x$want_boost" = "xyes"; then
|
||||
dnl this location ist chosen if boost libraries are installed with the --layout=system option
|
||||
dnl or if you install boost with RPM
|
||||
if test "$ac_boost_path" != ""; then
|
||||
BOOST_CPPFLAGS="-I$ac_boost_path/include"
|
||||
OPM_BOOST_CPPFLAGS="-I$ac_boost_path/include"
|
||||
for ac_boost_path_tmp in $libsubdirs; do
|
||||
if test -d "$ac_boost_path"/"$ac_boost_path_tmp" ; then
|
||||
BOOST_LDFLAGS="-L$ac_boost_path/$ac_boost_path_tmp"
|
||||
OPM_BOOST_LDFLAGS="-L$ac_boost_path/$ac_boost_path_tmp"
|
||||
break
|
||||
fi
|
||||
done
|
||||
@ -112,8 +112,8 @@ if test "x$want_boost" = "xyes"; then
|
||||
for libsubdir in $libsubdirs ; do
|
||||
if ls "$ac_boost_path_tmp/$libsubdir/libboost_"* >/dev/null 2>&1 ; then break; fi
|
||||
done
|
||||
BOOST_LDFLAGS="-L$ac_boost_path_tmp/$libsubdir"
|
||||
BOOST_CPPFLAGS="-I$ac_boost_path_tmp/include"
|
||||
OPM_BOOST_LDFLAGS="-L$ac_boost_path_tmp/$libsubdir"
|
||||
OPM_BOOST_CPPFLAGS="-I$ac_boost_path_tmp/include"
|
||||
break;
|
||||
fi
|
||||
done
|
||||
@ -122,15 +122,15 @@ if test "x$want_boost" = "xyes"; then
|
||||
dnl overwrite ld flags if we have required special directory with
|
||||
dnl --with-boost-libdir parameter
|
||||
if test "$ac_boost_lib_path" != ""; then
|
||||
BOOST_LDFLAGS="-L$ac_boost_lib_path"
|
||||
OPM_BOOST_LDFLAGS="-L$ac_boost_lib_path"
|
||||
fi
|
||||
|
||||
CPPFLAGS_SAVED="$CPPFLAGS"
|
||||
CPPFLAGS="$CPPFLAGS $BOOST_CPPFLAGS"
|
||||
CPPFLAGS="$CPPFLAGS $OPM_BOOST_CPPFLAGS"
|
||||
export CPPFLAGS
|
||||
|
||||
LDFLAGS_SAVED="$LDFLAGS"
|
||||
LDFLAGS="$LDFLAGS $BOOST_LDFLAGS"
|
||||
LDFLAGS="$LDFLAGS $OPM_BOOST_LDFLAGS"
|
||||
export LDFLAGS
|
||||
|
||||
AC_REQUIRE([AC_PROG_CXX])
|
||||
@ -166,7 +166,7 @@ if test "x$want_boost" = "xyes"; then
|
||||
_version=$_version_tmp
|
||||
fi
|
||||
VERSION_UNDERSCORE=`echo $_version | sed 's/\./_/'`
|
||||
BOOST_CPPFLAGS="-I$ac_boost_path/include/boost-$VERSION_UNDERSCORE"
|
||||
OPM_BOOST_CPPFLAGS="-I$ac_boost_path/include/boost-$VERSION_UNDERSCORE"
|
||||
done
|
||||
fi
|
||||
else
|
||||
@ -185,12 +185,12 @@ if test "x$want_boost" = "xyes"; then
|
||||
done
|
||||
|
||||
VERSION_UNDERSCORE=`echo $_version | sed 's/\./_/'`
|
||||
BOOST_CPPFLAGS="-I$best_path/include/boost-$VERSION_UNDERSCORE"
|
||||
OPM_BOOST_CPPFLAGS="-I$best_path/include/boost-$VERSION_UNDERSCORE"
|
||||
if test "$ac_boost_lib_path" = ""; then
|
||||
for libsubdir in $libsubdirs ; do
|
||||
if ls "$best_path/$libsubdir/libboost_"* >/dev/null 2>&1 ; then break; fi
|
||||
done
|
||||
BOOST_LDFLAGS="-L$best_path/$libsubdir"
|
||||
OPM_BOOST_LDFLAGS="-L$best_path/$libsubdir"
|
||||
fi
|
||||
fi
|
||||
|
||||
@ -205,16 +205,16 @@ if test "x$want_boost" = "xyes"; then
|
||||
V_CHECK=`expr $stage_version_shorten \>\= $_version`
|
||||
if test "$V_CHECK" = "1" -a "$ac_boost_lib_path" = "" ; then
|
||||
AC_MSG_NOTICE(We will use a staged boost library from $BOOST_ROOT)
|
||||
BOOST_CPPFLAGS="-I$BOOST_ROOT"
|
||||
BOOST_LDFLAGS="-L$BOOST_ROOT/stage/$libsubdir"
|
||||
OPM_BOOST_CPPFLAGS="-I$BOOST_ROOT"
|
||||
OPM_BOOST_LDFLAGS="-L$BOOST_ROOT/stage/$libsubdir"
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
|
||||
CPPFLAGS="$CPPFLAGS $BOOST_CPPFLAGS"
|
||||
CPPFLAGS="$CPPFLAGS $OPM_BOOST_CPPFLAGS"
|
||||
export CPPFLAGS
|
||||
LDFLAGS="$LDFLAGS $BOOST_LDFLAGS"
|
||||
LDFLAGS="$LDFLAGS $OPM_BOOST_LDFLAGS"
|
||||
export LDFLAGS
|
||||
|
||||
AC_LANG_PUSH(C++)
|
||||
@ -243,10 +243,12 @@ if test "x$want_boost" = "xyes"; then
|
||||
fi
|
||||
# execute ACTION-IF-NOT-FOUND (if present):
|
||||
ifelse([$3], , :, [$3])
|
||||
AC_DEFINE([OPM_HAVE_BOOST], [0],dnl
|
||||
[Define to `0' if the Boost library is not available])
|
||||
else
|
||||
AC_SUBST(BOOST_CPPFLAGS)
|
||||
AC_SUBST(BOOST_LDFLAGS)
|
||||
AC_DEFINE(HAVE_BOOST,,[define if the Boost library is available])
|
||||
AC_SUBST([OPM_BOOST_CPPFLAGS])
|
||||
AC_SUBST([OPM_BOOST_LDFLAGS])
|
||||
AC_DEFINE([OPM_HAVE_BOOST], [1], [define if the Boost library is available])
|
||||
# execute ACTION-IF-FOUND (if present):
|
||||
ifelse([$2], , :, [$2])
|
||||
fi
|
66
m4/opm_core.m4
Normal file
66
m4/opm_core.m4
Normal file
@ -0,0 +1,66 @@
|
||||
dnl -*- autoconf -*-
|
||||
# Macros needed to find OPM-core and dependent libraries. They are called by
|
||||
# the macros in ${top_src_dir}/dependencies.m4, which is generated by
|
||||
# "dunecontrol autogen"
|
||||
AC_DEFUN([OPM_CORE_CHECKS],
|
||||
[
|
||||
|
||||
# Checks for libraries.
|
||||
|
||||
# Bring in numerics support (standard library component)
|
||||
AC_SEARCH_LIBS([sqrt], [m])
|
||||
|
||||
OPM_LAPACK
|
||||
|
||||
OPM_BOOST_BASE([1.37])
|
||||
AX_BOOST_SYSTEM
|
||||
AX_BOOST_DATE_TIME
|
||||
AX_BOOST_FILESYSTEM
|
||||
AX_BOOST_UNIT_TEST_FRAMEWORK
|
||||
|
||||
AX_DUNE_ISTL
|
||||
OPM_AGMG
|
||||
|
||||
# Checks for header files.
|
||||
AC_CHECK_HEADERS([float.h limits.h stddef.h stdlib.h string.h])
|
||||
|
||||
AC_CHECK_HEADERS([suitesparse/umfpack.h],
|
||||
[umfpack_header=yes],
|
||||
[umfpack_header=no])
|
||||
|
||||
# Checks for typedefs, structures, and compiler characteristics.
|
||||
AC_HEADER_STDBOOL
|
||||
AC_TYPE_SIZE_T
|
||||
AC_CHECK_TYPES([ptrdiff_t])
|
||||
|
||||
# Checks for library functions.
|
||||
AC_CHECK_FUNCS([floor memset memmove strchr strtol sqrt pow])
|
||||
AC_FUNC_STRTOD
|
||||
|
||||
# Search for UMFPACK direct sparse solver.
|
||||
AC_SEARCH_LIBS([amd_free], [amd])
|
||||
AC_SEARCH_LIBS([camd_free], [camd])
|
||||
AC_SEARCH_LIBS([colamd_set_defaults], [colamd])
|
||||
AC_SEARCH_LIBS([ccolamd_set_defaults], [ccolamd])
|
||||
AC_SEARCH_LIBS([cholmod_l_start], [cholmod])
|
||||
AC_SEARCH_LIBS([umfpack_dl_solve], [umfpack],dnl
|
||||
[umfpack_lib=yes], [umfpack_lib=no])
|
||||
|
||||
AM_CONDITIONAL([UMFPACK],
|
||||
[test "x$umfpack_header" != "xno" -a "x$umfpack_lib" != "xno"])
|
||||
|
||||
m4_ifdef([AM_COND_IF],
|
||||
[AM_COND_IF([UMFPACK], [],
|
||||
[AC_MSG_NOTICE([Found no working installation of UMFPACK.
|
||||
UMFPACK support is disabled.])])
|
||||
])
|
||||
|
||||
])
|
||||
|
||||
# Additional checks needed to find eWoms
|
||||
# This macro should be invoked by every module which depends on dumux, but
|
||||
# not by dumux itself
|
||||
AC_DEFUN([OPM_CORE_CHECK_MODULE],
|
||||
[
|
||||
OPM_CORE_CHECK_MODULES([opm-core],[opm/core/grid.h],[create_grid_empty()])
|
||||
])
|
281
m4/opm_core_check_modules.m4
Normal file
281
m4/opm_core_check_modules.m4
Normal file
@ -0,0 +1,281 @@
|
||||
dnl -*- autoconf -*-
|
||||
|
||||
# OPM_CORE_CHECK_MODULES(NAME, HEADER, SYMBOL)
|
||||
#
|
||||
# THIS MACRO IS JUST A COPY OF DUNE_CHECK_MODULES WITH THE REQUIREMENT
|
||||
# THAT ALL HEADERS MUST RESIDE IN $MODULE_ROOT/dune REMOVED. REMOVE
|
||||
# THIS MACRO AS SOON AS DUNE DOES NOT ENFORCE THIS ANYMORE.
|
||||
#
|
||||
# Generic check for dune modules. This macro should not be used directly, but
|
||||
# in the modules m4/{module}.m4 in the {MODULE}_CHECK_MODULE macro. The
|
||||
# {MODULE}_CHECK_MODULE macro knows the parameters to call this
|
||||
# DUNE_CHECK_MODULES macro with, and it does not take any parameters itself,
|
||||
# so it may be used with AC_REQUIRE.
|
||||
#
|
||||
# NAME Name of the module, lowercase with dashes (like "dune-common"). The
|
||||
# value must be known when autoconf runs, so shell variables in the
|
||||
# value are not permissible.
|
||||
#
|
||||
# HEADER Header to check for. The check will really be for <dune/{HEADER}>,
|
||||
# so the header must reside within a directory called "dune".
|
||||
#
|
||||
# SYMBOL Symbol to check for in the module's library. If this argument is
|
||||
# empty or missing, it is assumed that the module does not provide a
|
||||
# library. The value must be known when autoconf runs, so shell
|
||||
# variables in the value are not permissible. This value is actually
|
||||
# handed to AC_TRY_LINK unchanged as the FUNCTION-BODY argument, so it
|
||||
# may contain more complex stuff than a simple symbol.
|
||||
#
|
||||
# The name of the library is assumed to be the same as the module name,
|
||||
# with any occurance of "-" removed. The path of the library is
|
||||
# obtained from pkgconfig for installed modules, or assumed to be the
|
||||
# directory "lib" within the modules root for non-installed modules.
|
||||
#
|
||||
# In the following, {module} is {NAME} with any "-" replaced by "_" and
|
||||
# {MODULE} is the uppercase version of {module}.
|
||||
#
|
||||
# configure options:
|
||||
# --with-{NAME}
|
||||
#
|
||||
# configure/shell variables:
|
||||
# {MODULE}_ROOT, {MODULE}_LIBDIR
|
||||
# HAVE_{MODULE} (1 or 0)
|
||||
# with_{module} ("yes" or "no")
|
||||
# DUNE_CPPFLAGS, DUNE_LDFLAGS, DUNE_LIBS (adds the modules values here,
|
||||
# substitution done by DUNE_CHECK_ALL)
|
||||
# ALL_PKG_CPPFLAGS, ALL_PKG_LDFLAGS, ALL_PKG_LIBS (adds the modules values
|
||||
# here, substitution done by DUNE_CHECK_ALL)
|
||||
# {MODULE}_VERSION
|
||||
# {MODULE}_VERSION_MAJOR
|
||||
# {MODULE}_VERSION_MINOR
|
||||
# {MODULE}_VERSION_REVISION
|
||||
#
|
||||
# configure substitutions/makefile variables:
|
||||
# {MODULE}_CPPFLAGS, {MODULE}_LDFLAGS, {MODULE}_LIBS
|
||||
# {MODULE}_ROOT
|
||||
# {MODULE}_LIBDIR (only if modules provides a library)
|
||||
#
|
||||
# preprocessor defines:
|
||||
# HAVE_{MODULE} (1 or undefined)
|
||||
# {MODULE}_VERSION
|
||||
# {MODULE}_VERSION_MAJOR
|
||||
# {MODULE}_VERSION_MINOR
|
||||
# {MODULE}_VERSION_REVISION
|
||||
#
|
||||
# automake conditionals:
|
||||
# HAVE_{MODULE}
|
||||
AC_DEFUN([OPM_CORE_CHECK_MODULES],[
|
||||
AC_REQUIRE([AC_PROG_CXX])
|
||||
AC_REQUIRE([AC_PROG_CXXCPP])
|
||||
AC_REQUIRE([PKG_PROG_PKG_CONFIG])
|
||||
AC_REQUIRE([DUNE_DISABLE_LIBCHECK])
|
||||
AC_REQUIRE([LT_OUTPUT])
|
||||
|
||||
# ____DUNE_CHECK_MODULES_____ ($1)
|
||||
|
||||
m4_pushdef([_dune_name], [$1])
|
||||
m4_pushdef([_dune_module], [m4_translit(_dune_name, [-], [_])])
|
||||
m4_pushdef([_dune_header], [$2])
|
||||
m4_pushdef([_dune_ldpath], [lib])
|
||||
m4_pushdef([_dune_lib], [m4_translit(_dune_name, [-], [])])
|
||||
m4_pushdef([_dune_symbol], [$3])
|
||||
m4_pushdef([_DUNE_MODULE], [m4_toupper(_dune_module)])
|
||||
|
||||
# switch tests to c++
|
||||
AC_LANG_PUSH([C++])
|
||||
|
||||
# the usual option...
|
||||
AC_ARG_WITH(_dune_name,
|
||||
AS_HELP_STRING([--with-_dune_name=PATH],[_dune_module directory]))
|
||||
|
||||
# backup of flags
|
||||
ac_save_CPPFLAGS="$CPPFLAGS"
|
||||
ac_save_LIBS="$LIBS"
|
||||
ac_save_LDFLAGS="$LDFLAGS"
|
||||
CPPFLAGS=""
|
||||
LIBS=""
|
||||
|
||||
##
|
||||
## Where is the module $1?
|
||||
##
|
||||
|
||||
AC_MSG_CHECKING([for $1 installation or source tree])
|
||||
|
||||
# is a directory set?
|
||||
AS_IF([test -z "$with_[]_dune_module"],[
|
||||
#
|
||||
# search module $1 via pkg-config
|
||||
#
|
||||
with_[]_dune_module="global installation"
|
||||
AS_IF([test -z "$PKG_CONFIG"],[
|
||||
AC_MSG_RESULT([failed])
|
||||
AC_MSG_NOTICE([could not search for module _dune_name])
|
||||
AC_MSG_ERROR([pkg-config is required for using installed modules])
|
||||
])
|
||||
AS_IF(AC_RUN_LOG([$PKG_CONFIG --exists --print-errors "$1"]),[
|
||||
_dune_cm_CPPFLAGS="`$PKG_CONFIG --cflags _dune_name`" 2>/dev/null
|
||||
_DUNE_MODULE[]_ROOT="`$PKG_CONFIG --variable=prefix _dune_name`" 2>/dev/null
|
||||
_DUNE_MODULE[]_VERSION="`$PKG_CONFIG --modversion _dune_name`" 2>/dev/null
|
||||
_dune_cm_LDFLAGS=""
|
||||
ifelse(_dune_symbol,,
|
||||
[_DUNE_MODULE[]_LIBDIR=""
|
||||
_dune_cm_LIBS=""],
|
||||
[_DUNE_MODULE[]_LIBDIR=`$PKG_CONFIG --variable=libdir _dune_name 2>/dev/null`
|
||||
_dune_cm_LIBS="-L$_DUNE_MODULE[]_LIBDIR -l[]_dune_lib"])
|
||||
HAVE_[]_DUNE_MODULE=1
|
||||
AC_MSG_RESULT([global installation in $_DUNE_MODULE[]_ROOT])
|
||||
],[
|
||||
HAVE_[]_DUNE_MODULE=0
|
||||
AC_MSG_RESULT([not found])
|
||||
])
|
||||
],[
|
||||
#
|
||||
# path for module $1 is specified via command line
|
||||
#
|
||||
AS_IF([test -d "$with_[]_dune_module"],[
|
||||
# expand tilde / other stuff
|
||||
_DUNE_MODULE[]_ROOT=`cd $with_[]_dune_module && pwd`
|
||||
|
||||
# expand search path (otherwise empty CPPFLAGS)
|
||||
AS_IF([test -d "$_DUNE_MODULE[]_ROOT/include/dune"],[
|
||||
# Dune was installed into directory given by with-dunecommon
|
||||
_dune_cm_CPPFLAGS="-I$_DUNE_MODULE[]_ROOT/include"
|
||||
_DUNE_MODULE[]_BUILDDIR=_DUNE_MODULE[]_ROOT
|
||||
_DUNE_MODULE[]_VERSION="`PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$_DUNE_MODULE[]_ROOT/lib/pkgconfig $PKG_CONFIG --modversion _dune_name`" 2>/dev/null
|
||||
],[
|
||||
_DUNE_MODULE[]_SRCDIR=$_DUNE_MODULE[]_ROOT
|
||||
# extract src and build path from Makefile, if found
|
||||
AS_IF([test -f $_DUNE_MODULE[]_ROOT/Makefile],[
|
||||
_DUNE_MODULE[]_SRCDIR="`sed -ne '/^abs_top_srcdir = /{s/^abs_top_srcdir = //; p;}' $_DUNE_MODULE[]_ROOT/Makefile`"
|
||||
])
|
||||
_dune_cm_CPPFLAGS="-I$_DUNE_MODULE[]_SRCDIR"
|
||||
_DUNE_MODULE[]_VERSION="`grep Version $_DUNE_MODULE[]_SRCDIR/dune.module | sed -e 's/^Version: *//'`" 2>/dev/null
|
||||
])
|
||||
_dune_cm_LDFLAGS=""
|
||||
ifelse(_dune_symbol,,
|
||||
[_DUNE_MODULE[]_LIBDIR=""
|
||||
_dune_cm_LIBS=""],
|
||||
[_DUNE_MODULE[]_LIBDIR="$_DUNE_MODULE[]_ROOT/lib"
|
||||
_dune_cm_LIBS="-L$_DUNE_MODULE[]_LIBDIR -l[]_dune_lib"])
|
||||
# set expanded module path
|
||||
with_[]_dune_module="$_DUNE_MODULE[]_ROOT"
|
||||
HAVE_[]_DUNE_MODULE=1
|
||||
AC_MSG_RESULT([found in $_DUNE_MODULE[]_ROOT])
|
||||
],[
|
||||
HAVE_[]_DUNE_MODULE=0
|
||||
AC_MSG_RESULT([not found])
|
||||
AC_MSG_ERROR([_dune_name-directory $with_[]_dune_module does not exist])
|
||||
])
|
||||
])
|
||||
|
||||
CPPFLAGS="$ac_save_CPPFLAGS $DUNE_CPPFLAGS $_dune_cm_CPPFLAGS"
|
||||
##
|
||||
## check for an arbitrary header
|
||||
##
|
||||
AS_IF([test "$HAVE_[]_DUNE_MODULE" != "1"],[
|
||||
AC_CHECK_HEADER([[]_dune_header],
|
||||
[HAVE_[]_DUNE_MODULE=1], [HAVE_[]_DUNE_MODULE=0])
|
||||
])
|
||||
|
||||
AS_IF([test "$HAVE_[]_DUNE_MODULE" != "1"],[
|
||||
AC_MSG_WARN([$_DUNE_MODULE[]_ROOT does not seem to contain a valid _dune_name (dune/[]_dune_header not found)])
|
||||
])
|
||||
|
||||
##
|
||||
## check for lib (if lib name was provided)
|
||||
##
|
||||
ifelse(_dune_symbol,,
|
||||
AC_MSG_NOTICE([_dune_name does not provide libs]),
|
||||
|
||||
AS_IF([test "x$enable_dunelibcheck" = "xno"],[
|
||||
AC_MSG_WARN([library check for _dune_name is disabled. DANGEROUS!])
|
||||
],[
|
||||
AS_IF([test "x$HAVE_[]_DUNE_MODULE" = "x1"],[
|
||||
|
||||
# save current LDFLAGS
|
||||
ac_save_CXX="$CXX"
|
||||
HAVE_[]_DUNE_MODULE=0
|
||||
|
||||
# define LTCXXLINK like it will be defined in the Makefile
|
||||
CXX="./libtool --tag=CXX --mode=link $ac_save_CXX"
|
||||
|
||||
# use module LDFLAGS
|
||||
LDFLAGS="$ac_save_LDFLAGS $DUNE_LDFLAGS $_dune_cm_LDFLAGS"
|
||||
LIBS="$_dune_cm_LIBS $DUNE_LIBS $LIBS"
|
||||
|
||||
AC_MSG_CHECKING([for lib[]_dune_lib])
|
||||
|
||||
AC_TRY_LINK(dnl
|
||||
[#]include<_dune_header>,
|
||||
_dune_symbol,
|
||||
[
|
||||
AC_MSG_RESULT([yes])
|
||||
HAVE_[]_DUNE_MODULE=1
|
||||
],[
|
||||
AC_MSG_RESULT([no])
|
||||
HAVE_[]_DUNE_MODULE=0
|
||||
AS_IF([test -n "$_DUNE_MODULE[]_ROOT"],[
|
||||
AC_MSG_WARN([$with_[]_dune_module does not seem to contain a valid _dune_name (failed to link with lib[]_dune_lib[].la)])
|
||||
])
|
||||
]
|
||||
)
|
||||
])
|
||||
|
||||
# reset variables
|
||||
CXX="$ac_save_CXX"
|
||||
])
|
||||
)
|
||||
|
||||
# did we succeed?
|
||||
AS_IF([test "x$HAVE_[]_DUNE_MODULE" = "x1"],[
|
||||
# add the module's own flags and libs to the modules and the global
|
||||
# variables
|
||||
DUNE_ADD_MODULE_DEPS(m4_defn([_dune_name]), m4_defn([_dune_name]),
|
||||
[$_dune_cm_CPPFLAGS], [$_dune_cm_LDFLAGS], [$_dune_cm_LIBS])
|
||||
|
||||
# set variables for our modules
|
||||
AC_SUBST(_DUNE_MODULE[]_CPPFLAGS, "$_DUNE_MODULE[]_CPPFLAGS")
|
||||
AC_SUBST(_DUNE_MODULE[]_LDFLAGS, "$_DUNE_MODULE[]_LDFLAGS")
|
||||
AC_SUBST(_DUNE_MODULE[]_LIBS, "$_DUNE_MODULE[]_LIBS")
|
||||
AC_SUBST(_DUNE_MODULE[]_ROOT, "$_DUNE_MODULE[]_ROOT")
|
||||
ifelse(m4_defn([_dune_symbol]),,
|
||||
[],
|
||||
[AC_SUBST(_DUNE_MODULE[]_LIBDIR)
|
||||
])
|
||||
AC_DEFINE(HAVE_[]_DUNE_MODULE, 1, [Define to 1 if] _dune_name [was found])
|
||||
|
||||
DUNE_PARSE_MODULE_VERSION(_dune_name, $_DUNE_MODULE[]_VERSION)
|
||||
|
||||
# set DUNE_* variables
|
||||
# This should actually be unneccesary, but I'm keeping it in here for now
|
||||
# for backward compatibility
|
||||
DUNE_LDFLAGS="$DUNE_LDFLAGS $_DUNE_MODULE[]_LDFLAGS"
|
||||
DUNE_LIBS="$_DUNE_MODULE[]_LIBS $DUNE_LIBS"
|
||||
|
||||
with_[]_dune_module="yes"
|
||||
],[
|
||||
with_[]_dune_module="no"
|
||||
])
|
||||
|
||||
AM_CONDITIONAL(HAVE_[]_DUNE_MODULE, test x$HAVE_[]_DUNE_MODULE = x1)
|
||||
|
||||
# reset previous flags
|
||||
CPPFLAGS="$ac_save_CPPFLAGS"
|
||||
LDFLAGS="$ac_save_LDFLAGS"
|
||||
LIBS="$ac_save_LIBS"
|
||||
|
||||
# add this module to DUNE_SUMMARY
|
||||
DUNE_MODULE_ADD_SUMMARY_ENTRY(_dune_name)
|
||||
|
||||
# remove local variables
|
||||
m4_popdef([_dune_name])
|
||||
m4_popdef([_dune_module])
|
||||
m4_popdef([_dune_header])
|
||||
m4_popdef([_dune_ldpath])
|
||||
m4_popdef([_dune_lib])
|
||||
m4_popdef([_dune_symbol])
|
||||
m4_popdef([_DUNE_MODULE])
|
||||
|
||||
# restore previous language settings (leave C++)
|
||||
AC_LANG_POP([C++])
|
||||
])
|
@ -38,14 +38,14 @@ dnl -------------------------------------------------------------------
|
||||
# system uses dynamic linking of Boost.Test .
|
||||
AC_DEFUN([OPM_DYNLINK_BOOST_TEST],
|
||||
[
|
||||
AC_REQUIRE([AX_BOOST_BASE])
|
||||
AC_REQUIRE([OPM_BOOST_BASE])
|
||||
AC_REQUIRE([AX_BOOST_UNIT_TEST_FRAMEWORK])
|
||||
|
||||
_opm_LIBS_SAVE="$LIBS"
|
||||
_opm_CPPFLAGS_SAVE="$CPPFLAGS"
|
||||
_opm_LIBS_SAVE="${LIBS}"
|
||||
_opm_CPPFLAGS_SAVE="${CPPFLAGS}"
|
||||
|
||||
LIBS="${BOOST_LDFLAGS} ${BOOST_UNIT_TEST_FRAMEWORK_LIB} ${LIBS}"
|
||||
CPPFLAGS="${BOOST_CPPFLAGS} ${CPPFLAGS}"
|
||||
LIBS="${OPM_BOOST_LDFLAGS} ${BOOST_UNIT_TEST_FRAMEWORK_LIB} ${LIBS}"
|
||||
CPPFLAGS="${OPM_BOOST_CPPFLAGS} ${CPPFLAGS}"
|
||||
|
||||
AC_LANG_PUSH([C++])
|
||||
|
||||
@ -66,12 +66,12 @@ AC_CACHE_CHECK([if the Boost.Test library can be linked dynamically],dnl
|
||||
|
||||
AC_LANG_POP([C++])
|
||||
|
||||
LIBS="$_opm_LIBS_SAVE"
|
||||
CPPFLAGS="$_opm_CPPFLAGS_SAVE"
|
||||
LIBS="${_opm_LIBS_SAVE}"
|
||||
CPPFLAGS="${_opm_CPPFLAGS_SAVE}"
|
||||
|
||||
AS_IF([test x"$opm_cv_boost_link_static" = x"yes" -o \
|
||||
x"$opm_cv_boost_link_dynamic" = x"yes"],
|
||||
[AS_IF([test x"$opm_cv_boost_link_dynamic" = x"yes"],
|
||||
AS_IF([test x"${opm_cv_boost_link_static}" = x"yes" -o \
|
||||
x"${opm_cv_boost_link_dynamic}" = x"yes"],
|
||||
[AS_IF([test x"${opm_cv_boost_link_dynamic}" = x"yes"],
|
||||
[AC_DEFINE([HAVE_DYNAMIC_BOOST_TEST], [1],
|
||||
[Define to `1' if Boost.Test should use BOOST_TEST_DYN_LINK])]
|
||||
[:])[]dnl
|
||||
|
@ -22,6 +22,8 @@
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/grid/cart_grid.h>
|
||||
#include <opm/core/grid/cornerpoint_grid.h>
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
|
||||
|
||||
|
||||
@ -33,14 +35,26 @@ namespace Opm
|
||||
/// Construct a 3d corner-point grid from a deck.
|
||||
GridManager::GridManager(const Opm::EclipseGridParser& deck)
|
||||
{
|
||||
// Collect in input struct for preprocessing.
|
||||
struct grdecl grdecl = deck.get_grdecl();
|
||||
|
||||
// Process grid.
|
||||
ug_ = create_grid_cornerpoint(&grdecl, 0.0);
|
||||
if (!ug_) {
|
||||
THROW("Failed to construct grid.");
|
||||
}
|
||||
// We accept two different ways to specify the grid.
|
||||
// 1. Corner point format.
|
||||
// Requires ZCORN, COORDS, DIMENS or SPECGRID, optionally
|
||||
// ACTNUM, optionally MAPAXES.
|
||||
// For this format, we will verify that DXV, DYV, DZV,
|
||||
// DEPTHZ and TOPS are not present.
|
||||
// 2. Tensor grid format.
|
||||
// Requires DXV, DYV, DZV, optionally DEPTHZ or TOPS.
|
||||
// For this format, we will verify that ZCORN, COORDS
|
||||
// and ACTNUM are not present.
|
||||
// Note that for TOPS, we only allow a uniform vector of values.
|
||||
|
||||
if (deck.hasField("ZCORN") && deck.hasField("COORD")) {
|
||||
initFromDeckCornerpoint(deck);
|
||||
} else if (deck.hasField("DXV") && deck.hasField("DYV") && deck.hasField("DZV")) {
|
||||
initFromDeckTensorgrid(deck);
|
||||
} else {
|
||||
THROW("Could not initialize grid from deck. "
|
||||
"Need either ZCORN + COORD or DXV + DYV + DZV keywords.");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -102,5 +116,94 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
// Construct corner-point grid from deck.
|
||||
void GridManager::initFromDeckCornerpoint(const Opm::EclipseGridParser& deck)
|
||||
{
|
||||
// Extract data from deck.
|
||||
// Collect in input struct for preprocessing.
|
||||
struct grdecl grdecl = deck.get_grdecl();
|
||||
|
||||
// Process grid.
|
||||
ug_ = create_grid_cornerpoint(&grdecl, 0.0);
|
||||
if (!ug_) {
|
||||
THROW("Failed to construct grid.");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
std::vector<double> coordsFromDeltas(const std::vector<double>& deltas)
|
||||
{
|
||||
std::vector<double> coords(deltas.size() + 1);
|
||||
coords[0] = 0.0;
|
||||
std::partial_sum(deltas.begin(), deltas.end(), coords.begin() + 1);
|
||||
return coords;
|
||||
}
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
// Construct tensor grid from deck.
|
||||
void GridManager::initFromDeckTensorgrid(const Opm::EclipseGridParser& deck)
|
||||
{
|
||||
// Extract logical cartesian size.
|
||||
std::vector<int> dims;
|
||||
if (deck.hasField("DIMENS")) {
|
||||
dims = deck.getIntegerValue("DIMENS");
|
||||
} else if (deck.hasField("SPECGRID")) {
|
||||
dims = deck.getSPECGRID().dimensions;
|
||||
} else {
|
||||
THROW("Deck must have either DIMENS or SPECGRID.");
|
||||
}
|
||||
|
||||
// Extract coordinates (or offsets from top, in case of z).
|
||||
const std::vector<double>& dxv = deck.getFloatingPointValue("DXV");
|
||||
const std::vector<double>& dyv = deck.getFloatingPointValue("DYV");
|
||||
const std::vector<double>& dzv = deck.getFloatingPointValue("DZV");
|
||||
std::vector<double> x = coordsFromDeltas(dxv);
|
||||
std::vector<double> y = coordsFromDeltas(dyv);
|
||||
std::vector<double> z = coordsFromDeltas(dzv);
|
||||
|
||||
// Check that number of cells given are consistent with DIMENS/SPECGRID.
|
||||
if (dims[0] != int(dxv.size())) {
|
||||
THROW("Number of DXV data points do not match DIMENS or SPECGRID.");
|
||||
}
|
||||
if (dims[1] != int(dyv.size())) {
|
||||
THROW("Number of DYV data points do not match DIMENS or SPECGRID.");
|
||||
}
|
||||
if (dims[2] != int(dzv.size())) {
|
||||
THROW("Number of DZV data points do not match DIMENS or SPECGRID.");
|
||||
}
|
||||
|
||||
// Extract top corner depths, if available.
|
||||
const double* top_depths = 0;
|
||||
std::vector<double> top_depths_vec;
|
||||
if (deck.hasField("DEPTHZ")) {
|
||||
const std::vector<double>& depthz = deck.getFloatingPointValue("DEPTHZ");
|
||||
if (depthz.size() != x.size()*y.size()) {
|
||||
THROW("Incorrect size of DEPTHZ: " << depthz.size());
|
||||
}
|
||||
top_depths = &depthz[0];
|
||||
} else if (deck.hasField("TOPS")) {
|
||||
// We only support constant values for TOPS.
|
||||
// It is not 100% clear how we best can deal with
|
||||
// varying TOPS (stair-stepping grid, or not).
|
||||
const std::vector<double>& tops = deck.getFloatingPointValue("TOPS");
|
||||
if (std::count(tops.begin(), tops.end(), tops[0]) != int(tops.size())) {
|
||||
THROW("We do not support nonuniform TOPS, please use ZCORN/COORDS instead.");
|
||||
}
|
||||
top_depths_vec.resize(x.size()*y.size(), tops[0]);
|
||||
top_depths = &top_depths_vec[0];
|
||||
}
|
||||
|
||||
// Construct grid.
|
||||
ug_ = create_grid_tensor3d(dxv.size(), dyv.size(), dzv.size(),
|
||||
&x[0], &y[0], &z[0], top_depths);
|
||||
if (!ug_) {
|
||||
THROW("Failed to construct grid.");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -33,39 +33,46 @@ namespace Opm
|
||||
/// encapsulates creation and destruction of the grid.
|
||||
/// The following grid types can be constructed:
|
||||
/// - 3d corner-point grids (from deck input)
|
||||
/// - 3d tensor grids (from deck input)
|
||||
/// - 2d cartesian grids
|
||||
/// - 3d cartesian grids
|
||||
/// The resulting UnstructuredGrid is available through the c_grid() method.
|
||||
class GridManager
|
||||
{
|
||||
public:
|
||||
/// Construct a 3d corner-point grid from a deck.
|
||||
GridManager(const Opm::EclipseGridParser& deck);
|
||||
/// Construct a 3d corner-point grid or tensor grid from a deck.
|
||||
GridManager(const Opm::EclipseGridParser& deck);
|
||||
|
||||
/// Construct a 2d cartesian grid with cells of unit size.
|
||||
GridManager(int nx, int ny);
|
||||
/// Construct a 2d cartesian grid with cells of unit size.
|
||||
GridManager(int nx, int ny);
|
||||
|
||||
/// Construct a 3d cartesian grid with cells of unit size.
|
||||
GridManager(int nx, int ny, int nz);
|
||||
/// Construct a 3d cartesian grid with cells of unit size.
|
||||
GridManager(int nx, int ny, int nz);
|
||||
|
||||
/// Construct a 3d cartesian grid with cells of size [dx, dy, dz].
|
||||
GridManager(int nx, int ny, int nz,
|
||||
double dx, double dy, double dz);
|
||||
/// Construct a 3d cartesian grid with cells of size [dx, dy, dz].
|
||||
GridManager(int nx, int ny, int nz,
|
||||
double dx, double dy, double dz);
|
||||
|
||||
/// Destructor.
|
||||
~GridManager();
|
||||
/// Destructor.
|
||||
~GridManager();
|
||||
|
||||
/// Access the managed UnstructuredGrid.
|
||||
/// The method is named similarly to c_str() in std::string,
|
||||
/// to make it clear that we are returning a C-compatible struct.
|
||||
const UnstructuredGrid* c_grid() const;
|
||||
/// Access the managed UnstructuredGrid.
|
||||
/// The method is named similarly to c_str() in std::string,
|
||||
/// to make it clear that we are returning a C-compatible struct.
|
||||
const UnstructuredGrid* c_grid() const;
|
||||
|
||||
private:
|
||||
// Disable copying and assignment.
|
||||
GridManager(const GridManager& other);
|
||||
GridManager& operator=(const GridManager& other);
|
||||
// The managed UnstructuredGrid.
|
||||
UnstructuredGrid* ug_;
|
||||
// Disable copying and assignment.
|
||||
GridManager(const GridManager& other);
|
||||
GridManager& operator=(const GridManager& other);
|
||||
|
||||
// Construct corner-point grid from deck.
|
||||
void initFromDeckCornerpoint(const Opm::EclipseGridParser& deck);
|
||||
// Construct tensor grid from deck.
|
||||
void initFromDeckTensorgrid(const Opm::EclipseGridParser& deck);
|
||||
|
||||
// The managed UnstructuredGrid.
|
||||
UnstructuredGrid* ug_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -96,7 +96,7 @@ namespace EclipseKeywords
|
||||
string("MULTPV"), string("PRESSURE"), string("SGAS"),
|
||||
string("SWAT"), string("SOIL"), string("RS"),
|
||||
string("DXV"), string("DYV"), string("DZV"),
|
||||
string("DEPTHZ"), string("MAPAXES")
|
||||
string("DEPTHZ"), string("TOPS"), string("MAPAXES")
|
||||
};
|
||||
const int num_floating_fields = sizeof(floating_fields) / sizeof(floating_fields[0]);
|
||||
|
||||
@ -201,21 +201,7 @@ namespace {
|
||||
return us;
|
||||
}
|
||||
|
||||
inline std::string readKeyword(std::istream& is)
|
||||
{
|
||||
std::string keyword_candidate;
|
||||
while (!is.eof()) {
|
||||
is >> keyword_candidate;
|
||||
if(keyword_candidate.find("--") == 0) {
|
||||
is >> ignoreLine; // This line is a comment
|
||||
} else {
|
||||
return upcase(keyword_candidate);
|
||||
}
|
||||
}
|
||||
return "CONTINUE"; // Last line in included file is a comment
|
||||
}
|
||||
|
||||
inline bool readKeywordNew(std::istream& is, std::string& keyword)
|
||||
inline bool readKeyword(std::istream& is, std::string& keyword)
|
||||
{
|
||||
char buf[9];
|
||||
int i, j;
|
||||
@ -387,7 +373,7 @@ void EclipseGridParser::readImpl(istream& is)
|
||||
std::string keyword;
|
||||
while (is.good()) {
|
||||
is >> ignoreWhitespace;
|
||||
bool ok = readKeywordNew(is, keyword);
|
||||
bool ok = readKeyword(is, keyword);
|
||||
if (ok) {
|
||||
//#ifdef VERBOSE
|
||||
cout << "Keyword found: " << keyword << endl;
|
||||
@ -549,9 +535,9 @@ void EclipseGridParser::convertToSI()
|
||||
// Find the right unit.
|
||||
double unit = 1e100;
|
||||
bool do_convert = true;
|
||||
if (key == "COORD" || key == "ZCORN" ||
|
||||
key == "DXV" || key == "DYV" || key == "DZV" ||
|
||||
key == "DEPTHZ") {
|
||||
if (key == "COORD" || key == "ZCORN" ||
|
||||
key == "DXV" || key == "DYV" || key == "DZV" ||
|
||||
key == "DEPTHZ" || key == "TOPS") {
|
||||
unit = units_.length;
|
||||
} else if (key == "PERMX" || key == "PERMY" || key == "PERMZ" ||
|
||||
key == "PERMXX" || key == "PERMYY" || key == "PERMZZ" ||
|
||||
|
@ -136,47 +136,47 @@ public:
|
||||
{ return dynamic_cast<const keyword&>(*getSpecialValue(#keyword)); }
|
||||
|
||||
// Support for special fields.
|
||||
SPECIAL_FIELD(SPECGRID);
|
||||
SPECIAL_FIELD(FAULTS);
|
||||
SPECIAL_FIELD(MULTFLT);
|
||||
SPECIAL_FIELD(TITLE);
|
||||
SPECIAL_FIELD(START);
|
||||
SPECIAL_FIELD(DATES);
|
||||
SPECIAL_FIELD(DENSITY);
|
||||
SPECIAL_FIELD(PVDG);
|
||||
SPECIAL_FIELD(PVDO);
|
||||
SPECIAL_FIELD(PVTG);
|
||||
SPECIAL_FIELD(PVTO);
|
||||
SPECIAL_FIELD(PVTW);
|
||||
SPECIAL_FIELD(SGOF);
|
||||
SPECIAL_FIELD(SWOF);
|
||||
SPECIAL_FIELD(ROCK);
|
||||
SPECIAL_FIELD(ROCKTAB);
|
||||
SPECIAL_FIELD(WELSPECS);
|
||||
SPECIAL_FIELD(COMPDAT);
|
||||
SPECIAL_FIELD(WCONINJE);
|
||||
SPECIAL_FIELD(WCONPROD);
|
||||
SPECIAL_FIELD(WELTARG);
|
||||
SPECIAL_FIELD(WELOPEN);
|
||||
SPECIAL_FIELD(EQUIL);
|
||||
SPECIAL_FIELD(PVCDO);
|
||||
SPECIAL_FIELD(TSTEP);
|
||||
SPECIAL_FIELD(PLYVISC);
|
||||
SPECIAL_FIELD(PLYROCK);
|
||||
SPECIAL_FIELD(PLYADS);
|
||||
SPECIAL_FIELD(PLYMAX);
|
||||
SPECIAL_FIELD(TLMIXPAR);
|
||||
SPECIAL_FIELD(WPOLYMER);
|
||||
SPECIAL_FIELD(GRUPTREE);
|
||||
SPECIAL_FIELD(GCONINJE);
|
||||
SPECIAL_FIELD(GCONPROD);
|
||||
SPECIAL_FIELD(WGRUPCON);
|
||||
SPECIAL_FIELD(SPECGRID)
|
||||
SPECIAL_FIELD(FAULTS)
|
||||
SPECIAL_FIELD(MULTFLT)
|
||||
SPECIAL_FIELD(TITLE)
|
||||
SPECIAL_FIELD(START)
|
||||
SPECIAL_FIELD(DATES)
|
||||
SPECIAL_FIELD(DENSITY)
|
||||
SPECIAL_FIELD(PVDG)
|
||||
SPECIAL_FIELD(PVDO)
|
||||
SPECIAL_FIELD(PVTG)
|
||||
SPECIAL_FIELD(PVTO)
|
||||
SPECIAL_FIELD(PVTW)
|
||||
SPECIAL_FIELD(SGOF)
|
||||
SPECIAL_FIELD(SWOF)
|
||||
SPECIAL_FIELD(ROCK)
|
||||
SPECIAL_FIELD(ROCKTAB)
|
||||
SPECIAL_FIELD(WELSPECS)
|
||||
SPECIAL_FIELD(COMPDAT)
|
||||
SPECIAL_FIELD(WCONINJE)
|
||||
SPECIAL_FIELD(WCONPROD)
|
||||
SPECIAL_FIELD(WELTARG)
|
||||
SPECIAL_FIELD(WELOPEN)
|
||||
SPECIAL_FIELD(EQUIL)
|
||||
SPECIAL_FIELD(PVCDO)
|
||||
SPECIAL_FIELD(TSTEP)
|
||||
SPECIAL_FIELD(PLYVISC)
|
||||
SPECIAL_FIELD(PLYROCK)
|
||||
SPECIAL_FIELD(PLYADS)
|
||||
SPECIAL_FIELD(PLYMAX)
|
||||
SPECIAL_FIELD(TLMIXPAR)
|
||||
SPECIAL_FIELD(WPOLYMER)
|
||||
SPECIAL_FIELD(GRUPTREE)
|
||||
SPECIAL_FIELD(GCONINJE)
|
||||
SPECIAL_FIELD(GCONPROD)
|
||||
SPECIAL_FIELD(WGRUPCON)
|
||||
|
||||
// The following fields only have a dummy implementation
|
||||
// that allows us to ignore them.
|
||||
SPECIAL_FIELD(SWFN);
|
||||
SPECIAL_FIELD(SOF2);
|
||||
SPECIAL_FIELD(TUNING);
|
||||
SPECIAL_FIELD(SWFN)
|
||||
SPECIAL_FIELD(SOF2)
|
||||
SPECIAL_FIELD(TUNING)
|
||||
|
||||
#undef SPECIAL_FIELD
|
||||
|
||||
|
@ -780,9 +780,11 @@ struct WelspecsLine
|
||||
int fluids_in_place_reg_numb_; // Fluids in place region number
|
||||
|
||||
WelspecsLine() :
|
||||
datum_depth_BHP_(-1.0), drain_rad_(0.0), spec_inflow_("STD"),
|
||||
shut_in_("SHUT"), crossflow_("YES"), pressure_table_number_(0),
|
||||
density_calc_type_("SEG"), fluids_in_place_reg_numb_(0)
|
||||
name_(), group_(), I_(-1), J_(-1),
|
||||
datum_depth_BHP_(-1.0), pref_phase_(), drain_rad_(0.0),
|
||||
spec_inflow_("STD"), shut_in_("SHUT"), crossflow_("YES"),
|
||||
pressure_table_number_(0), density_calc_type_("SEG"),
|
||||
fluids_in_place_reg_numb_(0)
|
||||
{}
|
||||
};
|
||||
|
||||
@ -1360,8 +1362,8 @@ struct WgrupconLine
|
||||
bool available_for_group_control_;
|
||||
double guide_rate_;
|
||||
std::string phase_;
|
||||
WgrupconLine() :
|
||||
available_for_group_control_(true)
|
||||
WgrupconLine()
|
||||
: well_(), available_for_group_control_(true), guide_rate_(-1.0), phase_()
|
||||
{
|
||||
}
|
||||
};
|
||||
@ -1580,6 +1582,7 @@ struct WeltargLine
|
||||
double new_value_; // New value of this quantity
|
||||
|
||||
WeltargLine()
|
||||
: well_(), control_change_(), new_value_(-1.0)
|
||||
{
|
||||
}
|
||||
};
|
||||
@ -1739,6 +1742,13 @@ struct EquilLine
|
||||
// initial fluids in place calculation.
|
||||
EquilLine()
|
||||
{
|
||||
datum_depth_ = datum_depth_pressure_ = 0.0;
|
||||
water_oil_contact_depth_ = oil_water_cap_pressure_ = 0.0;
|
||||
gas_oil_contact_depth_ = gas_oil_cap_pressure_ = 0.0;
|
||||
|
||||
live_oil_table_index_ = 0;
|
||||
wet_gas_table_index_ = 0;
|
||||
N_ = 0;
|
||||
}
|
||||
};
|
||||
|
||||
@ -2128,7 +2138,8 @@ struct WpolymerLine
|
||||
|
||||
WpolymerLine()
|
||||
{
|
||||
well_ = polymer_group_ = salt_group_ = "";
|
||||
well_ = polymer_group_ = salt_group_ = "";
|
||||
polymer_concentration_ = salt_concentration_ = 0.0;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -26,20 +26,20 @@ namespace Opm
|
||||
{
|
||||
|
||||
BlackoilPropertiesBasic::BlackoilPropertiesBasic(const parameter::ParameterGroup& param,
|
||||
const int dim,
|
||||
const int num_cells)
|
||||
const int dim,
|
||||
const int num_cells)
|
||||
{
|
||||
double poro = param.getDefault("porosity", 1.0);
|
||||
using namespace Opm::unit;
|
||||
using namespace Opm::prefix;
|
||||
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
|
||||
double poro = param.getDefault("porosity", 1.0);
|
||||
using namespace Opm::unit;
|
||||
using namespace Opm::prefix;
|
||||
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
|
||||
rock_.init(dim, num_cells, poro, perm);
|
||||
pvt_.init(param);
|
||||
pvt_.init(param);
|
||||
satprops_.init(param);
|
||||
if (pvt_.numPhases() != satprops_.numPhases()) {
|
||||
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
|
||||
}
|
||||
if (pvt_.numPhases() != satprops_.numPhases()) {
|
||||
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
|
||||
}
|
||||
}
|
||||
|
||||
BlackoilPropertiesBasic::~BlackoilPropertiesBasic()
|
||||
@ -90,11 +90,11 @@ namespace Opm
|
||||
/// \param[out] dmudp If non-null: array of nP viscosity derivative values,
|
||||
/// array must be valid before calling.
|
||||
void BlackoilPropertiesBasic::viscosity(const int n,
|
||||
const double* p,
|
||||
const double* z,
|
||||
const int* /*cells*/,
|
||||
double* mu,
|
||||
double* dmudp) const
|
||||
const double* p,
|
||||
const double* z,
|
||||
const int* /*cells*/,
|
||||
double* mu,
|
||||
double* dmudp) const
|
||||
{
|
||||
if (dmudp) {
|
||||
THROW("BlackoilPropertiesBasic::viscosity() -- derivatives of viscosity not yet implemented.");
|
||||
@ -114,16 +114,16 @@ namespace Opm
|
||||
/// array must be valid before calling. The matrices are output
|
||||
/// in Fortran order.
|
||||
void BlackoilPropertiesBasic::matrix(const int n,
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
const int* /*cells*/,
|
||||
double* A,
|
||||
double* dAdp) const
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
const int* /*cells*/,
|
||||
double* A,
|
||||
double* dAdp) const
|
||||
{
|
||||
const int np = numPhases();
|
||||
ASSERT(np <= 2);
|
||||
double B[2]; // Must be enough since component classes do not handle more than 2.
|
||||
pvt_.B(1, 0, 0, B);
|
||||
const int np = numPhases();
|
||||
ASSERT(np <= 2);
|
||||
double B[2]; // Must be enough since component classes do not handle more than 2.
|
||||
pvt_.B(1, 0, 0, B);
|
||||
// Compute A matrix
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@ -152,8 +152,8 @@ namespace Opm
|
||||
/// of a call to the method matrix().
|
||||
/// \param[out] rho Array of nP density values, array must be valid before calling.
|
||||
void BlackoilPropertiesBasic::density(const int n,
|
||||
const double* A,
|
||||
double* rho) const
|
||||
const double* A,
|
||||
double* rho) const
|
||||
{
|
||||
const int np = numPhases();
|
||||
const double* sdens = pvt_.surfaceDensities();
|
||||
@ -186,10 +186,10 @@ namespace Opm
|
||||
/// m_{ij} = \frac{dkr_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||||
void BlackoilPropertiesBasic::relperm(const int n,
|
||||
const double* s,
|
||||
const int* /*cells*/,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
const double* s,
|
||||
const int* /*cells*/,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
{
|
||||
satprops_.relperm(n, s, kr, dkrds);
|
||||
}
|
||||
@ -205,10 +205,10 @@ namespace Opm
|
||||
/// m_{ij} = \frac{dpc_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||||
void BlackoilPropertiesBasic::capPress(const int n,
|
||||
const double* s,
|
||||
const int* /*cells*/,
|
||||
double* pc,
|
||||
double* dpcds) const
|
||||
const double* s,
|
||||
const int* /*cells*/,
|
||||
double* pc,
|
||||
double* dpcds) const
|
||||
{
|
||||
satprops_.capPress(n, s, pc, dpcds);
|
||||
}
|
||||
@ -226,7 +226,7 @@ namespace Opm
|
||||
double* smin,
|
||||
double* smax) const
|
||||
{
|
||||
satprops_.satRange(n, smin, smax);
|
||||
satprops_.satRange(n, smin, smax);
|
||||
}
|
||||
|
||||
|
||||
|
@ -35,16 +35,16 @@ namespace Opm
|
||||
{
|
||||
public:
|
||||
/// Construct from parameters.
|
||||
/// The following parameters are accepted (defaults):
|
||||
/// num_phases (2) Must be 1 or 2.
|
||||
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
|
||||
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
|
||||
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
|
||||
/// porosity (1.0) Porosity
|
||||
/// permeability (100.0) Permeability in mD
|
||||
/// The following parameters are accepted (defaults):
|
||||
/// num_phases (2) Must be 1 or 2.
|
||||
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
|
||||
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
|
||||
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
|
||||
/// porosity (1.0) Porosity
|
||||
/// permeability (100.0) Permeability in mD
|
||||
BlackoilPropertiesBasic(const parameter::ParameterGroup& param,
|
||||
const int dim,
|
||||
const int num_cells);
|
||||
const int dim,
|
||||
const int num_cells);
|
||||
|
||||
/// Destructor.
|
||||
virtual ~BlackoilPropertiesBasic();
|
||||
@ -151,7 +151,7 @@ namespace Opm
|
||||
double* dpcds) const;
|
||||
|
||||
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// In cell cells[i], saturation of phase p is allowed to be
|
||||
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
||||
/// \param[in] n Number of data points.
|
||||
|
@ -18,20 +18,69 @@
|
||||
*/
|
||||
|
||||
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
|
||||
const std::vector<int>& global_cell)
|
||||
const UnstructuredGrid& grid)
|
||||
{
|
||||
rock_.init(deck, global_cell);
|
||||
pvt_.init(deck);
|
||||
satprops_.init(deck, global_cell);
|
||||
if (pvt_.numPhases() != satprops_.numPhases()) {
|
||||
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
|
||||
}
|
||||
rock_.init(deck, grid);
|
||||
pvt_.init(deck, 200);
|
||||
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
|
||||
satprops_.reset(ptr);
|
||||
ptr->init(deck, grid, 200);
|
||||
|
||||
if (pvt_.numPhases() != satprops_->numPhases()) {
|
||||
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
|
||||
}
|
||||
}
|
||||
|
||||
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
|
||||
const UnstructuredGrid& grid,
|
||||
const parameter::ParameterGroup& param)
|
||||
{
|
||||
rock_.init(deck, grid);
|
||||
const int pvt_samples = param.getDefault("pvt_tab_size", 200);
|
||||
pvt_.init(deck, pvt_samples);
|
||||
|
||||
// Unfortunate lack of pointer smartness here...
|
||||
const int sat_samples = param.getDefault("sat_tab_size", 200);
|
||||
std::string threephase_model = param.getDefault<std::string>("threephase_model", "simple");
|
||||
bool use_stone2 = (threephase_model == "stone2");
|
||||
if (sat_samples > 1) {
|
||||
if (use_stone2) {
|
||||
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
|
||||
satprops_.reset(ptr);
|
||||
ptr->init(deck, grid, sat_samples);
|
||||
} else {
|
||||
SaturationPropsFromDeck<SatFuncSimpleUniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncSimpleUniform>();
|
||||
satprops_.reset(ptr);
|
||||
ptr->init(deck, grid, sat_samples);
|
||||
}
|
||||
} else {
|
||||
if (use_stone2) {
|
||||
SaturationPropsFromDeck<SatFuncStone2Nonuniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncStone2Nonuniform>();
|
||||
satprops_.reset(ptr);
|
||||
ptr->init(deck, grid, sat_samples);
|
||||
} else {
|
||||
SaturationPropsFromDeck<SatFuncSimpleNonuniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncSimpleNonuniform>();
|
||||
satprops_.reset(ptr);
|
||||
ptr->init(deck, grid, sat_samples);
|
||||
}
|
||||
}
|
||||
|
||||
if (pvt_.numPhases() != satprops_->numPhases()) {
|
||||
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
|
||||
}
|
||||
}
|
||||
|
||||
BlackoilPropertiesFromDeck::~BlackoilPropertiesFromDeck()
|
||||
@ -235,7 +284,7 @@ namespace Opm
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
{
|
||||
satprops_.relperm(n, s, cells, kr, dkrds);
|
||||
satprops_->relperm(n, s, cells, kr, dkrds);
|
||||
}
|
||||
|
||||
|
||||
@ -254,7 +303,7 @@ namespace Opm
|
||||
double* pc,
|
||||
double* dpcds) const
|
||||
{
|
||||
satprops_.capPress(n, s, cells, pc, dpcds);
|
||||
satprops_->capPress(n, s, cells, pc, dpcds);
|
||||
}
|
||||
|
||||
|
||||
@ -270,7 +319,7 @@ namespace Opm
|
||||
double* smin,
|
||||
double* smax) const
|
||||
{
|
||||
satprops_.satRange(n, cells, smin, smax);
|
||||
satprops_->satRange(n, cells, smin, smax);
|
||||
}
|
||||
|
||||
|
||||
|
@ -26,6 +26,10 @@
|
||||
#include <opm/core/fluid/blackoil/BlackoilPvtProperties.hpp>
|
||||
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
|
||||
#include <opm/core/eclipse/EclipseGridParser.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <boost/scoped_ptr.hpp>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
@ -35,12 +39,28 @@ namespace Opm
|
||||
class BlackoilPropertiesFromDeck : public BlackoilPropertiesInterface
|
||||
{
|
||||
public:
|
||||
/// Construct from deck and cell mapping.
|
||||
/// \param deck eclipse input parser
|
||||
/// \param global_cell mapping from cell indices (typically from a processed grid)
|
||||
/// Initialize from deck and grid.
|
||||
/// \param[in] deck Deck input parser
|
||||
/// \param[in] grid Grid to which property object applies, needed for the
|
||||
/// mapping from cell indices (typically from a processed grid)
|
||||
/// to logical cartesian indices consistent with the deck.
|
||||
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
|
||||
const std::vector<int>& global_cell);
|
||||
const UnstructuredGrid& grid);
|
||||
|
||||
/// Initialize from deck, grid and parameters.
|
||||
/// \param[in] deck Deck input parser
|
||||
/// \param[in] grid Grid to which property object applies, needed for the
|
||||
/// mapping from cell indices (typically from a processed grid)
|
||||
/// to logical cartesian indices consistent with the deck.
|
||||
/// \param[in] param Parameters. Accepted parameters include:
|
||||
/// pvt_tab_size (200) number of uniform sample points for dead-oil pvt tables.
|
||||
/// sat_tab_size (200) number of uniform sample points for saturation tables.
|
||||
/// threephase_model("simple") three-phase relperm model (accepts "simple" and "stone2").
|
||||
/// For both size parameters, a 0 or negative value indicates that no spline fitting is to
|
||||
/// be done, and the input fluid data used directly for linear interpolation.
|
||||
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
|
||||
const UnstructuredGrid& grid,
|
||||
const parameter::ParameterGroup& param);
|
||||
|
||||
/// Destructor.
|
||||
virtual ~BlackoilPropertiesFromDeck();
|
||||
@ -147,9 +167,9 @@ namespace Opm
|
||||
double* dpcds) const;
|
||||
|
||||
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// In cell cells[i], saturation of phase p is allowed to be
|
||||
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// In cell cells[i], saturation of phase p is allowed to be
|
||||
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] cells Array of n cell indices.
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
@ -162,7 +182,7 @@ namespace Opm
|
||||
private:
|
||||
RockFromDeck rock_;
|
||||
BlackoilPvtProperties pvt_;
|
||||
SaturationPropsFromDeck satprops_;
|
||||
boost::scoped_ptr<SaturationPropsInterface> satprops_;
|
||||
mutable std::vector<double> B_;
|
||||
mutable std::vector<double> dB_;
|
||||
mutable std::vector<double> R_;
|
||||
|
@ -138,9 +138,9 @@ namespace Opm
|
||||
double* dpcds) const = 0;
|
||||
|
||||
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// In cell cells[i], saturation of phase p is allowed to be
|
||||
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// In cell cells[i], saturation of phase p is allowed to be
|
||||
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] cells Array of n cell indices.
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
|
@ -28,22 +28,22 @@ namespace Opm
|
||||
{
|
||||
|
||||
IncompPropertiesBasic::IncompPropertiesBasic(const parameter::ParameterGroup& param,
|
||||
const int dim,
|
||||
const int num_cells)
|
||||
const int dim,
|
||||
const int num_cells)
|
||||
{
|
||||
double poro = param.getDefault("porosity", 1.0);
|
||||
using namespace Opm::unit;
|
||||
using namespace Opm::prefix;
|
||||
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
|
||||
double poro = param.getDefault("porosity", 1.0);
|
||||
using namespace Opm::unit;
|
||||
using namespace Opm::prefix;
|
||||
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
|
||||
rock_.init(dim, num_cells, poro, perm);
|
||||
pvt_.init(param);
|
||||
pvt_.init(param);
|
||||
satprops_.init(param);
|
||||
if (pvt_.numPhases() != satprops_.numPhases()) {
|
||||
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
|
||||
}
|
||||
viscosity_.resize(pvt_.numPhases());
|
||||
pvt_.mu(1, 0, 0, &viscosity_[0]);
|
||||
if (pvt_.numPhases() != satprops_.numPhases()) {
|
||||
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
|
||||
}
|
||||
viscosity_.resize(pvt_.numPhases());
|
||||
pvt_.mu(1, 0, 0, &viscosity_[0]);
|
||||
}
|
||||
|
||||
IncompPropertiesBasic::IncompPropertiesBasic(const int num_phases,
|
||||
@ -56,14 +56,14 @@ namespace Opm
|
||||
const int num_cells)
|
||||
{
|
||||
rock_.init(dim, num_cells, por, perm);
|
||||
pvt_.init(num_phases, rho, mu);
|
||||
pvt_.init(num_phases, rho, mu);
|
||||
satprops_.init(num_phases, relpermfunc);
|
||||
if (pvt_.numPhases() != satprops_.numPhases()) {
|
||||
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
|
||||
}
|
||||
viscosity_.resize(pvt_.numPhases());
|
||||
pvt_.mu(1, 0, 0, &viscosity_[0]);
|
||||
if (pvt_.numPhases() != satprops_.numPhases()) {
|
||||
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
|
||||
}
|
||||
viscosity_.resize(pvt_.numPhases());
|
||||
pvt_.mu(1, 0, 0, &viscosity_[0]);
|
||||
}
|
||||
|
||||
IncompPropertiesBasic::~IncompPropertiesBasic()
|
||||
@ -109,7 +109,7 @@ namespace Opm
|
||||
/// \return Array of P viscosity values.
|
||||
const double* IncompPropertiesBasic::viscosity() const
|
||||
{
|
||||
return &viscosity_[0];
|
||||
return &viscosity_[0];
|
||||
}
|
||||
|
||||
/// \return Array of P density values.
|
||||
@ -117,7 +117,7 @@ namespace Opm
|
||||
{
|
||||
// No difference between reservoir and surface densities
|
||||
// modelled by this class.
|
||||
return pvt_.surfaceDensities();
|
||||
return pvt_.surfaceDensities();
|
||||
}
|
||||
|
||||
/// \return Array of P density values.
|
||||
@ -125,7 +125,7 @@ namespace Opm
|
||||
{
|
||||
// No difference between reservoir and surface densities
|
||||
// modelled by this class.
|
||||
return pvt_.surfaceDensities();
|
||||
return pvt_.surfaceDensities();
|
||||
}
|
||||
|
||||
/// \param[in] n Number of data points.
|
||||
@ -138,10 +138,10 @@ namespace Opm
|
||||
/// m_{ij} = \frac{dkr_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
|
||||
void IncompPropertiesBasic::relperm(const int n,
|
||||
const double* s,
|
||||
const int* /*cells*/,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
const double* s,
|
||||
const int* /*cells*/,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
{
|
||||
satprops_.relperm(n, s, kr, dkrds);
|
||||
}
|
||||
@ -157,10 +157,10 @@ namespace Opm
|
||||
/// m_{ij} = \frac{dpc_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
|
||||
void IncompPropertiesBasic::capPress(const int n,
|
||||
const double* s,
|
||||
const int* /*cells*/,
|
||||
double* pc,
|
||||
double* dpcds) const
|
||||
const double* s,
|
||||
const int* /*cells*/,
|
||||
double* pc,
|
||||
double* dpcds) const
|
||||
{
|
||||
satprops_.capPress(n, s, pc, dpcds);
|
||||
}
|
||||
@ -174,11 +174,11 @@ namespace Opm
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
|
||||
void IncompPropertiesBasic::satRange(const int n,
|
||||
const int* /*cells*/,
|
||||
double* smin,
|
||||
double* smax) const
|
||||
const int* /*cells*/,
|
||||
double* smin,
|
||||
double* smax) const
|
||||
{
|
||||
satprops_.satRange(n, smin, smax);
|
||||
satprops_.satRange(n, smin, smax);
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -42,29 +42,29 @@ namespace Opm
|
||||
{
|
||||
public:
|
||||
/// Construct from parameters.
|
||||
/// The following parameters are accepted (defaults):
|
||||
/// num_phases (2) Must be 1 or 2.
|
||||
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
|
||||
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
|
||||
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
|
||||
/// porosity (1.0) Porosity
|
||||
/// permeability (100.0) Permeability in mD
|
||||
/// The following parameters are accepted (defaults):
|
||||
/// num_phases (2) Must be 1 or 2.
|
||||
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
|
||||
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
|
||||
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
|
||||
/// porosity (1.0) Porosity
|
||||
/// permeability (100.0) Permeability in mD
|
||||
IncompPropertiesBasic(const parameter::ParameterGroup& param,
|
||||
const int dim,
|
||||
const int num_cells);
|
||||
const int dim,
|
||||
const int num_cells);
|
||||
|
||||
|
||||
/// Construct from arguments a basic two phase fluid.
|
||||
IncompPropertiesBasic(const int num_phases,
|
||||
const SaturationPropsBasic::RelPermFunc& relpermfunc,
|
||||
const std::vector<double>& rho,
|
||||
const std::vector<double>& mu,
|
||||
const std::vector<double>& mu,
|
||||
const double porosity,
|
||||
const double permeability,
|
||||
const int dim,
|
||||
const int num_cells);
|
||||
const int num_cells);
|
||||
|
||||
/// Destructor.
|
||||
/// Destructor.
|
||||
virtual ~IncompPropertiesBasic();
|
||||
|
||||
// ---- Rock interface ----
|
||||
@ -132,9 +132,9 @@ namespace Opm
|
||||
double* dpcds) const;
|
||||
|
||||
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// In cell cells[i], saturation of phase p is allowed to be
|
||||
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// In cell cells[i], saturation of phase p is allowed to be
|
||||
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] cells Array of n cell indices.
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
@ -145,9 +145,9 @@ namespace Opm
|
||||
double* smax) const;
|
||||
private:
|
||||
RockBasic rock_;
|
||||
PvtPropertiesBasic pvt_;
|
||||
PvtPropertiesBasic pvt_;
|
||||
SaturationPropsBasic satprops_;
|
||||
std::vector<double> viscosity_;
|
||||
std::vector<double> viscosity_;
|
||||
};
|
||||
|
||||
|
||||
|
@ -27,15 +27,15 @@ namespace Opm
|
||||
{
|
||||
|
||||
IncompPropertiesFromDeck::IncompPropertiesFromDeck(const EclipseGridParser& deck,
|
||||
const std::vector<int>& global_cell)
|
||||
const UnstructuredGrid& grid)
|
||||
{
|
||||
rock_.init(deck, global_cell);
|
||||
pvt_.init(deck);
|
||||
satprops_.init(deck, global_cell);
|
||||
if (pvt_.numPhases() != satprops_.numPhases()) {
|
||||
THROW("IncompPropertiesFromDeck::IncompPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
|
||||
}
|
||||
rock_.init(deck, grid);
|
||||
pvt_.init(deck);
|
||||
satprops_.init(deck, grid, 200);
|
||||
if (pvt_.numPhases() != satprops_.numPhases()) {
|
||||
THROW("IncompPropertiesFromDeck::IncompPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
|
||||
}
|
||||
}
|
||||
|
||||
IncompPropertiesFromDeck::~IncompPropertiesFromDeck()
|
||||
@ -81,19 +81,19 @@ namespace Opm
|
||||
/// \return Array of P viscosity values.
|
||||
const double* IncompPropertiesFromDeck::viscosity() const
|
||||
{
|
||||
return pvt_.viscosity();
|
||||
return pvt_.viscosity();
|
||||
}
|
||||
|
||||
/// \return Array of P density values.
|
||||
const double* IncompPropertiesFromDeck::density() const
|
||||
{
|
||||
return pvt_.reservoirDensities();
|
||||
return pvt_.reservoirDensities();
|
||||
}
|
||||
|
||||
/// \return Array of P density values.
|
||||
const double* IncompPropertiesFromDeck::surfaceDensity() const
|
||||
{
|
||||
return pvt_.surfaceDensities();
|
||||
return pvt_.surfaceDensities();
|
||||
}
|
||||
|
||||
/// \param[in] n Number of data points.
|
||||
@ -106,10 +106,10 @@ namespace Opm
|
||||
/// m_{ij} = \frac{dkr_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
|
||||
void IncompPropertiesFromDeck::relperm(const int n,
|
||||
const double* s,
|
||||
const int* cells,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
const double* s,
|
||||
const int* cells,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
{
|
||||
satprops_.relperm(n, s, cells, kr, dkrds);
|
||||
}
|
||||
@ -125,10 +125,10 @@ namespace Opm
|
||||
/// m_{ij} = \frac{dpc_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
|
||||
void IncompPropertiesFromDeck::capPress(const int n,
|
||||
const double* s,
|
||||
const int* cells,
|
||||
double* pc,
|
||||
double* dpcds) const
|
||||
const double* s,
|
||||
const int* cells,
|
||||
double* pc,
|
||||
double* dpcds) const
|
||||
{
|
||||
satprops_.capPress(n, s, cells, pc, dpcds);
|
||||
}
|
||||
@ -142,11 +142,11 @@ namespace Opm
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
|
||||
void IncompPropertiesFromDeck::satRange(const int n,
|
||||
const int* cells,
|
||||
double* smin,
|
||||
double* smax) const
|
||||
const int* cells,
|
||||
double* smin,
|
||||
double* smax) const
|
||||
{
|
||||
satprops_.satRange(n, cells, smin, smax);
|
||||
satprops_.satRange(n, cells, smin, smax);
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -26,6 +26,8 @@
|
||||
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
|
||||
#include <opm/core/eclipse/EclipseGridParser.hpp>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
@ -43,14 +45,15 @@ namespace Opm
|
||||
class IncompPropertiesFromDeck : public IncompPropertiesInterface
|
||||
{
|
||||
public:
|
||||
/// Construct from deck and cell mapping.
|
||||
/// \param deck eclipse input parser
|
||||
/// \param global_cell mapping from cell indices (typically from a processed grid)
|
||||
/// Initialize from deck and grid.
|
||||
/// \param deck Deck input parser
|
||||
/// \param grid Grid to which property object applies, needed for the
|
||||
/// mapping from cell indices (typically from a processed grid)
|
||||
/// to logical cartesian indices consistent with the deck.
|
||||
IncompPropertiesFromDeck(const EclipseGridParser& deck,
|
||||
const std::vector<int>& global_cell);
|
||||
const UnstructuredGrid& grid);
|
||||
|
||||
/// Destructor.
|
||||
/// Destructor.
|
||||
virtual ~IncompPropertiesFromDeck();
|
||||
|
||||
// ---- Rock interface ----
|
||||
@ -118,9 +121,9 @@ namespace Opm
|
||||
double* dpcds) const;
|
||||
|
||||
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// In cell cells[i], saturation of phase p is allowed to be
|
||||
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// In cell cells[i], saturation of phase p is allowed to be
|
||||
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] cells Array of n cell indices.
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
@ -131,8 +134,8 @@ namespace Opm
|
||||
double* smax) const;
|
||||
private:
|
||||
RockFromDeck rock_;
|
||||
PvtPropertiesIncompFromDeck pvt_;
|
||||
SaturationPropsFromDeck satprops_;
|
||||
PvtPropertiesIncompFromDeck pvt_;
|
||||
SaturationPropsFromDeck<SatFuncStone2Uniform> satprops_;
|
||||
};
|
||||
|
||||
|
||||
|
@ -109,9 +109,9 @@ namespace Opm
|
||||
double* pc,
|
||||
double* dpcds) const = 0;
|
||||
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// In cell cells[i], saturation of phase p is allowed to be
|
||||
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// In cell cells[i], saturation of phase p is allowed to be
|
||||
/// in the interval [smin[i*P + p], smax[i*P + p]].
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] cells Array of n cell indices.
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
|
@ -34,41 +34,41 @@ namespace Opm
|
||||
|
||||
void PvtPropertiesBasic::init(const parameter::ParameterGroup& param)
|
||||
{
|
||||
int num_phases = param.getDefault("num_phases", 2);
|
||||
if (num_phases > 3 || num_phases < 1) {
|
||||
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
|
||||
}
|
||||
density_.resize(num_phases);
|
||||
viscosity_.resize(num_phases);
|
||||
// We currently do not allow the user to set B.
|
||||
formation_volume_factor_.clear();
|
||||
formation_volume_factor_.resize(num_phases, 1.0);
|
||||
int num_phases = param.getDefault("num_phases", 2);
|
||||
if (num_phases > 3 || num_phases < 1) {
|
||||
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
|
||||
}
|
||||
density_.resize(num_phases);
|
||||
viscosity_.resize(num_phases);
|
||||
// We currently do not allow the user to set B.
|
||||
formation_volume_factor_.clear();
|
||||
formation_volume_factor_.resize(num_phases, 1.0);
|
||||
|
||||
// Setting mu and rho from parameters
|
||||
using namespace Opm::prefix;
|
||||
using namespace Opm::unit;
|
||||
const double kgpm3 = kilogram/cubic(meter);
|
||||
const double cP = centi*Poise;
|
||||
std::string rname[3] = { "rho1", "rho2", "rho3" };
|
||||
double rdefault[3] = { 1.0e3, 1.0e3, 1.0e3 };
|
||||
std::string vname[3] = { "mu1", "mu2", "mu3" };
|
||||
double vdefault[3] = { 1.0, 1.0, 1.0 };
|
||||
for (int phase = 0; phase < num_phases; ++phase) {
|
||||
density_[phase] = kgpm3*param.getDefault(rname[phase], rdefault[phase]);
|
||||
viscosity_[phase] = cP*param.getDefault(vname[phase], vdefault[phase]);
|
||||
}
|
||||
// Setting mu and rho from parameters
|
||||
using namespace Opm::prefix;
|
||||
using namespace Opm::unit;
|
||||
const double kgpm3 = kilogram/cubic(meter);
|
||||
const double cP = centi*Poise;
|
||||
std::string rname[3] = { "rho1", "rho2", "rho3" };
|
||||
double rdefault[3] = { 1.0e3, 1.0e3, 1.0e3 };
|
||||
std::string vname[3] = { "mu1", "mu2", "mu3" };
|
||||
double vdefault[3] = { 1.0, 1.0, 1.0 };
|
||||
for (int phase = 0; phase < num_phases; ++phase) {
|
||||
density_[phase] = kgpm3*param.getDefault(rname[phase], rdefault[phase]);
|
||||
viscosity_[phase] = cP*param.getDefault(vname[phase], vdefault[phase]);
|
||||
}
|
||||
}
|
||||
|
||||
void PvtPropertiesBasic::init(const int num_phases,
|
||||
const std::vector<double>& rho,
|
||||
const std::vector<double>& visc)
|
||||
{
|
||||
if (num_phases > 3 || num_phases < 1) {
|
||||
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
|
||||
}
|
||||
// We currently do not allow the user to set B.
|
||||
formation_volume_factor_.clear();
|
||||
formation_volume_factor_.resize(num_phases, 1.0);
|
||||
if (num_phases > 3 || num_phases < 1) {
|
||||
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
|
||||
}
|
||||
// We currently do not allow the user to set B.
|
||||
formation_volume_factor_.clear();
|
||||
formation_volume_factor_.resize(num_phases, 1.0);
|
||||
density_ = rho;
|
||||
viscosity_ = visc;
|
||||
}
|
||||
@ -87,69 +87,69 @@ namespace Opm
|
||||
|
||||
|
||||
void PvtPropertiesBasic::mu(const int n,
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_mu) const
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_mu) const
|
||||
{
|
||||
const int np = numPhases();
|
||||
const int np = numPhases();
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
output_mu[np*i + phase] = viscosity_[phase];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PvtPropertiesBasic::B(const int n,
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_B) const
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_B) const
|
||||
{
|
||||
const int np = numPhases();
|
||||
const int np = numPhases();
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
output_B[np*i + phase] = formation_volume_factor_[phase];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PvtPropertiesBasic::dBdp(const int n,
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_B,
|
||||
double* output_dBdp) const
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_B,
|
||||
double* output_dBdp) const
|
||||
{
|
||||
const int np = numPhases();
|
||||
const int np = numPhases();
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
output_B[np*i + phase] = formation_volume_factor_[phase];
|
||||
output_dBdp[np*i + phase] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void PvtPropertiesBasic::R(const int n,
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_R) const
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_R) const
|
||||
{
|
||||
const int np = numPhases();
|
||||
std::fill(output_R, output_R + n*np, 0.0);
|
||||
const int np = numPhases();
|
||||
std::fill(output_R, output_R + n*np, 0.0);
|
||||
}
|
||||
|
||||
void PvtPropertiesBasic::dRdp(const int n,
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_R,
|
||||
double* output_dRdp) const
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_R,
|
||||
double* output_dRdp) const
|
||||
{
|
||||
const int np = numPhases();
|
||||
std::fill(output_R, output_R + n*np, 0.0);
|
||||
std::fill(output_dRdp, output_dRdp + n*np, 0.0);
|
||||
const int np = numPhases();
|
||||
std::fill(output_R, output_R + n*np, 0.0);
|
||||
std::fill(output_dRdp, output_dRdp + n*np, 0.0);
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -38,11 +38,11 @@ namespace Opm
|
||||
PvtPropertiesBasic();
|
||||
|
||||
/// Initialize from parameters.
|
||||
/// The following parameters are accepted (defaults):
|
||||
/// num_phases (2) Must be 1, 2 or 3.
|
||||
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
|
||||
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
|
||||
void init(const parameter::ParameterGroup& param);
|
||||
/// The following parameters are accepted (defaults):
|
||||
/// num_phases (2) Must be 1, 2 or 3.
|
||||
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
|
||||
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
|
||||
void init(const parameter::ParameterGroup& param);
|
||||
|
||||
/// Initialize from arguments.
|
||||
/// Basic multi phase fluid pvt properties.
|
||||
@ -55,7 +55,7 @@ namespace Opm
|
||||
|
||||
/// Densities of stock components at surface conditions.
|
||||
/// \return Array of size numPhases().
|
||||
const double* surfaceDensities() const;
|
||||
const double* surfaceDensities() const;
|
||||
|
||||
/// Viscosity as a function of p and z.
|
||||
void mu(const int n,
|
||||
@ -90,9 +90,9 @@ namespace Opm
|
||||
double* output_dRdp) const;
|
||||
|
||||
private:
|
||||
std::vector<double> density_;
|
||||
std::vector<double> viscosity_;
|
||||
std::vector<double> formation_volume_factor_;
|
||||
std::vector<double> density_;
|
||||
std::vector<double> viscosity_;
|
||||
std::vector<double> formation_volume_factor_;
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -38,54 +38,54 @@ namespace Opm
|
||||
{
|
||||
typedef std::vector<std::vector<std::vector<double> > > table_t;
|
||||
// If we need multiple regions, this class and the SinglePvt* classes must change.
|
||||
int region_number = 0;
|
||||
int region_number = 0;
|
||||
|
||||
PhaseUsage phase_usage = phaseUsageFromDeck(deck);
|
||||
if (phase_usage.phase_used[PhaseUsage::Vapour] ||
|
||||
!phase_usage.phase_used[PhaseUsage::Aqua] ||
|
||||
!phase_usage.phase_used[PhaseUsage::Liquid]) {
|
||||
THROW("PvtPropertiesIncompFromDeck::init() -- must have gas and oil phases (only) in deck input.\n");
|
||||
}
|
||||
if (phase_usage.phase_used[PhaseUsage::Vapour] ||
|
||||
!phase_usage.phase_used[PhaseUsage::Aqua] ||
|
||||
!phase_usage.phase_used[PhaseUsage::Liquid]) {
|
||||
THROW("PvtPropertiesIncompFromDeck::init() -- must have gas and oil phases (only) in deck input.\n");
|
||||
}
|
||||
|
||||
// Surface densities. Accounting for different orders in eclipse and our code.
|
||||
if (deck.hasField("DENSITY")) {
|
||||
const std::vector<double>& d = deck.getDENSITY().densities_[region_number];
|
||||
enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 };
|
||||
surface_density_[phase_usage.phase_pos[PhaseUsage::Aqua]] = d[ECL_water];
|
||||
surface_density_[phase_usage.phase_pos[PhaseUsage::Liquid]] = d[ECL_oil];
|
||||
} else {
|
||||
THROW("Input is missing DENSITY\n");
|
||||
}
|
||||
// Surface densities. Accounting for different orders in eclipse and our code.
|
||||
if (deck.hasField("DENSITY")) {
|
||||
const std::vector<double>& d = deck.getDENSITY().densities_[region_number];
|
||||
enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 };
|
||||
surface_density_[phase_usage.phase_pos[PhaseUsage::Aqua]] = d[ECL_water];
|
||||
surface_density_[phase_usage.phase_pos[PhaseUsage::Liquid]] = d[ECL_oil];
|
||||
} else {
|
||||
THROW("Input is missing DENSITY\n");
|
||||
}
|
||||
|
||||
// Make reservoir densities the same as surface densities initially.
|
||||
// We will modify them with formation volume factors if found.
|
||||
reservoir_density_ = surface_density_;
|
||||
|
||||
// Water viscosity.
|
||||
if (deck.hasField("PVTW")) {
|
||||
const std::vector<double>& pvtw = deck.getPVTW().pvtw_[region_number];
|
||||
if (pvtw[2] != 0.0 || pvtw[4] != 0.0) {
|
||||
MESSAGE("Compressibility effects in PVTW are ignored.");
|
||||
}
|
||||
if (deck.hasField("PVTW")) {
|
||||
const std::vector<double>& pvtw = deck.getPVTW().pvtw_[region_number];
|
||||
if (pvtw[2] != 0.0 || pvtw[4] != 0.0) {
|
||||
MESSAGE("Compressibility effects in PVTW are ignored.");
|
||||
}
|
||||
reservoir_density_[phase_usage.phase_pos[PhaseUsage::Aqua]] /= pvtw[1];
|
||||
viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = pvtw[3];
|
||||
} else {
|
||||
// Eclipse 100 default.
|
||||
// viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = 0.5*Opm::prefix::centi*Opm::unit::Poise;
|
||||
THROW("Input is missing PVTW\n");
|
||||
}
|
||||
viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = pvtw[3];
|
||||
} else {
|
||||
// Eclipse 100 default.
|
||||
// viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = 0.5*Opm::prefix::centi*Opm::unit::Poise;
|
||||
THROW("Input is missing PVTW\n");
|
||||
}
|
||||
|
||||
// Oil viscosity.
|
||||
if (deck.hasField("PVCDO")) {
|
||||
const std::vector<double>& pvcdo = deck.getPVCDO().pvcdo_[region_number];
|
||||
if (pvcdo[2] != 0.0 || pvcdo[4] != 0.0) {
|
||||
MESSAGE("Compressibility effects in PVCDO are ignored.");
|
||||
}
|
||||
if (deck.hasField("PVCDO")) {
|
||||
const std::vector<double>& pvcdo = deck.getPVCDO().pvcdo_[region_number];
|
||||
if (pvcdo[2] != 0.0 || pvcdo[4] != 0.0) {
|
||||
MESSAGE("Compressibility effects in PVCDO are ignored.");
|
||||
}
|
||||
reservoir_density_[phase_usage.phase_pos[PhaseUsage::Liquid]] /= pvcdo[1];
|
||||
viscosity_[phase_usage.phase_pos[PhaseUsage::Liquid]] = pvcdo[3];
|
||||
} else {
|
||||
THROW("Input is missing PVCDO\n");
|
||||
}
|
||||
viscosity_[phase_usage.phase_pos[PhaseUsage::Liquid]] = pvcdo[3];
|
||||
} else {
|
||||
THROW("Input is missing PVCDO\n");
|
||||
}
|
||||
}
|
||||
|
||||
const double* PvtPropertiesIncompFromDeck::surfaceDensities() const
|
||||
|
@ -39,14 +39,14 @@ namespace Opm
|
||||
PvtPropertiesIncompFromDeck();
|
||||
|
||||
/// Initialize from deck.
|
||||
void init(const EclipseGridParser& deck);
|
||||
void init(const EclipseGridParser& deck);
|
||||
|
||||
/// Number of active phases.
|
||||
int numPhases() const;
|
||||
|
||||
/// Densities of stock components at surface conditions.
|
||||
/// \return Array of size numPhases().
|
||||
const double* surfaceDensities() const;
|
||||
const double* surfaceDensities() const;
|
||||
|
||||
/// Densities of stock components at reservoir conditions.
|
||||
/// Note: a reasonable question to ask is why there can be
|
||||
@ -58,15 +58,15 @@ namespace Opm
|
||||
/// reporting and using data given in terms of surface values,
|
||||
/// we need to handle this difference.
|
||||
/// \return Array of size numPhases().
|
||||
const double* reservoirDensities() const;
|
||||
const double* reservoirDensities() const;
|
||||
|
||||
/// Viscosities.
|
||||
const double* viscosity() const;
|
||||
|
||||
private:
|
||||
std::tr1::array<double, 2> surface_density_;
|
||||
std::tr1::array<double, 2> reservoir_density_;
|
||||
std::tr1::array<double, 2> viscosity_;
|
||||
std::tr1::array<double, 2> surface_density_;
|
||||
std::tr1::array<double, 2> reservoir_density_;
|
||||
std::tr1::array<double, 2> viscosity_;
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -25,29 +25,29 @@ namespace Opm
|
||||
|
||||
/// Default constructor.
|
||||
RockBasic::RockBasic()
|
||||
: dimensions_(-1)
|
||||
: dimensions_(-1)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/// Initialize with homogenous porosity and permeability.
|
||||
void RockBasic::init(const int dimensions,
|
||||
const int num_cells,
|
||||
const double poro,
|
||||
const double perm)
|
||||
const int num_cells,
|
||||
const double poro,
|
||||
const double perm)
|
||||
{
|
||||
dimensions_ = dimensions;
|
||||
porosity_.clear();
|
||||
porosity_.resize(num_cells, poro);
|
||||
permeability_.clear();
|
||||
const int dsq = dimensions*dimensions;
|
||||
permeability_.resize(num_cells*dsq, 0.0);
|
||||
dimensions_ = dimensions;
|
||||
porosity_.clear();
|
||||
porosity_.resize(num_cells, poro);
|
||||
permeability_.clear();
|
||||
const int dsq = dimensions*dimensions;
|
||||
permeability_.resize(num_cells*dsq, 0.0);
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
for (int d = 0; d < dimensions; ++d) {
|
||||
permeability_[dsq*i + dimensions*d + d] = perm;
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
for (int d = 0; d < dimensions; ++d) {
|
||||
permeability_[dsq*i + dimensions*d + d] = perm;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -35,9 +35,9 @@ namespace Opm
|
||||
|
||||
/// Initialize with homogenous porosity and permeability.
|
||||
void init(const int dimensions,
|
||||
const int num_cells,
|
||||
const double poro,
|
||||
const double perm);
|
||||
const int num_cells,
|
||||
const double poro,
|
||||
const double perm);
|
||||
|
||||
/// \return D, the number of spatial dimensions.
|
||||
int numDimensions() const
|
||||
@ -66,7 +66,7 @@ namespace Opm
|
||||
}
|
||||
|
||||
private:
|
||||
int dimensions_;
|
||||
int dimensions_;
|
||||
std::vector<double> porosity_;
|
||||
std::vector<double> permeability_;
|
||||
};
|
||||
|
@ -69,7 +69,8 @@ namespace Opm
|
||||
const double cpnorm = rock_comp_*(pressure - pref_);
|
||||
return (1.0 + cpnorm + 0.5*cpnorm*cpnorm);
|
||||
} else {
|
||||
return Opm::linearInterpolation(p_, poromult_, pressure);
|
||||
// return Opm::linearInterpolation(p_, poromult_, pressure);
|
||||
return Opm::linearInterpolationExtrap(p_, poromult_, pressure);
|
||||
}
|
||||
}
|
||||
|
||||
@ -78,8 +79,11 @@ namespace Opm
|
||||
if (p_.empty()) {
|
||||
return rock_comp_;
|
||||
} else {
|
||||
const double poromult = Opm::linearInterpolation(p_, poromult_, pressure);
|
||||
const double dporomultdp = Opm::linearInterpolationDerivative(p_, poromult_, pressure);
|
||||
//const double poromult = Opm::linearInterpolation(p_, poromult_, pressure);
|
||||
//const double dporomultdp = Opm::linearInterpolationDerivative(p_, poromult_, pressure);
|
||||
const double poromult = Opm::linearInterpolationExtrap(p_, poromult_, pressure);
|
||||
const double dporomultdp = Opm::linearInterpolationDerivativeExtrap(p_, poromult_, pressure);
|
||||
|
||||
return dporomultdp/poromult;
|
||||
}
|
||||
}
|
||||
|
@ -19,7 +19,7 @@
|
||||
|
||||
|
||||
#include <opm/core/fluid/RockFromDeck.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <tr1/array>
|
||||
|
||||
namespace Opm
|
||||
@ -36,8 +36,6 @@ namespace Opm
|
||||
PermeabilityKind fillTensor(const EclipseGridParser& parser,
|
||||
std::vector<const std::vector<double>*>& tensor,
|
||||
std::tr1::array<int,9>& kmap);
|
||||
|
||||
int numGlobalCells(const EclipseGridParser& parser);
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
@ -53,28 +51,29 @@ namespace Opm
|
||||
|
||||
/// Initialize from deck and cell mapping.
|
||||
/// \param deck Deck input parser
|
||||
/// \param global_cell mapping from cell indices (typically from a processed grid)
|
||||
/// \param grid grid to which property object applies, needed for the
|
||||
/// mapping from cell indices (typically from a processed grid)
|
||||
/// to logical cartesian indices consistent with the deck.
|
||||
void RockFromDeck::init(const EclipseGridParser& deck,
|
||||
const std::vector<int>& global_cell)
|
||||
const UnstructuredGrid& grid)
|
||||
{
|
||||
assignPorosity(deck, global_cell);
|
||||
permfield_valid_.assign(global_cell.size(), false);
|
||||
assignPorosity(deck, grid);
|
||||
permfield_valid_.assign(grid.number_of_cells, false);
|
||||
const double perm_threshold = 0.0; // Maybe turn into parameter?
|
||||
assignPermeability(deck, global_cell, perm_threshold);
|
||||
assignPermeability(deck, grid, perm_threshold);
|
||||
}
|
||||
|
||||
|
||||
void RockFromDeck::assignPorosity(const EclipseGridParser& parser,
|
||||
const std::vector<int>& global_cell)
|
||||
const UnstructuredGrid& grid)
|
||||
{
|
||||
porosity_.assign(global_cell.size(), 1.0);
|
||||
|
||||
porosity_.assign(grid.number_of_cells, 1.0);
|
||||
const int* gc = grid.global_cell;
|
||||
if (parser.hasField("PORO")) {
|
||||
const std::vector<double>& poro = parser.getFloatingPointValue("PORO");
|
||||
|
||||
for (int c = 0; c < int(porosity_.size()); ++c) {
|
||||
porosity_[c] = poro[global_cell[c]];
|
||||
const int deck_pos = (gc == NULL) ? c : gc[c];
|
||||
porosity_[c] = poro[deck_pos];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -82,14 +81,16 @@ namespace Opm
|
||||
|
||||
|
||||
void RockFromDeck::assignPermeability(const EclipseGridParser& parser,
|
||||
const std::vector<int>& global_cell,
|
||||
const UnstructuredGrid& grid,
|
||||
double perm_threshold)
|
||||
{
|
||||
const int dim = 3;
|
||||
const int num_global_cells = numGlobalCells(parser);
|
||||
const int num_global_cells = grid.cartdims[0]*grid.cartdims[1]*grid.cartdims[2];
|
||||
const int nc = grid.number_of_cells;
|
||||
|
||||
ASSERT (num_global_cells > 0);
|
||||
|
||||
permeability_.assign(dim * dim * global_cell.size(), 0.0);
|
||||
permeability_.assign(dim * dim * nc, 0.0);
|
||||
|
||||
std::vector<const std::vector<double>*> tensor;
|
||||
tensor.reserve(10);
|
||||
@ -111,13 +112,13 @@ namespace Opm
|
||||
// chosen) default value...
|
||||
//
|
||||
if (tensor.size() > 1) {
|
||||
const int nc = global_cell.size();
|
||||
int off = 0;
|
||||
const int* gc = grid.global_cell;
|
||||
int off = 0;
|
||||
|
||||
for (int c = 0; c < nc; ++c, off += dim*dim) {
|
||||
// SharedPermTensor K(dim, dim, &permeability_[off]);
|
||||
int kix = 0;
|
||||
const int glob = global_cell[c];
|
||||
const int glob = (gc == NULL) ? c : gc[c];
|
||||
|
||||
for (int i = 0; i < dim; ++i) {
|
||||
for (int j = 0; j < dim; ++j, ++kix) {
|
||||
@ -331,26 +332,6 @@ namespace Opm
|
||||
return kind;
|
||||
}
|
||||
|
||||
int numGlobalCells(const EclipseGridParser& parser)
|
||||
{
|
||||
int ngc = -1;
|
||||
|
||||
if (parser.hasField("DIMENS")) {
|
||||
const std::vector<int>&
|
||||
dims = parser.getIntegerValue("DIMENS");
|
||||
|
||||
ngc = dims[0] * dims[1] * dims[2];
|
||||
}
|
||||
else if (parser.hasField("SPECGRID")) {
|
||||
const SPECGRID& sgr = parser.getSPECGRID();
|
||||
|
||||
ngc = sgr.dimensions[ 0 ];
|
||||
ngc *= sgr.dimensions[ 1 ];
|
||||
ngc *= sgr.dimensions[ 2 ];
|
||||
}
|
||||
|
||||
return ngc;
|
||||
}
|
||||
} // anonymous namespace
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -24,6 +24,7 @@
|
||||
#include <opm/core/eclipse/EclipseGridParser.hpp>
|
||||
#include <vector>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
@ -34,12 +35,13 @@ namespace Opm
|
||||
/// Default constructor.
|
||||
RockFromDeck();
|
||||
|
||||
/// Initialize from deck and cell mapping.
|
||||
/// Initialize from deck and grid.
|
||||
/// \param deck Deck input parser
|
||||
/// \param global_cell mapping from cell indices (typically from a processed grid)
|
||||
/// \param grid Grid to which property object applies, needed for the
|
||||
/// mapping from cell indices (typically from a processed grid)
|
||||
/// to logical cartesian indices consistent with the deck.
|
||||
void init(const EclipseGridParser& deck,
|
||||
const std::vector<int>& global_cell);
|
||||
const UnstructuredGrid& grid);
|
||||
|
||||
/// \return D, the number of spatial dimensions. Always 3 for deck input.
|
||||
int numDimensions() const
|
||||
@ -69,9 +71,9 @@ namespace Opm
|
||||
|
||||
private:
|
||||
void assignPorosity(const EclipseGridParser& parser,
|
||||
const std::vector<int>& global_cell);
|
||||
const UnstructuredGrid& grid);
|
||||
void assignPermeability(const EclipseGridParser& parser,
|
||||
const std::vector<int>& global_cell,
|
||||
const UnstructuredGrid& grid,
|
||||
const double perm_threshold);
|
||||
|
||||
std::vector<double> porosity_;
|
||||
|
425
opm/core/fluid/SatFuncSimple.cpp
Normal file
425
opm/core/fluid/SatFuncSimple.cpp
Normal file
@ -0,0 +1,425 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <opm/core/fluid/SatFuncSimple.hpp>
|
||||
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
|
||||
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
|
||||
#include <opm/core/utility/buildUniformMonotoneTable.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <iostream>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
|
||||
|
||||
|
||||
void SatFuncSimpleUniform::init(const EclipseGridParser& deck,
|
||||
const int table_num,
|
||||
const PhaseUsage phase_usg,
|
||||
const int samples)
|
||||
{
|
||||
phase_usage = phase_usg;
|
||||
double swco = 0.0;
|
||||
double swmax = 1.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
|
||||
const std::vector<double>& sw = swof_table[table_num][0];
|
||||
const std::vector<double>& krw = swof_table[table_num][1];
|
||||
const std::vector<double>& krow = swof_table[table_num][2];
|
||||
const std::vector<double>& pcow = swof_table[table_num][3];
|
||||
buildUniformMonotoneTable(sw, krw, samples, krw_);
|
||||
buildUniformMonotoneTable(sw, krow, samples, krow_);
|
||||
buildUniformMonotoneTable(sw, pcow, samples, pcow_);
|
||||
krocw_ = krow[0]; // At connate water -> ecl. SWOF
|
||||
swco = sw[0];
|
||||
smin_[phase_usage.phase_pos[Aqua]] = sw[0];
|
||||
swmax = sw.back();
|
||||
smax_[phase_usage.phase_pos[Aqua]] = sw.back();
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
|
||||
const std::vector<double>& sg = sgof_table[table_num][0];
|
||||
const std::vector<double>& krg = sgof_table[table_num][1];
|
||||
const std::vector<double>& krog = sgof_table[table_num][2];
|
||||
const std::vector<double>& pcog = sgof_table[table_num][3];
|
||||
buildUniformMonotoneTable(sg, krg, samples, krg_);
|
||||
buildUniformMonotoneTable(sg, krog, samples, krog_);
|
||||
buildUniformMonotoneTable(sg, pcog, samples, pcog_);
|
||||
smin_[phase_usage.phase_pos[Vapour]] = sg[0];
|
||||
if (std::fabs(sg.back() + swco - 1.0) > 1e-3) {
|
||||
THROW("Gas maximum saturation in SGOF table = " << sg.back() <<
|
||||
", should equal (1.0 - connate water sat) = " << (1.0 - swco));
|
||||
}
|
||||
smax_[phase_usage.phase_pos[Vapour]] = sg.back();
|
||||
}
|
||||
// These only consider water min/max sats. Consider gas sats?
|
||||
smin_[phase_usage.phase_pos[Liquid]] = 1.0 - swmax;
|
||||
smax_[phase_usage.phase_pos[Liquid]] = 1.0 - swco;
|
||||
}
|
||||
|
||||
|
||||
void SatFuncSimpleUniform::evalKr(const double* s, double* kr) const
|
||||
{
|
||||
if (phase_usage.num_phases == 3) {
|
||||
// A simplified relative permeability model.
|
||||
double sw = s[Aqua];
|
||||
double sg = s[Vapour];
|
||||
double krw = krw_(sw);
|
||||
double krg = krg_(sg);
|
||||
double krow = krow_(sw + sg); // = 1 - so
|
||||
// double krog = krog_(sg); // = 1 - so - sw
|
||||
// double krocw = krocw_;
|
||||
kr[Aqua] = krw;
|
||||
kr[Vapour] = krg;
|
||||
kr[Liquid] = krow;
|
||||
if (kr[Liquid] < 0.0) {
|
||||
kr[Liquid] = 0.0;
|
||||
}
|
||||
return;
|
||||
}
|
||||
// We have a two-phase situation. We know that oil is active.
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int wpos = phase_usage.phase_pos[Aqua];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sw = s[wpos];
|
||||
double krw = krw_(sw);
|
||||
double krow = krow_(sw);
|
||||
kr[wpos] = krw;
|
||||
kr[opos] = krow;
|
||||
} else {
|
||||
ASSERT(phase_usage.phase_used[Vapour]);
|
||||
int gpos = phase_usage.phase_pos[Vapour];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sg = s[gpos];
|
||||
double krg = krg_(sg);
|
||||
double krog = krog_(sg);
|
||||
kr[gpos] = krg;
|
||||
kr[opos] = krog;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SatFuncSimpleUniform::evalKrDeriv(const double* s, double* kr, double* dkrds) const
|
||||
{
|
||||
const int np = phase_usage.num_phases;
|
||||
std::fill(dkrds, dkrds + np*np, 0.0);
|
||||
|
||||
if (np == 3) {
|
||||
// A simplified relative permeability model.
|
||||
double sw = s[Aqua];
|
||||
double sg = s[Vapour];
|
||||
double krw = krw_(sw);
|
||||
double dkrww = krw_.derivative(sw);
|
||||
double krg = krg_(sg);
|
||||
double dkrgg = krg_.derivative(sg);
|
||||
double krow = krow_(sw + sg);
|
||||
double dkrow = krow_.derivative(sw + sg);
|
||||
// double krog = krog_(sg);
|
||||
// double dkrog = krog_.derivative(sg);
|
||||
// double krocw = krocw_;
|
||||
kr[Aqua] = krw;
|
||||
kr[Vapour] = krg;
|
||||
kr[Liquid] = krow;
|
||||
//krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
|
||||
if (kr[Liquid] < 0.0) {
|
||||
kr[Liquid] = 0.0;
|
||||
}
|
||||
dkrds[Aqua + Aqua*np] = dkrww;
|
||||
dkrds[Vapour + Vapour*np] = dkrgg;
|
||||
//dkrds[Liquid + Aqua*np] = dkrow;
|
||||
dkrds[Liquid + Liquid*np] = -dkrow;
|
||||
//krocw*((dkrow/krocw + dkrww)*(krog/krocw + krg) - dkrww);
|
||||
dkrds[Liquid + Vapour*np] = 0.0;
|
||||
//krocw*((krow/krocw + krw)*(dkrog/krocw + dkrgg) - dkrgg)
|
||||
//+ krocw*((dkrow/krocw + krw)*(krog/krocw + krg) - dkrgg);
|
||||
return;
|
||||
}
|
||||
// We have a two-phase situation. We know that oil is active.
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int wpos = phase_usage.phase_pos[Aqua];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sw = s[wpos];
|
||||
double krw = krw_(sw);
|
||||
double dkrww = krw_.derivative(sw);
|
||||
double krow = krow_(sw);
|
||||
double dkrow = krow_.derivative(sw);
|
||||
kr[wpos] = krw;
|
||||
kr[opos] = krow;
|
||||
dkrds[wpos + wpos*np] = dkrww;
|
||||
dkrds[opos + wpos*np] = dkrow; // Row opos, column wpos, fortran order.
|
||||
} else {
|
||||
ASSERT(phase_usage.phase_used[Vapour]);
|
||||
int gpos = phase_usage.phase_pos[Vapour];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sg = s[gpos];
|
||||
double krg = krg_(sg);
|
||||
double dkrgg = krg_.derivative(sg);
|
||||
double krog = krog_(sg);
|
||||
double dkrog = krog_.derivative(sg);
|
||||
kr[gpos] = krg;
|
||||
kr[opos] = krog;
|
||||
dkrds[gpos + gpos*np] = dkrgg;
|
||||
dkrds[opos + gpos*np] = dkrog;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void SatFuncSimpleUniform::evalPc(const double* s, double* pc) const
|
||||
{
|
||||
pc[phase_usage.phase_pos[Liquid]] = 0.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int pos = phase_usage.phase_pos[Aqua];
|
||||
pc[pos] = pcow_(s[pos]);
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
int pos = phase_usage.phase_pos[Vapour];
|
||||
pc[pos] = pcog_(s[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
void SatFuncSimpleUniform::evalPcDeriv(const double* s, double* pc, double* dpcds) const
|
||||
{
|
||||
// The problem of determining three-phase capillary pressures
|
||||
// is very hard experimentally, usually one extends two-phase
|
||||
// data (as for relative permeability).
|
||||
// In our approach the derivative matrix is quite sparse, only
|
||||
// the diagonal elements corresponding to non-oil phases are
|
||||
// (potentially) nonzero.
|
||||
const int np = phase_usage.num_phases;
|
||||
std::fill(dpcds, dpcds + np*np, 0.0);
|
||||
pc[phase_usage.phase_pos[Liquid]] = 0.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int pos = phase_usage.phase_pos[Aqua];
|
||||
pc[pos] = pcow_(s[pos]);
|
||||
dpcds[np*pos + pos] = pcow_.derivative(s[pos]);
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
int pos = phase_usage.phase_pos[Vapour];
|
||||
pc[pos] = pcog_(s[pos]);
|
||||
dpcds[np*pos + pos] = pcog_.derivative(s[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// ====== Methods for SatFuncSimpleNonuniform ======
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void SatFuncSimpleNonuniform::init(const EclipseGridParser& deck,
|
||||
const int table_num,
|
||||
const PhaseUsage phase_usg,
|
||||
const int /*samples*/)
|
||||
{
|
||||
phase_usage = phase_usg;
|
||||
double swco = 0.0;
|
||||
double swmax = 1.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
|
||||
const std::vector<double>& sw = swof_table[table_num][0];
|
||||
const std::vector<double>& krw = swof_table[table_num][1];
|
||||
const std::vector<double>& krow = swof_table[table_num][2];
|
||||
const std::vector<double>& pcow = swof_table[table_num][3];
|
||||
krw_ = NonuniformTableLinear<double>(sw, krw);
|
||||
krow_ = NonuniformTableLinear<double>(sw, krow);
|
||||
pcow_ = NonuniformTableLinear<double>(sw, pcow);
|
||||
krocw_ = krow[0]; // At connate water -> ecl. SWOF
|
||||
swco = sw[0];
|
||||
smin_[phase_usage.phase_pos[Aqua]] = sw[0];
|
||||
swmax = sw.back();
|
||||
smax_[phase_usage.phase_pos[Aqua]] = sw.back();
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
|
||||
const std::vector<double>& sg = sgof_table[table_num][0];
|
||||
const std::vector<double>& krg = sgof_table[table_num][1];
|
||||
const std::vector<double>& krog = sgof_table[table_num][2];
|
||||
const std::vector<double>& pcog = sgof_table[table_num][3];
|
||||
krg_ = NonuniformTableLinear<double>(sg, krg);
|
||||
krog_ = NonuniformTableLinear<double>(sg, krog);
|
||||
pcog_ = NonuniformTableLinear<double>(sg, pcog);
|
||||
smin_[phase_usage.phase_pos[Vapour]] = sg[0];
|
||||
if (std::fabs(sg.back() + swco - 1.0) > 1e-3) {
|
||||
THROW("Gas maximum saturation in SGOF table = " << sg.back() <<
|
||||
", should equal (1.0 - connate water sat) = " << (1.0 - swco));
|
||||
}
|
||||
smax_[phase_usage.phase_pos[Vapour]] = sg.back();
|
||||
}
|
||||
// These only consider water min/max sats. Consider gas sats?
|
||||
smin_[phase_usage.phase_pos[Liquid]] = 1.0 - swmax;
|
||||
smax_[phase_usage.phase_pos[Liquid]] = 1.0 - swco;
|
||||
}
|
||||
|
||||
|
||||
void SatFuncSimpleNonuniform::evalKr(const double* s, double* kr) const
|
||||
{
|
||||
if (phase_usage.num_phases == 3) {
|
||||
// A simplified relative permeability model.
|
||||
double sw = s[Aqua];
|
||||
double sg = s[Vapour];
|
||||
double krw = krw_(sw);
|
||||
double krg = krg_(sg);
|
||||
double krow = krow_(sw + sg); // = 1 - so
|
||||
// double krog = krog_(sg); // = 1 - so - sw
|
||||
// double krocw = krocw_;
|
||||
kr[Aqua] = krw;
|
||||
kr[Vapour] = krg;
|
||||
kr[Liquid] = krow;
|
||||
if (kr[Liquid] < 0.0) {
|
||||
kr[Liquid] = 0.0;
|
||||
}
|
||||
return;
|
||||
}
|
||||
// We have a two-phase situation. We know that oil is active.
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int wpos = phase_usage.phase_pos[Aqua];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sw = s[wpos];
|
||||
double krw = krw_(sw);
|
||||
double krow = krow_(sw);
|
||||
kr[wpos] = krw;
|
||||
kr[opos] = krow;
|
||||
} else {
|
||||
ASSERT(phase_usage.phase_used[Vapour]);
|
||||
int gpos = phase_usage.phase_pos[Vapour];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sg = s[gpos];
|
||||
double krg = krg_(sg);
|
||||
double krog = krog_(sg);
|
||||
kr[gpos] = krg;
|
||||
kr[opos] = krog;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SatFuncSimpleNonuniform::evalKrDeriv(const double* s, double* kr, double* dkrds) const
|
||||
{
|
||||
const int np = phase_usage.num_phases;
|
||||
std::fill(dkrds, dkrds + np*np, 0.0);
|
||||
|
||||
if (np == 3) {
|
||||
// A simplified relative permeability model.
|
||||
double sw = s[Aqua];
|
||||
double sg = s[Vapour];
|
||||
double krw = krw_(sw);
|
||||
double dkrww = krw_.derivative(sw);
|
||||
double krg = krg_(sg);
|
||||
double dkrgg = krg_.derivative(sg);
|
||||
double krow = krow_(sw + sg);
|
||||
double dkrow = krow_.derivative(sw + sg);
|
||||
// double krog = krog_(sg);
|
||||
// double dkrog = krog_.derivative(sg);
|
||||
// double krocw = krocw_;
|
||||
kr[Aqua] = krw;
|
||||
kr[Vapour] = krg;
|
||||
kr[Liquid] = krow;
|
||||
//krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
|
||||
if (kr[Liquid] < 0.0) {
|
||||
kr[Liquid] = 0.0;
|
||||
}
|
||||
dkrds[Aqua + Aqua*np] = dkrww;
|
||||
dkrds[Vapour + Vapour*np] = dkrgg;
|
||||
//dkrds[Liquid + Aqua*np] = dkrow;
|
||||
dkrds[Liquid + Liquid*np] = -dkrow;
|
||||
//krocw*((dkrow/krocw + dkrww)*(krog/krocw + krg) - dkrww);
|
||||
dkrds[Liquid + Vapour*np] = 0.0;
|
||||
//krocw*((krow/krocw + krw)*(dkrog/krocw + dkrgg) - dkrgg)
|
||||
//+ krocw*((dkrow/krocw + krw)*(krog/krocw + krg) - dkrgg);
|
||||
return;
|
||||
}
|
||||
// We have a two-phase situation. We know that oil is active.
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int wpos = phase_usage.phase_pos[Aqua];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sw = s[wpos];
|
||||
double krw = krw_(sw);
|
||||
double dkrww = krw_.derivative(sw);
|
||||
double krow = krow_(sw);
|
||||
double dkrow = krow_.derivative(sw);
|
||||
kr[wpos] = krw;
|
||||
kr[opos] = krow;
|
||||
dkrds[wpos + wpos*np] = dkrww;
|
||||
dkrds[opos + wpos*np] = dkrow; // Row opos, column wpos, fortran order.
|
||||
} else {
|
||||
ASSERT(phase_usage.phase_used[Vapour]);
|
||||
int gpos = phase_usage.phase_pos[Vapour];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sg = s[gpos];
|
||||
double krg = krg_(sg);
|
||||
double dkrgg = krg_.derivative(sg);
|
||||
double krog = krog_(sg);
|
||||
double dkrog = krog_.derivative(sg);
|
||||
kr[gpos] = krg;
|
||||
kr[opos] = krog;
|
||||
dkrds[gpos + gpos*np] = dkrgg;
|
||||
dkrds[opos + gpos*np] = dkrog;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void SatFuncSimpleNonuniform::evalPc(const double* s, double* pc) const
|
||||
{
|
||||
pc[phase_usage.phase_pos[Liquid]] = 0.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int pos = phase_usage.phase_pos[Aqua];
|
||||
pc[pos] = pcow_(s[pos]);
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
int pos = phase_usage.phase_pos[Vapour];
|
||||
pc[pos] = pcog_(s[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
void SatFuncSimpleNonuniform::evalPcDeriv(const double* s, double* pc, double* dpcds) const
|
||||
{
|
||||
// The problem of determining three-phase capillary pressures
|
||||
// is very hard experimentally, usually one extends two-phase
|
||||
// data (as for relative permeability).
|
||||
// In our approach the derivative matrix is quite sparse, only
|
||||
// the diagonal elements corresponding to non-oil phases are
|
||||
// (potentially) nonzero.
|
||||
const int np = phase_usage.num_phases;
|
||||
std::fill(dpcds, dpcds + np*np, 0.0);
|
||||
pc[phase_usage.phase_pos[Liquid]] = 0.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int pos = phase_usage.phase_pos[Aqua];
|
||||
pc[pos] = pcow_(s[pos]);
|
||||
dpcds[np*pos + pos] = pcow_.derivative(s[pos]);
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
int pos = phase_usage.phase_pos[Vapour];
|
||||
pc[pos] = pcog_(s[pos]);
|
||||
dpcds[np*pos + pos] = pcog_.derivative(s[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
80
opm/core/fluid/SatFuncSimple.hpp
Normal file
80
opm/core/fluid/SatFuncSimple.hpp
Normal file
@ -0,0 +1,80 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef SATFUNCSIMPLE_HPP
|
||||
#define SATFUNCSIMPLE_HPP
|
||||
|
||||
#include <opm/core/eclipse/EclipseGridParser.hpp>
|
||||
#include <opm/core/utility/UniformTableLinear.hpp>
|
||||
#include <opm/core/utility/NonuniformTableLinear.hpp>
|
||||
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
|
||||
#include <vector>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
class SatFuncSimpleUniform : public BlackoilPhases
|
||||
{
|
||||
public:
|
||||
void init(const EclipseGridParser& deck,
|
||||
const int table_num,
|
||||
const PhaseUsage phase_usg,
|
||||
const int samples);
|
||||
void evalKr(const double* s, double* kr) const;
|
||||
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
|
||||
void evalPc(const double* s, double* pc) const;
|
||||
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
|
||||
double smin_[PhaseUsage::MaxNumPhases];
|
||||
double smax_[PhaseUsage::MaxNumPhases];
|
||||
private:
|
||||
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
|
||||
UniformTableLinear<double> krw_;
|
||||
UniformTableLinear<double> krow_;
|
||||
UniformTableLinear<double> pcow_;
|
||||
UniformTableLinear<double> krg_;
|
||||
UniformTableLinear<double> krog_;
|
||||
UniformTableLinear<double> pcog_;
|
||||
double krocw_; // = krow_(s_wc)
|
||||
};
|
||||
|
||||
|
||||
class SatFuncSimpleNonuniform : public BlackoilPhases
|
||||
{
|
||||
public:
|
||||
void init(const EclipseGridParser& deck,
|
||||
const int table_num,
|
||||
const PhaseUsage phase_usg,
|
||||
const int samples);
|
||||
void evalKr(const double* s, double* kr) const;
|
||||
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
|
||||
void evalPc(const double* s, double* pc) const;
|
||||
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
|
||||
double smin_[PhaseUsage::MaxNumPhases];
|
||||
double smax_[PhaseUsage::MaxNumPhases];
|
||||
private:
|
||||
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
|
||||
NonuniformTableLinear<double> krw_;
|
||||
NonuniformTableLinear<double> krow_;
|
||||
NonuniformTableLinear<double> pcow_;
|
||||
NonuniformTableLinear<double> krg_;
|
||||
NonuniformTableLinear<double> krog_;
|
||||
NonuniformTableLinear<double> pcog_;
|
||||
double krocw_; // = krow_(s_wc)
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
#endif // SATFUNCSIMPLE_HPP
|
417
opm/core/fluid/SatFuncStone2.cpp
Normal file
417
opm/core/fluid/SatFuncStone2.cpp
Normal file
@ -0,0 +1,417 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <opm/core/fluid/SatFuncStone2.hpp>
|
||||
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
|
||||
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
|
||||
#include <opm/core/utility/buildUniformMonotoneTable.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <iostream>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
|
||||
|
||||
|
||||
void SatFuncStone2Uniform::init(const EclipseGridParser& deck,
|
||||
const int table_num,
|
||||
const PhaseUsage phase_usg,
|
||||
const int samples)
|
||||
{
|
||||
phase_usage = phase_usg;
|
||||
double swco = 0.0;
|
||||
double swmax = 1.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
|
||||
const std::vector<double>& sw = swof_table[table_num][0];
|
||||
const std::vector<double>& krw = swof_table[table_num][1];
|
||||
const std::vector<double>& krow = swof_table[table_num][2];
|
||||
const std::vector<double>& pcow = swof_table[table_num][3];
|
||||
buildUniformMonotoneTable(sw, krw, samples, krw_);
|
||||
buildUniformMonotoneTable(sw, krow, samples, krow_);
|
||||
buildUniformMonotoneTable(sw, pcow, samples, pcow_);
|
||||
krocw_ = krow[0]; // At connate water -> ecl. SWOF
|
||||
swco = sw[0];
|
||||
smin_[phase_usage.phase_pos[Aqua]] = sw[0];
|
||||
swmax = sw.back();
|
||||
smax_[phase_usage.phase_pos[Aqua]] = sw.back();
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
|
||||
const std::vector<double>& sg = sgof_table[table_num][0];
|
||||
const std::vector<double>& krg = sgof_table[table_num][1];
|
||||
const std::vector<double>& krog = sgof_table[table_num][2];
|
||||
const std::vector<double>& pcog = sgof_table[table_num][3];
|
||||
buildUniformMonotoneTable(sg, krg, samples, krg_);
|
||||
buildUniformMonotoneTable(sg, krog, samples, krog_);
|
||||
buildUniformMonotoneTable(sg, pcog, samples, pcog_);
|
||||
smin_[phase_usage.phase_pos[Vapour]] = sg[0];
|
||||
if (std::fabs(sg.back() + swco - 1.0) > 1e-3) {
|
||||
THROW("Gas maximum saturation in SGOF table = " << sg.back() <<
|
||||
", should equal (1.0 - connate water sat) = " << (1.0 - swco));
|
||||
}
|
||||
smax_[phase_usage.phase_pos[Vapour]] = sg.back();
|
||||
}
|
||||
// These only consider water min/max sats. Consider gas sats?
|
||||
smin_[phase_usage.phase_pos[Liquid]] = 1.0 - swmax;
|
||||
smax_[phase_usage.phase_pos[Liquid]] = 1.0 - swco;
|
||||
}
|
||||
|
||||
|
||||
void SatFuncStone2Uniform::evalKr(const double* s, double* kr) const
|
||||
{
|
||||
if (phase_usage.num_phases == 3) {
|
||||
// Stone-II relative permeability model.
|
||||
double sw = s[Aqua];
|
||||
double sg = s[Vapour];
|
||||
double krw = krw_(sw);
|
||||
double krg = krg_(sg);
|
||||
double krow = krow_(sw + sg); // = 1 - so
|
||||
double krog = krog_(sg); // = 1 - so - sw
|
||||
double krocw = krocw_;
|
||||
kr[Aqua] = krw;
|
||||
kr[Vapour] = krg;
|
||||
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
|
||||
if (kr[Liquid] < 0.0) {
|
||||
kr[Liquid] = 0.0;
|
||||
}
|
||||
return;
|
||||
}
|
||||
// We have a two-phase situation. We know that oil is active.
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int wpos = phase_usage.phase_pos[Aqua];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sw = s[wpos];
|
||||
double krw = krw_(sw);
|
||||
double krow = krow_(sw);
|
||||
kr[wpos] = krw;
|
||||
kr[opos] = krow;
|
||||
} else {
|
||||
ASSERT(phase_usage.phase_used[Vapour]);
|
||||
int gpos = phase_usage.phase_pos[Vapour];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sg = s[gpos];
|
||||
double krg = krg_(sg);
|
||||
double krog = krog_(sg);
|
||||
kr[gpos] = krg;
|
||||
kr[opos] = krog;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SatFuncStone2Uniform::evalKrDeriv(const double* s, double* kr, double* dkrds) const
|
||||
{
|
||||
const int np = phase_usage.num_phases;
|
||||
std::fill(dkrds, dkrds + np*np, 0.0);
|
||||
|
||||
if (np == 3) {
|
||||
// Stone-II relative permeability model.
|
||||
double sw = s[Aqua];
|
||||
double sg = s[Vapour];
|
||||
double krw = krw_(sw);
|
||||
double dkrww = krw_.derivative(sw);
|
||||
double krg = krg_(sg);
|
||||
double dkrgg = krg_.derivative(sg);
|
||||
double krow = krow_(sw + sg);
|
||||
double dkrow = krow_.derivative(sw + sg);
|
||||
double krog = krog_(sg);
|
||||
double dkrog = krog_.derivative(sg);
|
||||
double krocw = krocw_;
|
||||
kr[Aqua] = krw;
|
||||
kr[Vapour] = krg;
|
||||
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
|
||||
if (kr[Liquid] < 0.0) {
|
||||
kr[Liquid] = 0.0;
|
||||
}
|
||||
dkrds[Aqua + Aqua*np] = dkrww;
|
||||
dkrds[Vapour + Vapour*np] = dkrgg;
|
||||
dkrds[Liquid + Aqua*np] = krocw*((dkrow/krocw + dkrww)*(krog/krocw + krg) - dkrww);
|
||||
dkrds[Liquid + Vapour*np] = krocw*((krow/krocw + krw)*(dkrog/krocw + dkrgg) - dkrgg)
|
||||
+ krocw*((dkrow/krocw + krw)*(krog/krocw + krg) - dkrgg);
|
||||
return;
|
||||
}
|
||||
// We have a two-phase situation. We know that oil is active.
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int wpos = phase_usage.phase_pos[Aqua];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sw = s[wpos];
|
||||
double krw = krw_(sw);
|
||||
double dkrww = krw_.derivative(sw);
|
||||
double krow = krow_(sw);
|
||||
double dkrow = krow_.derivative(sw);
|
||||
kr[wpos] = krw;
|
||||
kr[opos] = krow;
|
||||
dkrds[wpos + wpos*np] = dkrww;
|
||||
dkrds[opos + wpos*np] = dkrow; // Row opos, column wpos, fortran order.
|
||||
} else {
|
||||
ASSERT(phase_usage.phase_used[Vapour]);
|
||||
int gpos = phase_usage.phase_pos[Vapour];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sg = s[gpos];
|
||||
double krg = krg_(sg);
|
||||
double dkrgg = krg_.derivative(sg);
|
||||
double krog = krog_(sg);
|
||||
double dkrog = krog_.derivative(sg);
|
||||
kr[gpos] = krg;
|
||||
kr[opos] = krog;
|
||||
dkrds[gpos + gpos*np] = dkrgg;
|
||||
dkrds[opos + gpos*np] = dkrog;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void SatFuncStone2Uniform::evalPc(const double* s, double* pc) const
|
||||
{
|
||||
pc[phase_usage.phase_pos[Liquid]] = 0.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int pos = phase_usage.phase_pos[Aqua];
|
||||
pc[pos] = pcow_(s[pos]);
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
int pos = phase_usage.phase_pos[Vapour];
|
||||
pc[pos] = pcog_(s[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
void SatFuncStone2Uniform::evalPcDeriv(const double* s, double* pc, double* dpcds) const
|
||||
{
|
||||
// The problem of determining three-phase capillary pressures
|
||||
// is very hard experimentally, usually one extends two-phase
|
||||
// data (as for relative permeability).
|
||||
// In our approach the derivative matrix is quite sparse, only
|
||||
// the diagonal elements corresponding to non-oil phases are
|
||||
// (potentially) nonzero.
|
||||
const int np = phase_usage.num_phases;
|
||||
std::fill(dpcds, dpcds + np*np, 0.0);
|
||||
pc[phase_usage.phase_pos[Liquid]] = 0.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int pos = phase_usage.phase_pos[Aqua];
|
||||
pc[pos] = pcow_(s[pos]);
|
||||
dpcds[np*pos + pos] = pcow_.derivative(s[pos]);
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
int pos = phase_usage.phase_pos[Vapour];
|
||||
pc[pos] = pcog_(s[pos]);
|
||||
dpcds[np*pos + pos] = pcog_.derivative(s[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// ====== Methods for SatFuncSimpleNonuniform ======
|
||||
|
||||
|
||||
|
||||
|
||||
void SatFuncStone2Nonuniform::init(const EclipseGridParser& deck,
|
||||
const int table_num,
|
||||
const PhaseUsage phase_usg,
|
||||
const int /*samples*/)
|
||||
{
|
||||
phase_usage = phase_usg;
|
||||
double swco = 0.0;
|
||||
double swmax = 1.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
|
||||
const std::vector<double>& sw = swof_table[table_num][0];
|
||||
const std::vector<double>& krw = swof_table[table_num][1];
|
||||
const std::vector<double>& krow = swof_table[table_num][2];
|
||||
const std::vector<double>& pcow = swof_table[table_num][3];
|
||||
krw_ = NonuniformTableLinear<double>(sw, krw);
|
||||
krow_ = NonuniformTableLinear<double>(sw, krow);
|
||||
pcow_ = NonuniformTableLinear<double>(sw, pcow);
|
||||
krocw_ = krow[0]; // At connate water -> ecl. SWOF
|
||||
swco = sw[0];
|
||||
smin_[phase_usage.phase_pos[Aqua]] = sw[0];
|
||||
swmax = sw.back();
|
||||
smax_[phase_usage.phase_pos[Aqua]] = sw.back();
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
|
||||
const std::vector<double>& sg = sgof_table[table_num][0];
|
||||
const std::vector<double>& krg = sgof_table[table_num][1];
|
||||
const std::vector<double>& krog = sgof_table[table_num][2];
|
||||
const std::vector<double>& pcog = sgof_table[table_num][3];
|
||||
krg_ = NonuniformTableLinear<double>(sg, krg);
|
||||
krog_ = NonuniformTableLinear<double>(sg, krog);
|
||||
pcog_ = NonuniformTableLinear<double>(sg, pcog);
|
||||
smin_[phase_usage.phase_pos[Vapour]] = sg[0];
|
||||
if (std::fabs(sg.back() + swco - 1.0) > 1e-3) {
|
||||
THROW("Gas maximum saturation in SGOF table = " << sg.back() <<
|
||||
", should equal (1.0 - connate water sat) = " << (1.0 - swco));
|
||||
}
|
||||
smax_[phase_usage.phase_pos[Vapour]] = sg.back();
|
||||
}
|
||||
// These only consider water min/max sats. Consider gas sats?
|
||||
smin_[phase_usage.phase_pos[Liquid]] = 1.0 - swmax;
|
||||
smax_[phase_usage.phase_pos[Liquid]] = 1.0 - swco;
|
||||
}
|
||||
|
||||
|
||||
void SatFuncStone2Nonuniform::evalKr(const double* s, double* kr) const
|
||||
{
|
||||
if (phase_usage.num_phases == 3) {
|
||||
// Stone-II relative permeability model.
|
||||
double sw = s[Aqua];
|
||||
double sg = s[Vapour];
|
||||
double krw = krw_(sw);
|
||||
double krg = krg_(sg);
|
||||
double krow = krow_(sw + sg); // = 1 - so
|
||||
double krog = krog_(sg); // = 1 - so - sw
|
||||
double krocw = krocw_;
|
||||
kr[Aqua] = krw;
|
||||
kr[Vapour] = krg;
|
||||
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
|
||||
if (kr[Liquid] < 0.0) {
|
||||
kr[Liquid] = 0.0;
|
||||
}
|
||||
return;
|
||||
}
|
||||
// We have a two-phase situation. We know that oil is active.
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int wpos = phase_usage.phase_pos[Aqua];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sw = s[wpos];
|
||||
double krw = krw_(sw);
|
||||
double krow = krow_(sw);
|
||||
kr[wpos] = krw;
|
||||
kr[opos] = krow;
|
||||
} else {
|
||||
ASSERT(phase_usage.phase_used[Vapour]);
|
||||
int gpos = phase_usage.phase_pos[Vapour];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sg = s[gpos];
|
||||
double krg = krg_(sg);
|
||||
double krog = krog_(sg);
|
||||
kr[gpos] = krg;
|
||||
kr[opos] = krog;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SatFuncStone2Nonuniform::evalKrDeriv(const double* s, double* kr, double* dkrds) const
|
||||
{
|
||||
const int np = phase_usage.num_phases;
|
||||
std::fill(dkrds, dkrds + np*np, 0.0);
|
||||
|
||||
if (np == 3) {
|
||||
// Stone-II relative permeability model.
|
||||
double sw = s[Aqua];
|
||||
double sg = s[Vapour];
|
||||
double krw = krw_(sw);
|
||||
double dkrww = krw_.derivative(sw);
|
||||
double krg = krg_(sg);
|
||||
double dkrgg = krg_.derivative(sg);
|
||||
double krow = krow_(sw + sg);
|
||||
double dkrow = krow_.derivative(sw + sg);
|
||||
double krog = krog_(sg);
|
||||
double dkrog = krog_.derivative(sg);
|
||||
double krocw = krocw_;
|
||||
kr[Aqua] = krw;
|
||||
kr[Vapour] = krg;
|
||||
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
|
||||
if (kr[Liquid] < 0.0) {
|
||||
kr[Liquid] = 0.0;
|
||||
}
|
||||
dkrds[Aqua + Aqua*np] = dkrww;
|
||||
dkrds[Vapour + Vapour*np] = dkrgg;
|
||||
dkrds[Liquid + Aqua*np] = krocw*((dkrow/krocw + dkrww)*(krog/krocw + krg) - dkrww);
|
||||
dkrds[Liquid + Vapour*np] = krocw*((krow/krocw + krw)*(dkrog/krocw + dkrgg) - dkrgg)
|
||||
+ krocw*((dkrow/krocw + krw)*(krog/krocw + krg) - dkrgg);
|
||||
return;
|
||||
}
|
||||
// We have a two-phase situation. We know that oil is active.
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int wpos = phase_usage.phase_pos[Aqua];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sw = s[wpos];
|
||||
double krw = krw_(sw);
|
||||
double dkrww = krw_.derivative(sw);
|
||||
double krow = krow_(sw);
|
||||
double dkrow = krow_.derivative(sw);
|
||||
kr[wpos] = krw;
|
||||
kr[opos] = krow;
|
||||
dkrds[wpos + wpos*np] = dkrww;
|
||||
dkrds[opos + wpos*np] = dkrow; // Row opos, column wpos, fortran order.
|
||||
} else {
|
||||
ASSERT(phase_usage.phase_used[Vapour]);
|
||||
int gpos = phase_usage.phase_pos[Vapour];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sg = s[gpos];
|
||||
double krg = krg_(sg);
|
||||
double dkrgg = krg_.derivative(sg);
|
||||
double krog = krog_(sg);
|
||||
double dkrog = krog_.derivative(sg);
|
||||
kr[gpos] = krg;
|
||||
kr[opos] = krog;
|
||||
dkrds[gpos + gpos*np] = dkrgg;
|
||||
dkrds[opos + gpos*np] = dkrog;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void SatFuncStone2Nonuniform::evalPc(const double* s, double* pc) const
|
||||
{
|
||||
pc[phase_usage.phase_pos[Liquid]] = 0.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int pos = phase_usage.phase_pos[Aqua];
|
||||
pc[pos] = pcow_(s[pos]);
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
int pos = phase_usage.phase_pos[Vapour];
|
||||
pc[pos] = pcog_(s[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
void SatFuncStone2Nonuniform::evalPcDeriv(const double* s, double* pc, double* dpcds) const
|
||||
{
|
||||
// The problem of determining three-phase capillary pressures
|
||||
// is very hard experimentally, usually one extends two-phase
|
||||
// data (as for relative permeability).
|
||||
// In our approach the derivative matrix is quite sparse, only
|
||||
// the diagonal elements corresponding to non-oil phases are
|
||||
// (potentially) nonzero.
|
||||
const int np = phase_usage.num_phases;
|
||||
std::fill(dpcds, dpcds + np*np, 0.0);
|
||||
pc[phase_usage.phase_pos[Liquid]] = 0.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int pos = phase_usage.phase_pos[Aqua];
|
||||
pc[pos] = pcow_(s[pos]);
|
||||
dpcds[np*pos + pos] = pcow_.derivative(s[pos]);
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
int pos = phase_usage.phase_pos[Vapour];
|
||||
pc[pos] = pcog_(s[pos]);
|
||||
dpcds[np*pos + pos] = pcog_.derivative(s[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
80
opm/core/fluid/SatFuncStone2.hpp
Normal file
80
opm/core/fluid/SatFuncStone2.hpp
Normal file
@ -0,0 +1,80 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef SATFUNCSTONE2_HPP
|
||||
#define SATFUNCSTONE2_HPP
|
||||
|
||||
#include <opm/core/eclipse/EclipseGridParser.hpp>
|
||||
#include <opm/core/utility/UniformTableLinear.hpp>
|
||||
#include <opm/core/utility/NonuniformTableLinear.hpp>
|
||||
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
|
||||
#include <vector>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
class SatFuncStone2Uniform : public BlackoilPhases
|
||||
{
|
||||
public:
|
||||
void init(const EclipseGridParser& deck,
|
||||
const int table_num,
|
||||
const PhaseUsage phase_usg,
|
||||
const int samples);
|
||||
void evalKr(const double* s, double* kr) const;
|
||||
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
|
||||
void evalPc(const double* s, double* pc) const;
|
||||
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
|
||||
double smin_[PhaseUsage::MaxNumPhases];
|
||||
double smax_[PhaseUsage::MaxNumPhases];
|
||||
private:
|
||||
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
|
||||
UniformTableLinear<double> krw_;
|
||||
UniformTableLinear<double> krow_;
|
||||
UniformTableLinear<double> pcow_;
|
||||
UniformTableLinear<double> krg_;
|
||||
UniformTableLinear<double> krog_;
|
||||
UniformTableLinear<double> pcog_;
|
||||
double krocw_; // = krow_(s_wc)
|
||||
};
|
||||
|
||||
|
||||
class SatFuncStone2Nonuniform : public BlackoilPhases
|
||||
{
|
||||
public:
|
||||
void init(const EclipseGridParser& deck,
|
||||
const int table_num,
|
||||
const PhaseUsage phase_usg,
|
||||
const int samples);
|
||||
void evalKr(const double* s, double* kr) const;
|
||||
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
|
||||
void evalPc(const double* s, double* pc) const;
|
||||
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
|
||||
double smin_[PhaseUsage::MaxNumPhases];
|
||||
double smax_[PhaseUsage::MaxNumPhases];
|
||||
private:
|
||||
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
|
||||
NonuniformTableLinear<double> krw_;
|
||||
NonuniformTableLinear<double> krow_;
|
||||
NonuniformTableLinear<double> pcow_;
|
||||
NonuniformTableLinear<double> krg_;
|
||||
NonuniformTableLinear<double> krog_;
|
||||
NonuniformTableLinear<double> pcog_;
|
||||
double krocw_; // = krow_(s_wc)
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
#endif // SATFUNCSTONE2_HPP
|
@ -29,64 +29,64 @@ namespace Opm
|
||||
|
||||
namespace {
|
||||
|
||||
struct KrFunConstant
|
||||
{
|
||||
double kr(double)
|
||||
{
|
||||
return 1.0;
|
||||
}
|
||||
double dkrds(double)
|
||||
{
|
||||
return 0.0;
|
||||
}
|
||||
};
|
||||
struct KrFunConstant
|
||||
{
|
||||
double kr(double)
|
||||
{
|
||||
return 1.0;
|
||||
}
|
||||
double dkrds(double)
|
||||
{
|
||||
return 0.0;
|
||||
}
|
||||
};
|
||||
|
||||
struct KrFunLinear
|
||||
{
|
||||
double kr(double s)
|
||||
{
|
||||
return s;
|
||||
}
|
||||
double dkrds(double)
|
||||
{
|
||||
return 1.0;
|
||||
}
|
||||
};
|
||||
struct KrFunLinear
|
||||
{
|
||||
double kr(double s)
|
||||
{
|
||||
return s;
|
||||
}
|
||||
double dkrds(double)
|
||||
{
|
||||
return 1.0;
|
||||
}
|
||||
};
|
||||
|
||||
struct KrFunQuadratic
|
||||
{
|
||||
double kr(double s)
|
||||
{
|
||||
return s*s;
|
||||
}
|
||||
double dkrds(double s)
|
||||
{
|
||||
return 2.0*s;
|
||||
}
|
||||
};
|
||||
struct KrFunQuadratic
|
||||
{
|
||||
double kr(double s)
|
||||
{
|
||||
return s*s;
|
||||
}
|
||||
double dkrds(double s)
|
||||
{
|
||||
return 2.0*s;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <class Fun>
|
||||
static inline void evalAllKrDeriv(const int n, const int np,
|
||||
const double* s, double* kr, double* dkrds, Fun fun)
|
||||
{
|
||||
if (dkrds == 0) {
|
||||
template <class Fun>
|
||||
static inline void evalAllKrDeriv(const int n, const int np,
|
||||
const double* s, double* kr, double* dkrds, Fun fun)
|
||||
{
|
||||
if (dkrds == 0) {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n*np; ++i) {
|
||||
kr[i] = fun.kr(s[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < n*np; ++i) {
|
||||
kr[i] = fun.kr(s[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
std::fill(dkrds + i*np*np, dkrds + (i+1)*np*np, 0.0);
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
kr[i*np + phase] = fun.kr(s[i*np + phase]);
|
||||
// Only diagonal elements in derivative.
|
||||
dkrds[i*np*np + phase*np + phase] = fun.dkrds(s[i*np + phase]);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < n; ++i) {
|
||||
std::fill(dkrds + i*np*np, dkrds + (i+1)*np*np, 0.0);
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
kr[i*np + phase] = fun.kr(s[i*np + phase]);
|
||||
// Only diagonal elements in derivative.
|
||||
dkrds[i*np*np + phase*np + phase] = fun.dkrds(s[i*np + phase]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // anon namespace
|
||||
@ -99,6 +99,7 @@ namespace Opm
|
||||
|
||||
/// Default constructor.
|
||||
SaturationPropsBasic::SaturationPropsBasic()
|
||||
: num_phases_(0), relperm_func_(Constant)
|
||||
{
|
||||
}
|
||||
|
||||
@ -108,24 +109,25 @@ namespace Opm
|
||||
/// Initialize from parameters.
|
||||
void SaturationPropsBasic::init(const parameter::ParameterGroup& param)
|
||||
{
|
||||
int num_phases = param.getDefault("num_phases", 2);
|
||||
if (num_phases > 2 || num_phases < 1) {
|
||||
THROW("SaturationPropsBasic::init() illegal num_phases: " << num_phases);
|
||||
}
|
||||
int num_phases = param.getDefault("num_phases", 2);
|
||||
if (num_phases > 2 || num_phases < 1) {
|
||||
THROW("SaturationPropsBasic::init() illegal num_phases: " << num_phases);
|
||||
}
|
||||
num_phases_ = num_phases;
|
||||
std::string rpf = param.getDefault("relperm_func", std::string("Unset"));
|
||||
if (rpf == "Constant") {
|
||||
relperm_func_ = Constant;
|
||||
if(num_phases!=1){
|
||||
THROW("Constant relperm with more than one phase???");
|
||||
}
|
||||
} else if (rpf == "Linear") {
|
||||
relperm_func_ = Linear;
|
||||
} else if (rpf == "Quadratic") {
|
||||
relperm_func_ = Quadratic;
|
||||
} else {
|
||||
THROW("SaturationPropsBasic::init() illegal relperm_func: " << rpf);
|
||||
}
|
||||
//std::string rpf = param.getDefault("relperm_func", std::string("Unset"));
|
||||
std::string rpf = param.getDefault("relperm_func", std::string("Linear"));
|
||||
if (rpf == "Constant") {
|
||||
relperm_func_ = Constant;
|
||||
if(num_phases!=1){
|
||||
THROW("Constant relperm with more than one phase???");
|
||||
}
|
||||
} else if (rpf == "Linear") {
|
||||
relperm_func_ = Linear;
|
||||
} else if (rpf == "Quadratic") {
|
||||
relperm_func_ = Quadratic;
|
||||
} else {
|
||||
THROW("SaturationPropsBasic::init() illegal relperm_func: " << rpf);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -134,7 +136,7 @@ namespace Opm
|
||||
/// \return P, the number of phases.
|
||||
int SaturationPropsBasic::numPhases() const
|
||||
{
|
||||
return num_phases_;
|
||||
return num_phases_;
|
||||
}
|
||||
|
||||
|
||||
@ -150,29 +152,29 @@ namespace Opm
|
||||
/// m_{ij} = \frac{dkr_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||||
void SaturationPropsBasic::relperm(const int n,
|
||||
const double* s,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
const double* s,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
{
|
||||
switch (relperm_func_) {
|
||||
case Constant:
|
||||
{
|
||||
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunConstant());
|
||||
break;
|
||||
}
|
||||
case Linear:
|
||||
{
|
||||
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunLinear());
|
||||
break;
|
||||
}
|
||||
case Quadratic:
|
||||
{
|
||||
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunQuadratic());
|
||||
break;
|
||||
}
|
||||
default:
|
||||
THROW("SaturationPropsBasic::relperm() unhandled relperm func type: " << relperm_func_);
|
||||
}
|
||||
switch (relperm_func_) {
|
||||
case Constant:
|
||||
{
|
||||
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunConstant());
|
||||
break;
|
||||
}
|
||||
case Linear:
|
||||
{
|
||||
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunLinear());
|
||||
break;
|
||||
}
|
||||
case Quadratic:
|
||||
{
|
||||
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunQuadratic());
|
||||
break;
|
||||
}
|
||||
default:
|
||||
THROW("SaturationPropsBasic::relperm() unhandled relperm func type: " << relperm_func_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -188,13 +190,13 @@ namespace Opm
|
||||
/// m_{ij} = \frac{dpc_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||||
void SaturationPropsBasic::capPress(const int n,
|
||||
const double* /*s*/,
|
||||
double* pc,
|
||||
double* dpcds) const
|
||||
const double* /*s*/,
|
||||
double* pc,
|
||||
double* dpcds) const
|
||||
{
|
||||
std::fill(pc, pc + num_phases_*n, 0.0);
|
||||
std::fill(pc, pc + num_phases_*n, 0.0);
|
||||
if (dpcds) {
|
||||
std::fill(dpcds, dpcds + num_phases_*num_phases_*n, 0.0);
|
||||
std::fill(dpcds, dpcds + num_phases_*num_phases_*n, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -205,11 +207,11 @@ namespace Opm
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
|
||||
void SaturationPropsBasic::satRange(const int n,
|
||||
double* smin,
|
||||
double* smax) const
|
||||
double* smin,
|
||||
double* smax) const
|
||||
{
|
||||
std::fill(smin, smin + num_phases_*n, 0.0);
|
||||
std::fill(smax, smax + num_phases_*n, 1.0);
|
||||
std::fill(smin, smin + num_phases_*n, 0.0);
|
||||
std::fill(smax, smax + num_phases_*n, 1.0);
|
||||
}
|
||||
|
||||
|
||||
|
@ -40,16 +40,16 @@ namespace Opm
|
||||
SaturationPropsBasic();
|
||||
|
||||
/// Initialize from parameters.
|
||||
/// The following parameters are accepted (defaults):
|
||||
/// num_phases (2) Must be 1 or 2.
|
||||
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
|
||||
/// The following parameters are accepted (defaults):
|
||||
/// num_phases (2) Must be 1 or 2.
|
||||
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
|
||||
void init(const parameter::ParameterGroup& param);
|
||||
|
||||
enum RelPermFunc { Constant, Linear, Quadratic };
|
||||
enum RelPermFunc { Constant, Linear, Quadratic };
|
||||
|
||||
/// Initialize from arguments a basic Saturation property.
|
||||
void init(const int num_phases,
|
||||
const RelPermFunc& relperm_func)
|
||||
const RelPermFunc& relperm_func)
|
||||
{
|
||||
num_phases_ = num_phases;
|
||||
relperm_func_ = relperm_func;
|
||||
@ -86,18 +86,18 @@ namespace Opm
|
||||
double* pc,
|
||||
double* dpcds) const;
|
||||
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
|
||||
void satRange(const int n,
|
||||
double* smin,
|
||||
double* smax) const;
|
||||
void satRange(const int n,
|
||||
double* smin,
|
||||
double* smax) const;
|
||||
|
||||
|
||||
private:
|
||||
int num_phases_;
|
||||
RelPermFunc relperm_func_;
|
||||
int num_phases_;
|
||||
RelPermFunc relperm_func_;
|
||||
};
|
||||
|
||||
|
||||
|
@ -18,7 +18,7 @@
|
||||
*/
|
||||
|
||||
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
|
||||
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/utility/buildUniformMonotoneTable.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <iostream>
|
||||
@ -26,368 +26,8 @@
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/// Default constructor.
|
||||
SaturationPropsFromDeck::SaturationPropsFromDeck()
|
||||
{
|
||||
}
|
||||
|
||||
/// Initialize from deck.
|
||||
void SaturationPropsFromDeck::init(const EclipseGridParser& deck,
|
||||
const std::vector<int>& global_cell)
|
||||
{
|
||||
phase_usage_ = phaseUsageFromDeck(deck);
|
||||
|
||||
// Extract input data.
|
||||
// Oil phase should be active.
|
||||
if (!phase_usage_.phase_used[Liquid]) {
|
||||
THROW("SaturationPropsFromDeck::init() -- oil phase must be active.");
|
||||
}
|
||||
|
||||
// Obtain SATNUM, if it exists, and create cell_to_func_.
|
||||
// Otherwise, let the cell_to_func_ mapping be just empty.
|
||||
int satfuncs_expected = 1;
|
||||
if (deck.hasField("SATNUM")) {
|
||||
const std::vector<int>& satnum = deck.getIntegerValue("SATNUM");
|
||||
satfuncs_expected = *std::max_element(satnum.begin(), satnum.end());
|
||||
int num_cells = global_cell.size();
|
||||
cell_to_func_.resize(num_cells);
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
cell_to_func_[cell] = satnum[global_cell[cell]] - 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Find number of tables, check for consistency.
|
||||
enum { Uninitialized = -1 };
|
||||
int num_tables = Uninitialized;
|
||||
if (phase_usage_.phase_used[Aqua]) {
|
||||
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
|
||||
num_tables = swof_table.size();
|
||||
if (num_tables < satfuncs_expected) {
|
||||
THROW("Found " << num_tables << " SWOF tables, SATNUM specifies at least " << satfuncs_expected);
|
||||
}
|
||||
}
|
||||
if (phase_usage_.phase_used[Vapour]) {
|
||||
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
|
||||
int num_sgof_tables = sgof_table.size();
|
||||
if (num_sgof_tables < satfuncs_expected) {
|
||||
THROW("Found " << num_tables << " SGOF tables, SATNUM specifies at least " << satfuncs_expected);
|
||||
}
|
||||
if (num_tables == Uninitialized) {
|
||||
num_tables = num_sgof_tables;
|
||||
} else if (num_tables != num_sgof_tables) {
|
||||
THROW("Inconsistent number of tables in SWOF and SGOF.");
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize tables.
|
||||
satfuncset_.resize(num_tables);
|
||||
for (int table = 0; table < num_tables; ++table) {
|
||||
satfuncset_[table].init(deck, table, phase_usage_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// \return P, the number of phases.
|
||||
int SaturationPropsFromDeck::numPhases() const
|
||||
{
|
||||
return phase_usage_.num_phases;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Relative permeability.
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] s Array of nP saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the s values.
|
||||
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
|
||||
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
|
||||
/// array must be valid before calling.
|
||||
/// The P^2 derivative matrix is
|
||||
/// m_{ij} = \frac{dkr_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||||
void SaturationPropsFromDeck::relperm(const int n,
|
||||
const double* s,
|
||||
const int* cells,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
{
|
||||
ASSERT (cells != 0);
|
||||
|
||||
const int np = phase_usage_.num_phases;
|
||||
if (dkrds) {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
funcForCell(cells[i]).evalKrDeriv(s + np*i, kr + np*i, dkrds + np*np*i);
|
||||
}
|
||||
} else {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
funcForCell(cells[i]).evalKr(s + np*i, kr + np*i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Capillary pressure.
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] s Array of nP saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the s values.
|
||||
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
|
||||
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
|
||||
/// array must be valid before calling.
|
||||
/// The P^2 derivative matrix is
|
||||
/// m_{ij} = \frac{dpc_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||||
void SaturationPropsFromDeck::capPress(const int n,
|
||||
const double* s,
|
||||
const int* cells,
|
||||
double* pc,
|
||||
double* dpcds) const
|
||||
{
|
||||
ASSERT (cells != 0);
|
||||
|
||||
const int np = phase_usage_.num_phases;
|
||||
if (dpcds) {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
funcForCell(cells[i]).evalPcDeriv(s + np*i, pc + np*i, dpcds + np*np*i);
|
||||
}
|
||||
} else {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
funcForCell(cells[i]).evalPc(s + np*i, pc + np*i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] cells Array of n cell indices.
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
|
||||
void SaturationPropsFromDeck::satRange(const int n,
|
||||
const int* cells,
|
||||
double* smin,
|
||||
double* smax) const
|
||||
{
|
||||
ASSERT (cells != 0);
|
||||
|
||||
const int np = phase_usage_.num_phases;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
for (int p = 0; p < np; ++p) {
|
||||
smin[np*i + p] = funcForCell(cells[i]).smin_[p];
|
||||
smax[np*i + p] = funcForCell(cells[i]).smax_[p];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Map the cell number to the correct function set.
|
||||
const SaturationPropsFromDeck::SatFuncSet&
|
||||
SaturationPropsFromDeck::funcForCell(const int cell) const
|
||||
{
|
||||
return cell_to_func_.empty() ? satfuncset_[0] : satfuncset_[cell_to_func_[cell]];
|
||||
}
|
||||
|
||||
|
||||
|
||||
// ----------- Methods of SatFuncSet below -----------
|
||||
|
||||
|
||||
void SaturationPropsFromDeck::SatFuncSet::init(const EclipseGridParser& deck,
|
||||
const int table_num,
|
||||
const PhaseUsage phase_usg)
|
||||
{
|
||||
phase_usage = phase_usg;
|
||||
const int samples = 200;
|
||||
double swco = 0.0;
|
||||
double swmax = 1.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
|
||||
const std::vector<double>& sw = swof_table[table_num][0];
|
||||
const std::vector<double>& krw = swof_table[table_num][1];
|
||||
const std::vector<double>& krow = swof_table[table_num][2];
|
||||
const std::vector<double>& pcow = swof_table[table_num][3];
|
||||
buildUniformMonotoneTable(sw, krw, samples, krw_);
|
||||
buildUniformMonotoneTable(sw, krow, samples, krow_);
|
||||
buildUniformMonotoneTable(sw, pcow, samples, pcow_);
|
||||
krocw_ = krow[0]; // At connate water -> ecl. SWOF
|
||||
swco = sw[0];
|
||||
smin_[phase_usage.phase_pos[Aqua]] = sw[0];
|
||||
swmax = sw.back();
|
||||
smax_[phase_usage.phase_pos[Aqua]] = sw.back();
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
|
||||
const std::vector<double>& sg = sgof_table[table_num][0];
|
||||
const std::vector<double>& krg = sgof_table[table_num][1];
|
||||
const std::vector<double>& krog = sgof_table[table_num][2];
|
||||
const std::vector<double>& pcog = sgof_table[table_num][3];
|
||||
buildUniformMonotoneTable(sg, krg, samples, krg_);
|
||||
buildUniformMonotoneTable(sg, krog, samples, krog_);
|
||||
buildUniformMonotoneTable(sg, pcog, samples, pcog_);
|
||||
smin_[phase_usage.phase_pos[Vapour]] = sg[0];
|
||||
if (std::fabs(sg.back() + swco - 1.0) > 1e-3) {
|
||||
THROW("Gas maximum saturation in SGOF table = " << sg.back() <<
|
||||
", should equal (1.0 - connate water sat) = " << (1.0 - swco));
|
||||
}
|
||||
smax_[phase_usage.phase_pos[Vapour]] = sg.back();
|
||||
}
|
||||
// These only consider water min/max sats. Consider gas sats?
|
||||
smin_[phase_usage.phase_pos[Liquid]] = 1.0 - swmax;
|
||||
smax_[phase_usage.phase_pos[Liquid]] = 1.0 - swco;
|
||||
}
|
||||
|
||||
|
||||
void SaturationPropsFromDeck::SatFuncSet::evalKr(const double* s, double* kr) const
|
||||
{
|
||||
if (phase_usage.num_phases == 3) {
|
||||
// Stone-II relative permeability model.
|
||||
double sw = s[Aqua];
|
||||
double sg = s[Vapour];
|
||||
double krw = krw_(sw);
|
||||
double krg = krg_(sg);
|
||||
double krow = krow_(sw + sg); // = 1 - so
|
||||
double krog = krog_(sg); // = 1 - so - sw
|
||||
double krocw = krocw_;
|
||||
kr[Aqua] = krw;
|
||||
kr[Vapour] = krg;
|
||||
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
|
||||
if (kr[Liquid] < 0.0) {
|
||||
kr[Liquid] = 0.0;
|
||||
}
|
||||
return;
|
||||
}
|
||||
// We have a two-phase situation. We know that oil is active.
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int wpos = phase_usage.phase_pos[Aqua];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sw = s[wpos];
|
||||
double krw = krw_(sw);
|
||||
double krow = krow_(sw);
|
||||
kr[wpos] = krw;
|
||||
kr[opos] = krow;
|
||||
} else {
|
||||
ASSERT(phase_usage.phase_used[Vapour]);
|
||||
int gpos = phase_usage.phase_pos[Vapour];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sg = s[gpos];
|
||||
double krg = krg_(sg);
|
||||
double krog = krog_(sg);
|
||||
kr[gpos] = krg;
|
||||
kr[opos] = krog;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SaturationPropsFromDeck::SatFuncSet::evalKrDeriv(const double* s, double* kr, double* dkrds) const
|
||||
{
|
||||
const int np = phase_usage.num_phases;
|
||||
std::fill(dkrds, dkrds + np*np, 0.0);
|
||||
|
||||
if (np == 3) {
|
||||
// Stone-II relative permeability model.
|
||||
double sw = s[Aqua];
|
||||
double sg = s[Vapour];
|
||||
double krw = krw_(sw);
|
||||
double dkrww = krw_.derivative(sw);
|
||||
double krg = krg_(sg);
|
||||
double dkrgg = krg_.derivative(sg);
|
||||
double krow = krow_(sw + sg);
|
||||
double dkrow = krow_.derivative(sw + sg);
|
||||
double krog = krog_(sg);
|
||||
double dkrog = krog_.derivative(sg);
|
||||
double krocw = krocw_;
|
||||
kr[Aqua] = krw;
|
||||
kr[Vapour] = krg;
|
||||
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
|
||||
if (kr[Liquid] < 0.0) {
|
||||
kr[Liquid] = 0.0;
|
||||
}
|
||||
dkrds[Aqua + Aqua*np] = dkrww;
|
||||
dkrds[Vapour + Vapour*np] = dkrgg;
|
||||
dkrds[Liquid + Aqua*np] = krocw*((dkrow/krocw + dkrww)*(krog/krocw + krg) - dkrww);
|
||||
dkrds[Liquid + Vapour*np] = krocw*((krow/krocw + krw)*(dkrog/krocw + dkrgg) - dkrgg)
|
||||
+ krocw*((dkrow/krocw + krw)*(krog/krocw + krg) - dkrgg);
|
||||
return;
|
||||
}
|
||||
// We have a two-phase situation. We know that oil is active.
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int wpos = phase_usage.phase_pos[Aqua];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sw = s[wpos];
|
||||
double krw = krw_(sw);
|
||||
double dkrww = krw_.derivative(sw);
|
||||
double krow = krow_(sw);
|
||||
double dkrow = krow_.derivative(sw);
|
||||
kr[wpos] = krw;
|
||||
kr[opos] = krow;
|
||||
dkrds[wpos + wpos*np] = dkrww;
|
||||
dkrds[opos + wpos*np] = dkrow; // Row opos, column wpos, fortran order.
|
||||
} else {
|
||||
ASSERT(phase_usage.phase_used[Vapour]);
|
||||
int gpos = phase_usage.phase_pos[Vapour];
|
||||
int opos = phase_usage.phase_pos[Liquid];
|
||||
double sg = s[gpos];
|
||||
double krg = krg_(sg);
|
||||
double dkrgg = krg_.derivative(sg);
|
||||
double krog = krog_(sg);
|
||||
double dkrog = krog_.derivative(sg);
|
||||
kr[gpos] = krg;
|
||||
kr[opos] = krog;
|
||||
dkrds[gpos + gpos*np] = dkrgg;
|
||||
dkrds[opos + gpos*np] = dkrog;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void SaturationPropsFromDeck::SatFuncSet::evalPc(const double* s, double* pc) const
|
||||
{
|
||||
pc[phase_usage.phase_pos[Liquid]] = 0.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int pos = phase_usage.phase_pos[Aqua];
|
||||
pc[pos] = pcow_(s[pos]);
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
int pos = phase_usage.phase_pos[Vapour];
|
||||
pc[pos] = pcog_(s[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
void SaturationPropsFromDeck::SatFuncSet::evalPcDeriv(const double* s, double* pc, double* dpcds) const
|
||||
{
|
||||
// The problem of determining three-phase capillary pressures
|
||||
// is very hard experimentally, usually one extends two-phase
|
||||
// data (as for relative permeability).
|
||||
// In our approach the derivative matrix is quite sparse, only
|
||||
// the diagonal elements corresponding to non-oil phases are
|
||||
// (potentially) nonzero.
|
||||
const int np = phase_usage.num_phases;
|
||||
std::fill(dpcds, dpcds + np*np, 0.0);
|
||||
pc[phase_usage.phase_pos[Liquid]] = 0.0;
|
||||
if (phase_usage.phase_used[Aqua]) {
|
||||
int pos = phase_usage.phase_pos[Aqua];
|
||||
pc[pos] = pcow_(s[pos]);
|
||||
dpcds[np*pos + pos] = pcow_.derivative(s[pos]);
|
||||
}
|
||||
if (phase_usage.phase_used[Vapour]) {
|
||||
int pos = phase_usage.phase_pos[Vapour];
|
||||
pc[pos] = pcog_(s[pos]);
|
||||
dpcds[np*pos + pos] = pcog_.derivative(s[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// This file should be removed in the future.
|
||||
// Holding off until refactoring of SaturationPropsFromDeck class is done.
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
|
@ -20,24 +20,44 @@
|
||||
#ifndef OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
|
||||
#define OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
|
||||
|
||||
#include <opm/core/fluid/SaturationPropsInterface.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <opm/core/eclipse/EclipseGridParser.hpp>
|
||||
#include <opm/core/utility/UniformTableLinear.hpp>
|
||||
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
|
||||
#include <opm/core/fluid/SatFuncStone2.hpp>
|
||||
#include <opm/core/fluid/SatFuncSimple.hpp>
|
||||
#include <vector>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class SaturationPropsFromDeck : public BlackoilPhases
|
||||
|
||||
|
||||
/// Interface to saturation functions from deck.
|
||||
/// Possible values for template argument (for now):
|
||||
/// SatFuncSetStone2Nonuniform,
|
||||
/// SatFuncSetStone2Uniform.
|
||||
/// SatFuncSetSimpleNonuniform,
|
||||
/// SatFuncSetSimpleUniform.
|
||||
template <class SatFuncSet>
|
||||
class SaturationPropsFromDeck : public SaturationPropsInterface
|
||||
{
|
||||
public:
|
||||
/// Default constructor.
|
||||
SaturationPropsFromDeck();
|
||||
|
||||
/// Initialize from deck.
|
||||
/// global_cell maps from grid cells to their original logical Cartesian indices.
|
||||
/// Initialize from deck and grid.
|
||||
/// \param[in] deck Deck input parser
|
||||
/// \param[in] grid Grid to which property object applies, needed for the
|
||||
/// mapping from cell indices (typically from a processed grid)
|
||||
/// to logical cartesian indices consistent with the deck.
|
||||
/// \param[in] samples Number of uniform sample points for saturation tables.
|
||||
/// NOTE: samples will only be used with the SatFuncSetUniform template argument.
|
||||
void init(const EclipseGridParser& deck,
|
||||
const std::vector<int>& global_cell);
|
||||
const UnstructuredGrid& grid,
|
||||
const int samples);
|
||||
|
||||
/// \return P, the number of phases.
|
||||
int numPhases() const;
|
||||
@ -72,41 +92,23 @@ namespace Opm
|
||||
double* pc,
|
||||
double* dpcds) const;
|
||||
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
|
||||
void satRange(const int n,
|
||||
void satRange(const int n,
|
||||
const int* cells,
|
||||
double* smin,
|
||||
double* smax) const;
|
||||
double* smin,
|
||||
double* smax) const;
|
||||
|
||||
private:
|
||||
PhaseUsage phase_usage_;
|
||||
class SatFuncSet
|
||||
{
|
||||
public:
|
||||
void init(const EclipseGridParser& deck, const int table_num, PhaseUsage phase_usg);
|
||||
void evalKr(const double* s, double* kr) const;
|
||||
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
|
||||
void evalPc(const double* s, double* pc) const;
|
||||
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
|
||||
double smin_[PhaseUsage::MaxNumPhases];
|
||||
double smax_[PhaseUsage::MaxNumPhases];
|
||||
private:
|
||||
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
|
||||
UniformTableLinear<double> krw_;
|
||||
UniformTableLinear<double> krow_;
|
||||
UniformTableLinear<double> pcow_;
|
||||
UniformTableLinear<double> krg_;
|
||||
UniformTableLinear<double> krog_;
|
||||
UniformTableLinear<double> pcog_;
|
||||
double krocw_; // = krow_(s_wc)
|
||||
};
|
||||
std::vector<SatFuncSet> satfuncset_;
|
||||
std::vector<int> cell_to_func_; // = SATNUM - 1
|
||||
|
||||
const SatFuncSet& funcForCell(const int cell) const;
|
||||
typedef SatFuncSet Funcs;
|
||||
|
||||
const Funcs& funcForCell(const int cell) const;
|
||||
};
|
||||
|
||||
|
||||
@ -114,6 +116,7 @@ namespace Opm
|
||||
} // namespace Opm
|
||||
|
||||
|
||||
#include <opm/core/fluid/SaturationPropsFromDeck_impl.hpp>
|
||||
|
||||
|
||||
#endif // OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
|
||||
|
221
opm/core/fluid/SaturationPropsFromDeck_impl.hpp
Normal file
221
opm/core/fluid/SaturationPropsFromDeck_impl.hpp
Normal file
@ -0,0 +1,221 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
|
||||
#define OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
|
||||
|
||||
|
||||
#include <opm/core/utility/UniformTableLinear.hpp>
|
||||
#include <opm/core/utility/NonuniformTableLinear.hpp>
|
||||
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
|
||||
// ----------- Methods of SaturationPropsFromDeck ---------
|
||||
|
||||
|
||||
/// Default constructor.
|
||||
template <class SatFuncSet>
|
||||
SaturationPropsFromDeck<SatFuncSet>::SaturationPropsFromDeck()
|
||||
{
|
||||
}
|
||||
|
||||
/// Initialize from deck.
|
||||
template <class SatFuncSet>
|
||||
void SaturationPropsFromDeck<SatFuncSet>::init(const EclipseGridParser& deck,
|
||||
const UnstructuredGrid& grid,
|
||||
const int samples)
|
||||
{
|
||||
phase_usage_ = phaseUsageFromDeck(deck);
|
||||
|
||||
// Extract input data.
|
||||
// Oil phase should be active.
|
||||
if (!phase_usage_.phase_used[Liquid]) {
|
||||
THROW("SaturationPropsFromDeck::init() -- oil phase must be active.");
|
||||
}
|
||||
|
||||
// Obtain SATNUM, if it exists, and create cell_to_func_.
|
||||
// Otherwise, let the cell_to_func_ mapping be just empty.
|
||||
int satfuncs_expected = 1;
|
||||
if (deck.hasField("SATNUM")) {
|
||||
const std::vector<int>& satnum = deck.getIntegerValue("SATNUM");
|
||||
satfuncs_expected = *std::max_element(satnum.begin(), satnum.end());
|
||||
const int num_cells = grid.number_of_cells;
|
||||
cell_to_func_.resize(num_cells);
|
||||
const int* gc = grid.global_cell;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
const int deck_pos = (gc == NULL) ? cell : gc[cell];
|
||||
cell_to_func_[cell] = satnum[deck_pos] - 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Find number of tables, check for consistency.
|
||||
enum { Uninitialized = -1 };
|
||||
int num_tables = Uninitialized;
|
||||
if (phase_usage_.phase_used[Aqua]) {
|
||||
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
|
||||
num_tables = swof_table.size();
|
||||
if (num_tables < satfuncs_expected) {
|
||||
THROW("Found " << num_tables << " SWOF tables, SATNUM specifies at least " << satfuncs_expected);
|
||||
}
|
||||
}
|
||||
if (phase_usage_.phase_used[Vapour]) {
|
||||
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
|
||||
int num_sgof_tables = sgof_table.size();
|
||||
if (num_sgof_tables < satfuncs_expected) {
|
||||
THROW("Found " << num_tables << " SGOF tables, SATNUM specifies at least " << satfuncs_expected);
|
||||
}
|
||||
if (num_tables == Uninitialized) {
|
||||
num_tables = num_sgof_tables;
|
||||
} else if (num_tables != num_sgof_tables) {
|
||||
THROW("Inconsistent number of tables in SWOF and SGOF.");
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize tables.
|
||||
satfuncset_.resize(num_tables);
|
||||
for (int table = 0; table < num_tables; ++table) {
|
||||
satfuncset_[table].init(deck, table, phase_usage_, samples);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// \return P, the number of phases.
|
||||
template <class SatFuncSet>
|
||||
int SaturationPropsFromDeck<SatFuncSet>::numPhases() const
|
||||
{
|
||||
return phase_usage_.num_phases;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Relative permeability.
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] s Array of nP saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the s values.
|
||||
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
|
||||
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
|
||||
/// array must be valid before calling.
|
||||
/// The P^2 derivative matrix is
|
||||
/// m_{ij} = \frac{dkr_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||||
template <class SatFuncSet>
|
||||
void SaturationPropsFromDeck<SatFuncSet>::relperm(const int n,
|
||||
const double* s,
|
||||
const int* cells,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
{
|
||||
ASSERT (cells != 0);
|
||||
|
||||
const int np = phase_usage_.num_phases;
|
||||
if (dkrds) {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
funcForCell(cells[i]).evalKrDeriv(s + np*i, kr + np*i, dkrds + np*np*i);
|
||||
}
|
||||
} else {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
funcForCell(cells[i]).evalKr(s + np*i, kr + np*i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Capillary pressure.
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] s Array of nP saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the s values.
|
||||
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
|
||||
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
|
||||
/// array must be valid before calling.
|
||||
/// The P^2 derivative matrix is
|
||||
/// m_{ij} = \frac{dpc_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||||
template <class SatFuncSet>
|
||||
void SaturationPropsFromDeck<SatFuncSet>::capPress(const int n,
|
||||
const double* s,
|
||||
const int* cells,
|
||||
double* pc,
|
||||
double* dpcds) const
|
||||
{
|
||||
ASSERT (cells != 0);
|
||||
|
||||
const int np = phase_usage_.num_phases;
|
||||
if (dpcds) {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
funcForCell(cells[i]).evalPcDeriv(s + np*i, pc + np*i, dpcds + np*np*i);
|
||||
}
|
||||
} else {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
funcForCell(cells[i]).evalPc(s + np*i, pc + np*i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] cells Array of n cell indices.
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
|
||||
template <class SatFuncSet>
|
||||
void SaturationPropsFromDeck<SatFuncSet>::satRange(const int n,
|
||||
const int* cells,
|
||||
double* smin,
|
||||
double* smax) const
|
||||
{
|
||||
ASSERT (cells != 0);
|
||||
|
||||
const int np = phase_usage_.num_phases;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
for (int p = 0; p < np; ++p) {
|
||||
smin[np*i + p] = funcForCell(cells[i]).smin_[p];
|
||||
smax[np*i + p] = funcForCell(cells[i]).smax_[p];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Map the cell number to the correct function set.
|
||||
template <class SatFuncSet>
|
||||
const typename SaturationPropsFromDeck<SatFuncSet>::Funcs&
|
||||
SaturationPropsFromDeck<SatFuncSet>::funcForCell(const int cell) const
|
||||
{
|
||||
return cell_to_func_.empty() ? satfuncset_[0] : satfuncset_[cell_to_func_[cell]];
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
|
85
opm/core/fluid/SaturationPropsInterface.hpp
Normal file
85
opm/core/fluid/SaturationPropsInterface.hpp
Normal file
@ -0,0 +1,85 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED
|
||||
#define OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED
|
||||
|
||||
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class SaturationPropsInterface : public BlackoilPhases
|
||||
{
|
||||
public:
|
||||
/// Virtual destructor.
|
||||
virtual ~SaturationPropsInterface() {};
|
||||
|
||||
/// \return P, the number of phases.
|
||||
virtual int numPhases() const = 0;
|
||||
|
||||
/// Relative permeability.
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] s Array of nP saturation values.
|
||||
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
|
||||
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
|
||||
/// array must be valid before calling.
|
||||
/// The P^2 derivative matrix is
|
||||
/// m_{ij} = \frac{dkr_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||||
virtual void relperm(const int n,
|
||||
const double* s,
|
||||
const int* cells,
|
||||
double* kr,
|
||||
double* dkrds) const = 0;
|
||||
|
||||
/// Capillary pressure.
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[in] s Array of nP saturation values.
|
||||
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
|
||||
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
|
||||
/// array must be valid before calling.
|
||||
/// The P^2 derivative matrix is
|
||||
/// m_{ij} = \frac{dpc_i}{ds^j},
|
||||
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
|
||||
virtual void capPress(const int n,
|
||||
const double* s,
|
||||
const int* cells,
|
||||
double* pc,
|
||||
double* dpcds) const = 0;
|
||||
|
||||
/// Obtain the range of allowable saturation values.
|
||||
/// \param[in] n Number of data points.
|
||||
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
|
||||
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
|
||||
virtual void satRange(const int n,
|
||||
const int* cells,
|
||||
double* smin,
|
||||
double* smax) const = 0;
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
|
||||
|
||||
#endif // OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED
|
@ -21,6 +21,7 @@
|
||||
|
||||
#include <opm/core/fluid/blackoil/BlackoilPvtProperties.hpp>
|
||||
#include <opm/core/fluid/blackoil/SinglePvtDead.hpp>
|
||||
#include <opm/core/fluid/blackoil/SinglePvtDeadSpline.hpp>
|
||||
#include <opm/core/fluid/blackoil/SinglePvtLiveOil.hpp>
|
||||
#include <opm/core/fluid/blackoil/SinglePvtLiveGas.hpp>
|
||||
#include <opm/core/fluid/blackoil/SinglePvtConstCompr.hpp>
|
||||
@ -39,18 +40,18 @@ namespace Opm
|
||||
}
|
||||
|
||||
|
||||
void BlackoilPvtProperties::init(const EclipseGridParser& deck)
|
||||
void BlackoilPvtProperties::init(const EclipseGridParser& deck, const int samples)
|
||||
{
|
||||
typedef std::vector<std::vector<std::vector<double> > > table_t;
|
||||
// If we need multiple regions, this class and the SinglePvt* classes must change.
|
||||
region_number_ = 0;
|
||||
region_number_ = 0;
|
||||
|
||||
phase_usage_ = phaseUsageFromDeck(deck);
|
||||
|
||||
// Surface densities. Accounting for different orders in eclipse and our code.
|
||||
if (deck.hasField("DENSITY")) {
|
||||
const std::vector<double>& d = deck.getDENSITY().densities_[region_number_];
|
||||
enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 };
|
||||
// Surface densities. Accounting for different orders in eclipse and our code.
|
||||
if (deck.hasField("DENSITY")) {
|
||||
const std::vector<double>& d = deck.getDENSITY().densities_[region_number_];
|
||||
enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 };
|
||||
if (phase_usage_.phase_used[Aqua]) {
|
||||
densities_[phase_usage_.phase_pos[Aqua]] = d[ECL_water];
|
||||
}
|
||||
@ -60,9 +61,9 @@ namespace Opm
|
||||
if (phase_usage_.phase_used[Liquid]) {
|
||||
densities_[phase_usage_.phase_pos[Liquid]] = d[ECL_oil];
|
||||
}
|
||||
} else {
|
||||
THROW("Input is missing DENSITY\n");
|
||||
}
|
||||
} else {
|
||||
THROW("Input is missing DENSITY\n");
|
||||
}
|
||||
|
||||
// Set the properties.
|
||||
props_.resize(phase_usage_.num_phases);
|
||||
@ -78,7 +79,11 @@ namespace Opm
|
||||
// Oil PVT
|
||||
if (phase_usage_.phase_used[Liquid]) {
|
||||
if (deck.hasField("PVDO")) {
|
||||
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDead(deck.getPVDO().pvdo_));
|
||||
if (samples > 0) {
|
||||
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDeadSpline(deck.getPVDO().pvdo_, samples));
|
||||
} else {
|
||||
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDead(deck.getPVDO().pvdo_));
|
||||
}
|
||||
} else if (deck.hasField("PVTO")) {
|
||||
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtLiveOil(deck.getPVTO().pvto_));
|
||||
} else if (deck.hasField("PVCDO")) {
|
||||
@ -87,10 +92,14 @@ namespace Opm
|
||||
THROW("Input is missing PVDO or PVTO\n");
|
||||
}
|
||||
}
|
||||
// Gas PVT
|
||||
// Gas PVT
|
||||
if (phase_usage_.phase_used[Vapour]) {
|
||||
if (deck.hasField("PVDG")) {
|
||||
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDead(deck.getPVDG().pvdg_));
|
||||
if (samples > 0) {
|
||||
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDeadSpline(deck.getPVDG().pvdg_, samples));
|
||||
} else {
|
||||
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDead(deck.getPVDG().pvdg_));
|
||||
}
|
||||
} else if (deck.hasField("PVTG")) {
|
||||
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtLiveGas(deck.getPVTG().pvtg_));
|
||||
} else {
|
||||
|
@ -47,7 +47,13 @@ namespace Opm
|
||||
BlackoilPvtProperties();
|
||||
|
||||
/// Initialize from deck.
|
||||
void init(const EclipseGridParser& deck);
|
||||
/// \param deck An input deck.
|
||||
/// \param samples If greater than zero, indicates the number of
|
||||
/// uniform samples to be taken from monotone spline
|
||||
/// curves interpolating the fluid data.
|
||||
/// Otherwise, interpolate linearly in the original
|
||||
/// data without fitting a spline.
|
||||
void init(const EclipseGridParser& deck, const int samples);
|
||||
|
||||
/// Number of active phases.
|
||||
int numPhases() const;
|
||||
@ -64,7 +70,7 @@ namespace Opm
|
||||
|
||||
/// Densities of stock components at surface conditions.
|
||||
/// \return Array of size numPhases().
|
||||
const double* surfaceDensities() const;
|
||||
const double* surfaceDensities() const;
|
||||
|
||||
/// Viscosity as a function of p and z.
|
||||
void mu(const int n,
|
||||
@ -105,11 +111,11 @@ namespace Opm
|
||||
|
||||
PhaseUsage phase_usage_;
|
||||
|
||||
int region_number_;
|
||||
int region_number_;
|
||||
|
||||
std::vector<std::tr1::shared_ptr<SinglePvtInterface> > props_;
|
||||
|
||||
double densities_[MaxNumPhases];
|
||||
double densities_[MaxNumPhases];
|
||||
mutable std::vector<double> data1_;
|
||||
mutable std::vector<double> data2_;
|
||||
};
|
||||
|
@ -40,12 +40,12 @@ namespace Opm
|
||||
public:
|
||||
typedef std::vector<std::vector<double> > table_t;
|
||||
|
||||
SinglePvtConstCompr(const table_t& pvtw)
|
||||
SinglePvtConstCompr(const table_t& pvtw)
|
||||
{
|
||||
const int region_number = 0;
|
||||
if (pvtw.size() != 1) {
|
||||
THROW("More than one PVD-region");
|
||||
}
|
||||
const int region_number = 0;
|
||||
if (pvtw.size() != 1) {
|
||||
THROW("More than one PVD-region");
|
||||
}
|
||||
ref_press_ = pvtw[region_number][0];
|
||||
ref_B_ = pvtw[region_number][1];
|
||||
comp_ = pvtw[region_number][2];
|
||||
@ -53,7 +53,7 @@ namespace Opm
|
||||
visc_comp_ = pvtw[region_number][4];
|
||||
}
|
||||
|
||||
SinglePvtConstCompr(double visc)
|
||||
SinglePvtConstCompr(double visc)
|
||||
: ref_press_(0.0),
|
||||
ref_B_(1.0),
|
||||
comp_(0.0),
|
||||
@ -62,7 +62,7 @@ namespace Opm
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~SinglePvtConstCompr()
|
||||
virtual ~SinglePvtConstCompr()
|
||||
{
|
||||
}
|
||||
|
||||
@ -106,13 +106,16 @@ namespace Opm
|
||||
double* output_B,
|
||||
double* output_dBdp) const
|
||||
{
|
||||
B(n, p, 0, output_B);
|
||||
if (comp_) {
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
output_dBdp[i] = -comp_*output_B[i];
|
||||
double x = comp_*(p[i] - ref_press_);
|
||||
double d = (1.0 + x + 0.5*x*x);
|
||||
output_B[i] = ref_B_/d;
|
||||
output_dBdp[i] = (-ref_B_/(d*d))*(1 + x) * comp_;
|
||||
}
|
||||
} else {
|
||||
std::fill(output_B, output_B + n, ref_B_);
|
||||
std::fill(output_dBdp, output_dBdp + n, 0.0);
|
||||
}
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright 2010, 2011, 2012 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
@ -17,8 +17,8 @@
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include <opm/core/fluid/blackoil/SinglePvtDead.hpp>
|
||||
#include <opm/core/utility/buildUniformMonotoneTable.hpp>
|
||||
#include <algorithm>
|
||||
|
||||
// Extra includes for debug dumping of tables.
|
||||
@ -32,28 +32,26 @@ namespace Opm
|
||||
//------------------------------------------------------------------------
|
||||
// Member functions
|
||||
//-------------------------------------------------------------------------
|
||||
|
||||
/// Constructor
|
||||
SinglePvtDead::SinglePvtDead(const table_t& pvd_table)
|
||||
{
|
||||
const int region_number = 0;
|
||||
if (pvd_table.size() != 1) {
|
||||
THROW("More than one PVT-region");
|
||||
}
|
||||
const int region_number = 0;
|
||||
if (pvd_table.size() != 1) {
|
||||
THROW("More than one PVT-region");
|
||||
}
|
||||
|
||||
// Copy data
|
||||
const int sz = pvd_table[region_number][0].size();
|
||||
// Copy data
|
||||
const int sz = pvd_table[region_number][0].size();
|
||||
std::vector<double> press(sz);
|
||||
std::vector<double> B_inv(sz);
|
||||
std::vector<double> visc(sz);
|
||||
for (int i = 0; i < sz; ++i) {
|
||||
for (int i = 0; i < sz; ++i) {
|
||||
press[i] = pvd_table[region_number][0][i];
|
||||
B_inv[i] = 1.0 / pvd_table[region_number][1][i];
|
||||
visc[i] = pvd_table[region_number][2][i];
|
||||
}
|
||||
int samples = 1025;
|
||||
buildUniformMonotoneTable(press, B_inv, samples, one_over_B_);
|
||||
buildUniformMonotoneTable(press, visc, samples, viscosity_);
|
||||
}
|
||||
one_over_B_ = NonuniformTableLinear<double>(press, B_inv);
|
||||
viscosity_ = NonuniformTableLinear<double>(press, visc);
|
||||
|
||||
// Dumping the created tables.
|
||||
// static int count = 0;
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright 2010, 2011, 2012 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
@ -22,7 +22,7 @@
|
||||
|
||||
|
||||
#include <opm/core/fluid/blackoil/SinglePvtInterface.hpp>
|
||||
#include <opm/core/utility/UniformTableLinear.hpp>
|
||||
#include <opm/core/utility/NonuniformTableLinear.hpp>
|
||||
#include <vector>
|
||||
|
||||
namespace Opm
|
||||
@ -36,10 +36,9 @@ namespace Opm
|
||||
class SinglePvtDead : public SinglePvtInterface
|
||||
{
|
||||
public:
|
||||
typedef std::vector<std::vector<std::vector<double> > > table_t;
|
||||
|
||||
SinglePvtDead(const table_t& pvd_table);
|
||||
virtual ~SinglePvtDead();
|
||||
typedef std::vector<std::vector<std::vector<double> > > table_t;
|
||||
SinglePvtDead(const table_t& pvd_table);
|
||||
virtual ~SinglePvtDead();
|
||||
|
||||
/// Viscosity as a function of p and z.
|
||||
virtual void mu(const int n,
|
||||
@ -73,12 +72,12 @@ namespace Opm
|
||||
double* output_R,
|
||||
double* output_dRdp) const;
|
||||
private:
|
||||
// PVT properties of dry gas or dead oil
|
||||
UniformTableLinear<double> one_over_B_;
|
||||
UniformTableLinear<double> viscosity_;
|
||||
// PVT properties of dry gas or dead oil
|
||||
NonuniformTableLinear<double> one_over_B_;
|
||||
NonuniformTableLinear<double> viscosity_;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // OPM_SINGLEPVTDEAD_HEADER_INCLUDED
|
||||
|
||||
#endif // OPM_SINGLEPVTDEAD_HEADER_INCLUDED
|
||||
|
127
opm/core/fluid/blackoil/SinglePvtDeadSpline.cpp
Normal file
127
opm/core/fluid/blackoil/SinglePvtDeadSpline.cpp
Normal file
@ -0,0 +1,127 @@
|
||||
/*
|
||||
Copyright 2010, 2011, 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <opm/core/fluid/blackoil/SinglePvtDeadSpline.hpp>
|
||||
#include <opm/core/utility/buildUniformMonotoneTable.hpp>
|
||||
#include <algorithm>
|
||||
|
||||
// Extra includes for debug dumping of tables.
|
||||
// #include <boost/lexical_cast.hpp>
|
||||
// #include <string>
|
||||
// #include <fstream>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
//------------------------------------------------------------------------
|
||||
// Member functions
|
||||
//-------------------------------------------------------------------------
|
||||
|
||||
/// Constructor
|
||||
SinglePvtDeadSpline::SinglePvtDeadSpline(const table_t& pvd_table, const int samples)
|
||||
{
|
||||
const int region_number = 0;
|
||||
if (pvd_table.size() != 1) {
|
||||
THROW("More than one PVT-region");
|
||||
}
|
||||
|
||||
// Copy data
|
||||
const int sz = pvd_table[region_number][0].size();
|
||||
std::vector<double> press(sz);
|
||||
std::vector<double> B_inv(sz);
|
||||
std::vector<double> visc(sz);
|
||||
for (int i = 0; i < sz; ++i) {
|
||||
press[i] = pvd_table[region_number][0][i];
|
||||
B_inv[i] = 1.0 / pvd_table[region_number][1][i];
|
||||
visc[i] = pvd_table[region_number][2][i];
|
||||
}
|
||||
buildUniformMonotoneTable(press, B_inv, samples, one_over_B_);
|
||||
buildUniformMonotoneTable(press, visc, samples, viscosity_);
|
||||
|
||||
// Dumping the created tables.
|
||||
// static int count = 0;
|
||||
// std::ofstream os((std::string("dump-") + boost::lexical_cast<std::string>(count++)).c_str());
|
||||
// os.precision(15);
|
||||
// os << "1/B\n\n" << one_over_B_
|
||||
// << "\n\nvisc\n\n" << viscosity_ << std::endl;
|
||||
}
|
||||
|
||||
// Destructor
|
||||
SinglePvtDeadSpline::~SinglePvtDeadSpline()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
void SinglePvtDeadSpline::mu(const int n,
|
||||
const double* p,
|
||||
const double* /*z*/,
|
||||
double* output_mu) const
|
||||
{
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
output_mu[i] = viscosity_(p[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void SinglePvtDeadSpline::B(const int n,
|
||||
const double* p,
|
||||
const double* /*z*/,
|
||||
double* output_B) const
|
||||
{
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
output_B[i] = 1.0/one_over_B_(p[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void SinglePvtDeadSpline::dBdp(const int n,
|
||||
const double* p,
|
||||
const double* /*z*/,
|
||||
double* output_B,
|
||||
double* output_dBdp) const
|
||||
{
|
||||
B(n, p, 0, output_B);
|
||||
// #pragma omp parallel for
|
||||
for (int i = 0; i < n; ++i) {
|
||||
double Bg = output_B[i];
|
||||
output_dBdp[i] = -Bg*Bg*one_over_B_.derivative(p[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SinglePvtDeadSpline::R(const int n,
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_R) const
|
||||
{
|
||||
std::fill(output_R, output_R + n, 0.0);
|
||||
}
|
||||
|
||||
void SinglePvtDeadSpline::dRdp(const int n,
|
||||
const double* /*p*/,
|
||||
const double* /*z*/,
|
||||
double* output_R,
|
||||
double* output_dRdp) const
|
||||
{
|
||||
std::fill(output_R, output_R + n, 0.0);
|
||||
std::fill(output_dRdp, output_dRdp + n, 0.0);
|
||||
}
|
||||
|
||||
}
|
84
opm/core/fluid/blackoil/SinglePvtDeadSpline.hpp
Normal file
84
opm/core/fluid/blackoil/SinglePvtDeadSpline.hpp
Normal file
@ -0,0 +1,84 @@
|
||||
/*
|
||||
Copyright 2010, 2011, 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_SINGLEPVTDEADSPLINE_HEADER_INCLUDED
|
||||
#define OPM_SINGLEPVTDEADSPLINE_HEADER_INCLUDED
|
||||
|
||||
|
||||
#include <opm/core/fluid/blackoil/SinglePvtInterface.hpp>
|
||||
#include <opm/core/utility/UniformTableLinear.hpp>
|
||||
#include <vector>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/// Class for immiscible dead oil and dry gas.
|
||||
/// For all the virtual methods, the following apply: p and z
|
||||
/// are expected to be of size n and n*num_phases, respectively.
|
||||
/// Output arrays shall be of size n, and must be valid before
|
||||
/// calling the method.
|
||||
class SinglePvtDeadSpline : public SinglePvtInterface
|
||||
{
|
||||
public:
|
||||
typedef std::vector<std::vector<std::vector<double> > > table_t;
|
||||
|
||||
SinglePvtDeadSpline(const table_t& pvd_table, const int samples);
|
||||
virtual ~SinglePvtDeadSpline();
|
||||
|
||||
/// Viscosity as a function of p and z.
|
||||
virtual void mu(const int n,
|
||||
const double* p,
|
||||
const double* z,
|
||||
double* output_mu) const;
|
||||
|
||||
/// Formation volume factor as a function of p and z.
|
||||
virtual void B(const int n,
|
||||
const double* p,
|
||||
const double* z,
|
||||
double* output_B) const;
|
||||
|
||||
/// Formation volume factor and p-derivative as functions of p and z.
|
||||
virtual void dBdp(const int n,
|
||||
const double* p,
|
||||
const double* z,
|
||||
double* output_B,
|
||||
double* output_dBdp) const;
|
||||
|
||||
/// Solution factor as a function of p and z.
|
||||
virtual void R(const int n,
|
||||
const double* p,
|
||||
const double* z,
|
||||
double* output_R) const;
|
||||
|
||||
/// Solution factor and p-derivative as functions of p and z.
|
||||
virtual void dRdp(const int n,
|
||||
const double* p,
|
||||
const double* z,
|
||||
double* output_R,
|
||||
double* output_dRdp) const;
|
||||
private:
|
||||
// PVT properties of dry gas or dead oil
|
||||
UniformTableLinear<double> one_over_B_;
|
||||
UniformTableLinear<double> viscosity_;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // OPM_SINGLEPVTDEADSPLINE_HEADER_INCLUDED
|
||||
|
@ -32,7 +32,7 @@ namespace Opm
|
||||
public:
|
||||
SinglePvtInterface();
|
||||
|
||||
virtual ~SinglePvtInterface();
|
||||
virtual ~SinglePvtInterface();
|
||||
|
||||
/// \param[in] num_phases The number of active phases.
|
||||
/// \param[in] phase_pos Array of BlackpoilPhases::MaxNumPhases
|
||||
|
@ -1,13 +1,13 @@
|
||||
//===========================================================================
|
||||
//
|
||||
// File: MiscibilityLiveGas.cpp
|
||||
//
|
||||
// Created: Wed Feb 10 09:21:53 2010
|
||||
//
|
||||
//
|
||||
// File: MiscibilityLiveGas.cpp
|
||||
//
|
||||
// Created: Wed Feb 10 09:21:53 2010
|
||||
//
|
||||
// Author: Bjørn Spjelkavik <bsp@sintef.no>
|
||||
//
|
||||
//
|
||||
// Revision: $Id$
|
||||
//
|
||||
//
|
||||
//===========================================================================
|
||||
/*
|
||||
Copyright 2010 SINTEF ICT, Applied Mathematics.
|
||||
@ -47,37 +47,37 @@ namespace Opm
|
||||
/// Constructor
|
||||
SinglePvtLiveGas::SinglePvtLiveGas(const table_t& pvtg)
|
||||
{
|
||||
// GAS, PVTG
|
||||
const int region_number = 0;
|
||||
if (pvtg.size() != 1) {
|
||||
THROW("More than one PVD-region");
|
||||
}
|
||||
saturated_gas_table_.resize(4);
|
||||
const int sz = pvtg[region_number].size();
|
||||
for (int k=0; k<4; ++k) {
|
||||
saturated_gas_table_[k].resize(sz);
|
||||
}
|
||||
// GAS, PVTG
|
||||
const int region_number = 0;
|
||||
if (pvtg.size() != 1) {
|
||||
THROW("More than one PVD-region");
|
||||
}
|
||||
saturated_gas_table_.resize(4);
|
||||
const int sz = pvtg[region_number].size();
|
||||
for (int k=0; k<4; ++k) {
|
||||
saturated_gas_table_[k].resize(sz);
|
||||
}
|
||||
|
||||
for (int i=0; i<sz; ++i) {
|
||||
saturated_gas_table_[0][i] = pvtg[region_number][i][0]; // p
|
||||
saturated_gas_table_[1][i] = pvtg[region_number][i][2]; // Bg
|
||||
saturated_gas_table_[2][i] = pvtg[region_number][i][3]; // mu_g
|
||||
saturated_gas_table_[3][i] = pvtg[region_number][i][1]; // Rv
|
||||
}
|
||||
for (int i=0; i<sz; ++i) {
|
||||
saturated_gas_table_[0][i] = pvtg[region_number][i][0]; // p
|
||||
saturated_gas_table_[1][i] = pvtg[region_number][i][2]; // Bg
|
||||
saturated_gas_table_[2][i] = pvtg[region_number][i][3]; // mu_g
|
||||
saturated_gas_table_[3][i] = pvtg[region_number][i][1]; // Rv
|
||||
}
|
||||
|
||||
undersat_gas_tables_.resize(sz);
|
||||
for (int i=0; i<sz; ++i) {
|
||||
undersat_gas_tables_[i].resize(3);
|
||||
int tsize = (pvtg[region_number][i].size() - 1)/3;
|
||||
undersat_gas_tables_[i][0].resize(tsize);
|
||||
undersat_gas_tables_[i][1].resize(tsize);
|
||||
undersat_gas_tables_[i][2].resize(tsize);
|
||||
for (int j=0, k=0; j<tsize; ++j) {
|
||||
undersat_gas_tables_[i][0][j] = pvtg[region_number][i][++k]; // Rv
|
||||
undersat_gas_tables_[i][1][j] = pvtg[region_number][i][++k]; // Bg
|
||||
undersat_gas_tables_[i][2][j] = pvtg[region_number][i][++k]; // mu_g
|
||||
}
|
||||
}
|
||||
undersat_gas_tables_.resize(sz);
|
||||
for (int i=0; i<sz; ++i) {
|
||||
undersat_gas_tables_[i].resize(3);
|
||||
int tsize = (pvtg[region_number][i].size() - 1)/3;
|
||||
undersat_gas_tables_[i][0].resize(tsize);
|
||||
undersat_gas_tables_[i][1].resize(tsize);
|
||||
undersat_gas_tables_[i][2].resize(tsize);
|
||||
for (int j=0, k=0; j<tsize; ++j) {
|
||||
undersat_gas_tables_[i][0][j] = pvtg[region_number][i][++k]; // Rv
|
||||
undersat_gas_tables_[i][1][j] = pvtg[region_number][i][++k]; // Bg
|
||||
undersat_gas_tables_[i][2][j] = pvtg[region_number][i][++k]; // mu_g
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Destructor
|
||||
@ -184,16 +184,16 @@ namespace Opm
|
||||
// To handle no-gas case.
|
||||
return 0.0;
|
||||
}
|
||||
double satR = linearInterpolationExtrap(saturated_gas_table_[0],
|
||||
saturated_gas_table_[3], press);
|
||||
double maxR = surfvol[phase_pos_[Liquid]]/surfvol[phase_pos_[Vapour]];
|
||||
if (satR < maxR ) {
|
||||
double satR = linearInterpolationExtrap(saturated_gas_table_[0],
|
||||
saturated_gas_table_[3], press);
|
||||
double maxR = surfvol[phase_pos_[Liquid]]/surfvol[phase_pos_[Vapour]];
|
||||
if (satR < maxR ) {
|
||||
// Saturated case
|
||||
return satR;
|
||||
} else {
|
||||
return satR;
|
||||
} else {
|
||||
// Undersaturated case
|
||||
return maxR;
|
||||
}
|
||||
return maxR;
|
||||
}
|
||||
}
|
||||
|
||||
void SinglePvtLiveGas::evalRDeriv(const double press, const double* surfvol,
|
||||
@ -205,20 +205,20 @@ namespace Opm
|
||||
dRdpval = 0.0;
|
||||
return;
|
||||
}
|
||||
double satR = linearInterpolationExtrap(saturated_gas_table_[0],
|
||||
saturated_gas_table_[3], press);
|
||||
double maxR = surfvol[phase_pos_[Liquid]]/surfvol[phase_pos_[Vapour]];
|
||||
if (satR < maxR ) {
|
||||
double satR = linearInterpolationExtrap(saturated_gas_table_[0],
|
||||
saturated_gas_table_[3], press);
|
||||
double maxR = surfvol[phase_pos_[Liquid]]/surfvol[phase_pos_[Vapour]];
|
||||
if (satR < maxR ) {
|
||||
// Saturated case
|
||||
Rval = satR;
|
||||
dRdpval = linearInterpolDerivative(saturated_gas_table_[0],
|
||||
saturated_gas_table_[3],
|
||||
press);
|
||||
} else {
|
||||
dRdpval = linearInterpolDerivative(saturated_gas_table_[0],
|
||||
saturated_gas_table_[3],
|
||||
press);
|
||||
} else {
|
||||
// Undersaturated case
|
||||
Rval = maxR;
|
||||
dRdpval = 0.0;
|
||||
}
|
||||
dRdpval = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
double SinglePvtLiveGas::miscible_gas(const double press,
|
||||
@ -226,81 +226,81 @@ namespace Opm
|
||||
const int item,
|
||||
const bool deriv) const
|
||||
{
|
||||
int section;
|
||||
double Rval = linearInterpolationExtrap(saturated_gas_table_[0],
|
||||
int section;
|
||||
double Rval = linearInterpolationExtrap(saturated_gas_table_[0],
|
||||
saturated_gas_table_[3], press,
|
||||
section);
|
||||
double maxR = surfvol[phase_pos_[Liquid]]/surfvol[phase_pos_[Vapour]];
|
||||
if (deriv) {
|
||||
if (Rval < maxR ) { // Saturated case
|
||||
return linearInterpolDerivative(saturated_gas_table_[0],
|
||||
saturated_gas_table_[item],
|
||||
press);
|
||||
} else { // Undersaturated case
|
||||
int is = section;
|
||||
if (undersat_gas_tables_[is][0].size() < 2) {
|
||||
double val = (saturated_gas_table_[item][is+1]
|
||||
- saturated_gas_table_[item][is]) /
|
||||
(saturated_gas_table_[0][is+1] -
|
||||
saturated_gas_table_[0][is]);
|
||||
return val;
|
||||
}
|
||||
double val1 =
|
||||
linearInterpolationExtrap(undersat_gas_tables_[is][0],
|
||||
undersat_gas_tables_[is][item],
|
||||
maxR);
|
||||
double val2 =
|
||||
linearInterpolationExtrap(undersat_gas_tables_[is+1][0],
|
||||
undersat_gas_tables_[is+1][item],
|
||||
maxR);
|
||||
double val = (val2 - val1)/
|
||||
(saturated_gas_table_[0][is+1] - saturated_gas_table_[0][is]);
|
||||
return val;
|
||||
}
|
||||
} else {
|
||||
if (Rval < maxR ) { // Saturated case
|
||||
return linearInterpolationExtrap(saturated_gas_table_[0],
|
||||
saturated_gas_table_[item],
|
||||
press);
|
||||
} else { // Undersaturated case
|
||||
int is = section;
|
||||
// Extrapolate from first table section
|
||||
if (is == 0 && press < saturated_gas_table_[0][0]) {
|
||||
return linearInterpolationExtrap(undersat_gas_tables_[0][0],
|
||||
undersat_gas_tables_[0][item],
|
||||
maxR);
|
||||
}
|
||||
double maxR = surfvol[phase_pos_[Liquid]]/surfvol[phase_pos_[Vapour]];
|
||||
if (deriv) {
|
||||
if (Rval < maxR ) { // Saturated case
|
||||
return linearInterpolDerivative(saturated_gas_table_[0],
|
||||
saturated_gas_table_[item],
|
||||
press);
|
||||
} else { // Undersaturated case
|
||||
int is = section;
|
||||
if (undersat_gas_tables_[is][0].size() < 2) {
|
||||
double val = (saturated_gas_table_[item][is+1]
|
||||
- saturated_gas_table_[item][is]) /
|
||||
(saturated_gas_table_[0][is+1] -
|
||||
saturated_gas_table_[0][is]);
|
||||
return val;
|
||||
}
|
||||
double val1 =
|
||||
linearInterpolationExtrap(undersat_gas_tables_[is][0],
|
||||
undersat_gas_tables_[is][item],
|
||||
maxR);
|
||||
double val2 =
|
||||
linearInterpolationExtrap(undersat_gas_tables_[is+1][0],
|
||||
undersat_gas_tables_[is+1][item],
|
||||
maxR);
|
||||
double val = (val2 - val1)/
|
||||
(saturated_gas_table_[0][is+1] - saturated_gas_table_[0][is]);
|
||||
return val;
|
||||
}
|
||||
} else {
|
||||
if (Rval < maxR ) { // Saturated case
|
||||
return linearInterpolationExtrap(saturated_gas_table_[0],
|
||||
saturated_gas_table_[item],
|
||||
press);
|
||||
} else { // Undersaturated case
|
||||
int is = section;
|
||||
// Extrapolate from first table section
|
||||
if (is == 0 && press < saturated_gas_table_[0][0]) {
|
||||
return linearInterpolationExtrap(undersat_gas_tables_[0][0],
|
||||
undersat_gas_tables_[0][item],
|
||||
maxR);
|
||||
}
|
||||
|
||||
// Extrapolate from last table section
|
||||
int ltp = saturated_gas_table_[0].size() - 1;
|
||||
if (is+1 == ltp && press > saturated_gas_table_[0][ltp]) {
|
||||
return linearInterpolationExtrap(undersat_gas_tables_[ltp][0],
|
||||
undersat_gas_tables_[ltp][item],
|
||||
maxR);
|
||||
}
|
||||
// Extrapolate from last table section
|
||||
int ltp = saturated_gas_table_[0].size() - 1;
|
||||
if (is+1 == ltp && press > saturated_gas_table_[0][ltp]) {
|
||||
return linearInterpolationExtrap(undersat_gas_tables_[ltp][0],
|
||||
undersat_gas_tables_[ltp][item],
|
||||
maxR);
|
||||
}
|
||||
|
||||
// Interpolate between table sections
|
||||
double w = (press - saturated_gas_table_[0][is]) /
|
||||
(saturated_gas_table_[0][is+1] -
|
||||
saturated_gas_table_[0][is]);
|
||||
if (undersat_gas_tables_[is][0].size() < 2) {
|
||||
double val = saturated_gas_table_[item][is] +
|
||||
w*(saturated_gas_table_[item][is+1] -
|
||||
saturated_gas_table_[item][is]);
|
||||
return val;
|
||||
}
|
||||
double val1 =
|
||||
linearInterpolationExtrap(undersat_gas_tables_[is][0],
|
||||
undersat_gas_tables_[is][item],
|
||||
maxR);
|
||||
double val2 =
|
||||
linearInterpolationExtrap(undersat_gas_tables_[is+1][0],
|
||||
undersat_gas_tables_[is+1][item],
|
||||
maxR);
|
||||
double val = val1 + w*(val2 - val1);
|
||||
return val;
|
||||
}
|
||||
}
|
||||
// Interpolate between table sections
|
||||
double w = (press - saturated_gas_table_[0][is]) /
|
||||
(saturated_gas_table_[0][is+1] -
|
||||
saturated_gas_table_[0][is]);
|
||||
if (undersat_gas_tables_[is][0].size() < 2) {
|
||||
double val = saturated_gas_table_[item][is] +
|
||||
w*(saturated_gas_table_[item][is+1] -
|
||||
saturated_gas_table_[item][is]);
|
||||
return val;
|
||||
}
|
||||
double val1 =
|
||||
linearInterpolationExtrap(undersat_gas_tables_[is][0],
|
||||
undersat_gas_tables_[is][item],
|
||||
maxR);
|
||||
double val2 =
|
||||
linearInterpolationExtrap(undersat_gas_tables_[is+1][0],
|
||||
undersat_gas_tables_[is+1][item],
|
||||
maxR);
|
||||
double val = val1 + w*(val2 - val1);
|
||||
return val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -33,10 +33,10 @@ namespace Opm
|
||||
class SinglePvtLiveGas : public SinglePvtInterface
|
||||
{
|
||||
public:
|
||||
typedef std::vector<std::vector<std::vector<double> > > table_t;
|
||||
typedef std::vector<std::vector<std::vector<double> > > table_t;
|
||||
|
||||
SinglePvtLiveGas(const table_t& pvto);
|
||||
virtual ~SinglePvtLiveGas();
|
||||
SinglePvtLiveGas(const table_t& pvto);
|
||||
virtual ~SinglePvtLiveGas();
|
||||
|
||||
/// Viscosity as a function of p and z.
|
||||
virtual void mu(const int n,
|
||||
@ -76,14 +76,14 @@ namespace Opm
|
||||
double evalR(double press, const double* surfvol) const;
|
||||
void evalRDeriv(double press, const double* surfvol, double& R, double& dRdp) const;
|
||||
|
||||
// item: 1=>B 2=>mu;
|
||||
double miscible_gas(const double press,
|
||||
// item: 1=>B 2=>mu;
|
||||
double miscible_gas(const double press,
|
||||
const double* surfvol,
|
||||
const int item,
|
||||
const bool deriv = false) const;
|
||||
// PVT properties of wet gas (with vaporised oil)
|
||||
std::vector<std::vector<double> > saturated_gas_table_;
|
||||
std::vector<std::vector<std::vector<double> > > undersat_gas_tables_;
|
||||
const bool deriv = false) const;
|
||||
// PVT properties of wet gas (with vaporised oil)
|
||||
std::vector<std::vector<double> > saturated_gas_table_;
|
||||
std::vector<std::vector<std::vector<double> > > undersat_gas_tables_;
|
||||
|
||||
};
|
||||
|
||||
|
@ -38,122 +38,122 @@ namespace Opm
|
||||
/// Constructor
|
||||
SinglePvtLiveOil::SinglePvtLiveOil(const table_t& pvto)
|
||||
{
|
||||
// OIL, PVTO
|
||||
const int region_number = 0;
|
||||
if (pvto.size() != 1) {
|
||||
THROW("More than one PVD-region");
|
||||
}
|
||||
saturated_oil_table_.resize(4);
|
||||
const int sz = pvto[region_number].size();
|
||||
for (int k=0; k<4; ++k) {
|
||||
saturated_oil_table_[k].resize(sz);
|
||||
}
|
||||
for (int i=0; i<sz; ++i) {
|
||||
saturated_oil_table_[0][i] = pvto[region_number][i][1]; // p
|
||||
saturated_oil_table_[1][i] = 1.0/pvto[region_number][i][2]; // 1/Bo
|
||||
saturated_oil_table_[2][i] = pvto[region_number][i][3]; // mu_o
|
||||
saturated_oil_table_[3][i] = pvto[region_number][i][0]; // Rs
|
||||
}
|
||||
|
||||
undersat_oil_tables_.resize(sz);
|
||||
for (int i=0; i<sz; ++i) {
|
||||
undersat_oil_tables_[i].resize(3);
|
||||
int tsize = (pvto[region_number][i].size() - 1)/3;
|
||||
undersat_oil_tables_[i][0].resize(tsize);
|
||||
undersat_oil_tables_[i][1].resize(tsize);
|
||||
undersat_oil_tables_[i][2].resize(tsize);
|
||||
for (int j=0, k=0; j<tsize; ++j) {
|
||||
undersat_oil_tables_[i][0][j] = pvto[region_number][i][++k]; // p
|
||||
undersat_oil_tables_[i][1][j] = 1.0/pvto[region_number][i][++k]; // 1/Bo
|
||||
undersat_oil_tables_[i][2][j] = pvto[region_number][i][++k]; // mu_o
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Fill in additional entries in undersaturated tables by interpolating/extrapolating 1/Bo and mu_o ...
|
||||
int iPrev = -1;
|
||||
int iNext = 1;
|
||||
while (undersat_oil_tables_[iNext][0].size() < 2) {
|
||||
++iNext;
|
||||
}
|
||||
ASSERT(iNext < sz);
|
||||
for (int i=0; i<sz; ++i) {
|
||||
if (undersat_oil_tables_[i][0].size() > 1) {
|
||||
iPrev = i;
|
||||
continue;
|
||||
}
|
||||
|
||||
bool flagPrev = (iPrev >= 0);
|
||||
bool flagNext = true;
|
||||
if (iNext < i) {
|
||||
iPrev = iNext;
|
||||
flagPrev = true;
|
||||
iNext = i+1;
|
||||
while (undersat_oil_tables_[iNext][0].size() < 2) {
|
||||
++iNext;
|
||||
}
|
||||
}
|
||||
double slopePrevBinv = 0.0;
|
||||
double slopePrevVisc = 0.0;
|
||||
double slopeNextBinv = 0.0;
|
||||
double slopeNextVisc = 0.0;
|
||||
while (flagPrev || flagNext) {
|
||||
double pressure0 = undersat_oil_tables_[i][0].back();
|
||||
double pressure = 1.0e47;
|
||||
if (flagPrev) {
|
||||
std::vector<double>::iterator itPrev = upper_bound(undersat_oil_tables_[iPrev][0].begin(),
|
||||
undersat_oil_tables_[iPrev][0].end(),pressure0+1.);
|
||||
if (itPrev == undersat_oil_tables_[iPrev][0].end()) {
|
||||
--itPrev; // Extrapolation ...
|
||||
} else if (itPrev == undersat_oil_tables_[iPrev][0].begin()) {
|
||||
++itPrev;
|
||||
}
|
||||
if (itPrev == undersat_oil_tables_[iPrev][0].end()-1) {
|
||||
flagPrev = false; // Last data set for "prev" ...
|
||||
}
|
||||
double dPPrev = *itPrev - *(itPrev-1);
|
||||
pressure = *itPrev;
|
||||
int index = int(itPrev - undersat_oil_tables_[iPrev][0].begin());
|
||||
slopePrevBinv = (undersat_oil_tables_[iPrev][1][index] - undersat_oil_tables_[iPrev][1][index-1])/dPPrev;
|
||||
slopePrevVisc = (undersat_oil_tables_[iPrev][2][index] - undersat_oil_tables_[iPrev][2][index-1])/dPPrev;
|
||||
}
|
||||
if (flagNext) {
|
||||
std::vector<double>::iterator itNext = upper_bound(undersat_oil_tables_[iNext][0].begin(),
|
||||
undersat_oil_tables_[iNext][0].end(),pressure0+1.);
|
||||
if (itNext == undersat_oil_tables_[iNext][0].end()) {
|
||||
--itNext; // Extrapolation ...
|
||||
} else if (itNext == undersat_oil_tables_[iNext][0].begin()) {
|
||||
++itNext;
|
||||
}
|
||||
if (itNext == undersat_oil_tables_[iNext][0].end()-1) {
|
||||
flagNext = false; // Last data set for "next" ...
|
||||
}
|
||||
double dPNext = *itNext - *(itNext-1);
|
||||
if (flagPrev) {
|
||||
pressure = std::min(pressure,*itNext);
|
||||
} else {
|
||||
pressure = *itNext;
|
||||
}
|
||||
int index = int(itNext - undersat_oil_tables_[iNext][0].begin());
|
||||
slopeNextBinv = (undersat_oil_tables_[iNext][1][index] - undersat_oil_tables_[iNext][1][index-1])/dPNext;
|
||||
slopeNextVisc = (undersat_oil_tables_[iNext][2][index] - undersat_oil_tables_[iNext][2][index-1])/dPNext;
|
||||
}
|
||||
double dP = pressure - pressure0;
|
||||
if (iPrev >= 0) {
|
||||
double w = (saturated_oil_table_[3][i] - saturated_oil_table_[3][iPrev]) /
|
||||
(saturated_oil_table_[3][iNext] - saturated_oil_table_[3][iPrev]);
|
||||
undersat_oil_tables_[i][0].push_back(pressure0+dP);
|
||||
undersat_oil_tables_[i][1].push_back(undersat_oil_tables_[i][1].back() +
|
||||
dP*(slopePrevBinv+w*(slopeNextBinv-slopePrevBinv)));
|
||||
undersat_oil_tables_[i][2].push_back(undersat_oil_tables_[i][2].back() +
|
||||
dP*(slopePrevVisc+w*(slopeNextVisc-slopePrevVisc)));
|
||||
} else {
|
||||
undersat_oil_tables_[i][0].push_back(pressure0+dP);
|
||||
undersat_oil_tables_[i][1].push_back(undersat_oil_tables_[i][1].back()+dP*slopeNextBinv);
|
||||
undersat_oil_tables_[i][2].push_back(undersat_oil_tables_[i][2].back()+dP*slopeNextVisc);
|
||||
}
|
||||
}
|
||||
}
|
||||
// OIL, PVTO
|
||||
const int region_number = 0;
|
||||
if (pvto.size() != 1) {
|
||||
THROW("More than one PVD-region");
|
||||
}
|
||||
saturated_oil_table_.resize(4);
|
||||
const int sz = pvto[region_number].size();
|
||||
for (int k=0; k<4; ++k) {
|
||||
saturated_oil_table_[k].resize(sz);
|
||||
}
|
||||
for (int i=0; i<sz; ++i) {
|
||||
saturated_oil_table_[0][i] = pvto[region_number][i][1]; // p
|
||||
saturated_oil_table_[1][i] = 1.0/pvto[region_number][i][2]; // 1/Bo
|
||||
saturated_oil_table_[2][i] = pvto[region_number][i][3]; // mu_o
|
||||
saturated_oil_table_[3][i] = pvto[region_number][i][0]; // Rs
|
||||
}
|
||||
|
||||
undersat_oil_tables_.resize(sz);
|
||||
for (int i=0; i<sz; ++i) {
|
||||
undersat_oil_tables_[i].resize(3);
|
||||
int tsize = (pvto[region_number][i].size() - 1)/3;
|
||||
undersat_oil_tables_[i][0].resize(tsize);
|
||||
undersat_oil_tables_[i][1].resize(tsize);
|
||||
undersat_oil_tables_[i][2].resize(tsize);
|
||||
for (int j=0, k=0; j<tsize; ++j) {
|
||||
undersat_oil_tables_[i][0][j] = pvto[region_number][i][++k]; // p
|
||||
undersat_oil_tables_[i][1][j] = 1.0/pvto[region_number][i][++k]; // 1/Bo
|
||||
undersat_oil_tables_[i][2][j] = pvto[region_number][i][++k]; // mu_o
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Fill in additional entries in undersaturated tables by interpolating/extrapolating 1/Bo and mu_o ...
|
||||
int iPrev = -1;
|
||||
int iNext = 1;
|
||||
while (undersat_oil_tables_[iNext][0].size() < 2) {
|
||||
++iNext;
|
||||
}
|
||||
ASSERT(iNext < sz);
|
||||
for (int i=0; i<sz; ++i) {
|
||||
if (undersat_oil_tables_[i][0].size() > 1) {
|
||||
iPrev = i;
|
||||
continue;
|
||||
}
|
||||
|
||||
bool flagPrev = (iPrev >= 0);
|
||||
bool flagNext = true;
|
||||
if (iNext < i) {
|
||||
iPrev = iNext;
|
||||
flagPrev = true;
|
||||
iNext = i+1;
|
||||
while (undersat_oil_tables_[iNext][0].size() < 2) {
|
||||
++iNext;
|
||||
}
|
||||
}
|
||||
double slopePrevBinv = 0.0;
|
||||
double slopePrevVisc = 0.0;
|
||||
double slopeNextBinv = 0.0;
|
||||
double slopeNextVisc = 0.0;
|
||||
while (flagPrev || flagNext) {
|
||||
double pressure0 = undersat_oil_tables_[i][0].back();
|
||||
double pressure = 1.0e47;
|
||||
if (flagPrev) {
|
||||
std::vector<double>::iterator itPrev = upper_bound(undersat_oil_tables_[iPrev][0].begin(),
|
||||
undersat_oil_tables_[iPrev][0].end(),pressure0+1.);
|
||||
if (itPrev == undersat_oil_tables_[iPrev][0].end()) {
|
||||
--itPrev; // Extrapolation ...
|
||||
} else if (itPrev == undersat_oil_tables_[iPrev][0].begin()) {
|
||||
++itPrev;
|
||||
}
|
||||
if (itPrev == undersat_oil_tables_[iPrev][0].end()-1) {
|
||||
flagPrev = false; // Last data set for "prev" ...
|
||||
}
|
||||
double dPPrev = *itPrev - *(itPrev-1);
|
||||
pressure = *itPrev;
|
||||
int index = int(itPrev - undersat_oil_tables_[iPrev][0].begin());
|
||||
slopePrevBinv = (undersat_oil_tables_[iPrev][1][index] - undersat_oil_tables_[iPrev][1][index-1])/dPPrev;
|
||||
slopePrevVisc = (undersat_oil_tables_[iPrev][2][index] - undersat_oil_tables_[iPrev][2][index-1])/dPPrev;
|
||||
}
|
||||
if (flagNext) {
|
||||
std::vector<double>::iterator itNext = upper_bound(undersat_oil_tables_[iNext][0].begin(),
|
||||
undersat_oil_tables_[iNext][0].end(),pressure0+1.);
|
||||
if (itNext == undersat_oil_tables_[iNext][0].end()) {
|
||||
--itNext; // Extrapolation ...
|
||||
} else if (itNext == undersat_oil_tables_[iNext][0].begin()) {
|
||||
++itNext;
|
||||
}
|
||||
if (itNext == undersat_oil_tables_[iNext][0].end()-1) {
|
||||
flagNext = false; // Last data set for "next" ...
|
||||
}
|
||||
double dPNext = *itNext - *(itNext-1);
|
||||
if (flagPrev) {
|
||||
pressure = std::min(pressure,*itNext);
|
||||
} else {
|
||||
pressure = *itNext;
|
||||
}
|
||||
int index = int(itNext - undersat_oil_tables_[iNext][0].begin());
|
||||
slopeNextBinv = (undersat_oil_tables_[iNext][1][index] - undersat_oil_tables_[iNext][1][index-1])/dPNext;
|
||||
slopeNextVisc = (undersat_oil_tables_[iNext][2][index] - undersat_oil_tables_[iNext][2][index-1])/dPNext;
|
||||
}
|
||||
double dP = pressure - pressure0;
|
||||
if (iPrev >= 0) {
|
||||
double w = (saturated_oil_table_[3][i] - saturated_oil_table_[3][iPrev]) /
|
||||
(saturated_oil_table_[3][iNext] - saturated_oil_table_[3][iPrev]);
|
||||
undersat_oil_tables_[i][0].push_back(pressure0+dP);
|
||||
undersat_oil_tables_[i][1].push_back(undersat_oil_tables_[i][1].back() +
|
||||
dP*(slopePrevBinv+w*(slopeNextBinv-slopePrevBinv)));
|
||||
undersat_oil_tables_[i][2].push_back(undersat_oil_tables_[i][2].back() +
|
||||
dP*(slopePrevVisc+w*(slopeNextVisc-slopePrevVisc)));
|
||||
} else {
|
||||
undersat_oil_tables_[i][0].push_back(pressure0+dP);
|
||||
undersat_oil_tables_[i][1].push_back(undersat_oil_tables_[i][1].back()+dP*slopeNextBinv);
|
||||
undersat_oil_tables_[i][2].push_back(undersat_oil_tables_[i][2].back()+dP*slopeNextVisc);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Destructor.
|
||||
@ -238,30 +238,30 @@ namespace Opm
|
||||
double SinglePvtLiveOil::evalB(double press, const double* surfvol) const
|
||||
{
|
||||
// if (surfvol[phase_pos_[Liquid]] == 0.0) return 1.0; // To handle no-oil case.
|
||||
return 1.0/miscible_oil(press, surfvol, 1, false);
|
||||
return 1.0/miscible_oil(press, surfvol, 1, false);
|
||||
}
|
||||
|
||||
|
||||
void SinglePvtLiveOil::evalBDeriv(const double press, const double* surfvol,
|
||||
double& Bval, double& dBdpval) const
|
||||
{
|
||||
Bval = evalB(press, surfvol);
|
||||
dBdpval = -Bval*Bval*miscible_oil(press, surfvol, 1, true);
|
||||
Bval = evalB(press, surfvol);
|
||||
dBdpval = -Bval*Bval*miscible_oil(press, surfvol, 1, true);
|
||||
}
|
||||
|
||||
double SinglePvtLiveOil::evalR(double press, const double* surfvol) const
|
||||
{
|
||||
if (surfvol[phase_pos_[Vapour]] == 0.0) {
|
||||
return 0.0;
|
||||
}
|
||||
double Rval = linearInterpolationExtrap(saturated_oil_table_[0],
|
||||
saturated_oil_table_[3], press);
|
||||
double maxR = surfvol[phase_pos_[Vapour]]/surfvol[phase_pos_[Liquid]];
|
||||
if (Rval < maxR ) { // Saturated case
|
||||
return Rval;
|
||||
} else {
|
||||
return maxR; // Undersaturated case
|
||||
}
|
||||
}
|
||||
double Rval = linearInterpolationExtrap(saturated_oil_table_[0],
|
||||
saturated_oil_table_[3], press);
|
||||
double maxR = surfvol[phase_pos_[Vapour]]/surfvol[phase_pos_[Liquid]];
|
||||
if (Rval < maxR ) { // Saturated case
|
||||
return Rval;
|
||||
} else {
|
||||
return maxR; // Undersaturated case
|
||||
}
|
||||
}
|
||||
|
||||
void SinglePvtLiveOil::evalRDeriv(const double press, const double* surfvol,
|
||||
@ -272,19 +272,19 @@ namespace Opm
|
||||
dRdpval = 0.0;
|
||||
return;
|
||||
}
|
||||
Rval = linearInterpolationExtrap(saturated_oil_table_[0],
|
||||
Rval = linearInterpolationExtrap(saturated_oil_table_[0],
|
||||
saturated_oil_table_[3], press);
|
||||
double maxR = surfvol[phase_pos_[Vapour]]/surfvol[phase_pos_[Liquid]];
|
||||
if (Rval < maxR ) {
|
||||
double maxR = surfvol[phase_pos_[Vapour]]/surfvol[phase_pos_[Liquid]];
|
||||
if (Rval < maxR ) {
|
||||
// Saturated case
|
||||
dRdpval = linearInterpolDerivative(saturated_oil_table_[0],
|
||||
saturated_oil_table_[3],
|
||||
press);
|
||||
} else {
|
||||
dRdpval = linearInterpolDerivative(saturated_oil_table_[0],
|
||||
saturated_oil_table_[3],
|
||||
press);
|
||||
} else {
|
||||
// Undersaturated case
|
||||
Rval = maxR;
|
||||
dRdpval = 0.0;
|
||||
}
|
||||
dRdpval = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -293,57 +293,57 @@ namespace Opm
|
||||
const int item,
|
||||
const bool deriv) const
|
||||
{
|
||||
int section;
|
||||
double Rval = linearInterpolationExtrap(saturated_oil_table_[0],
|
||||
int section;
|
||||
double Rval = linearInterpolationExtrap(saturated_oil_table_[0],
|
||||
saturated_oil_table_[3],
|
||||
press, section);
|
||||
double maxR = (surfvol[phase_pos_[Liquid]] == 0.0) ? 0.0 : surfvol[phase_pos_[Vapour]]/surfvol[phase_pos_[Liquid]];
|
||||
if (deriv) {
|
||||
if (Rval < maxR ) { // Saturated case
|
||||
return linearInterpolDerivative(saturated_oil_table_[0],
|
||||
saturated_oil_table_[item],
|
||||
press);
|
||||
} else { // Undersaturated case
|
||||
int is = tableIndex(saturated_oil_table_[3], maxR);
|
||||
double w = (maxR - saturated_oil_table_[3][is]) /
|
||||
(saturated_oil_table_[3][is+1] - saturated_oil_table_[3][is]);
|
||||
ASSERT(undersat_oil_tables_[is][0].size() >= 2);
|
||||
ASSERT(undersat_oil_tables_[is+1][0].size() >= 2);
|
||||
double val1 =
|
||||
linearInterpolDerivative(undersat_oil_tables_[is][0],
|
||||
undersat_oil_tables_[is][item],
|
||||
press);
|
||||
double val2 =
|
||||
linearInterpolDerivative(undersat_oil_tables_[is+1][0],
|
||||
undersat_oil_tables_[is+1][item],
|
||||
press);
|
||||
double val = val1 + w*(val2 - val1);
|
||||
return val;
|
||||
}
|
||||
} else {
|
||||
if (Rval < maxR ) { // Saturated case
|
||||
return linearInterpolationExtrap(saturated_oil_table_[0],
|
||||
saturated_oil_table_[item],
|
||||
press);
|
||||
} else { // Undersaturated case
|
||||
// Interpolate between table sections
|
||||
double maxR = (surfvol[phase_pos_[Liquid]] == 0.0) ? 0.0 : surfvol[phase_pos_[Vapour]]/surfvol[phase_pos_[Liquid]];
|
||||
if (deriv) {
|
||||
if (Rval < maxR ) { // Saturated case
|
||||
return linearInterpolDerivative(saturated_oil_table_[0],
|
||||
saturated_oil_table_[item],
|
||||
press);
|
||||
} else { // Undersaturated case
|
||||
int is = tableIndex(saturated_oil_table_[3], maxR);
|
||||
double w = (maxR - saturated_oil_table_[3][is]) /
|
||||
(saturated_oil_table_[3][is+1] - saturated_oil_table_[3][is]);
|
||||
double w = (maxR - saturated_oil_table_[3][is]) /
|
||||
(saturated_oil_table_[3][is+1] - saturated_oil_table_[3][is]);
|
||||
ASSERT(undersat_oil_tables_[is][0].size() >= 2);
|
||||
ASSERT(undersat_oil_tables_[is+1][0].size() >= 2);
|
||||
double val1 =
|
||||
linearInterpolationExtrap(undersat_oil_tables_[is][0],
|
||||
undersat_oil_tables_[is][item],
|
||||
press);
|
||||
double val2 =
|
||||
linearInterpolationExtrap(undersat_oil_tables_[is+1][0],
|
||||
undersat_oil_tables_[is+1][item],
|
||||
press);
|
||||
double val = val1 + w*(val2 - val1);
|
||||
return val;
|
||||
}
|
||||
}
|
||||
double val1 =
|
||||
linearInterpolDerivative(undersat_oil_tables_[is][0],
|
||||
undersat_oil_tables_[is][item],
|
||||
press);
|
||||
double val2 =
|
||||
linearInterpolDerivative(undersat_oil_tables_[is+1][0],
|
||||
undersat_oil_tables_[is+1][item],
|
||||
press);
|
||||
double val = val1 + w*(val2 - val1);
|
||||
return val;
|
||||
}
|
||||
} else {
|
||||
if (Rval < maxR ) { // Saturated case
|
||||
return linearInterpolationExtrap(saturated_oil_table_[0],
|
||||
saturated_oil_table_[item],
|
||||
press);
|
||||
} else { // Undersaturated case
|
||||
// Interpolate between table sections
|
||||
int is = tableIndex(saturated_oil_table_[3], maxR);
|
||||
double w = (maxR - saturated_oil_table_[3][is]) /
|
||||
(saturated_oil_table_[3][is+1] - saturated_oil_table_[3][is]);
|
||||
ASSERT(undersat_oil_tables_[is][0].size() >= 2);
|
||||
ASSERT(undersat_oil_tables_[is+1][0].size() >= 2);
|
||||
double val1 =
|
||||
linearInterpolationExtrap(undersat_oil_tables_[is][0],
|
||||
undersat_oil_tables_[is][item],
|
||||
press);
|
||||
double val2 =
|
||||
linearInterpolationExtrap(undersat_oil_tables_[is+1][0],
|
||||
undersat_oil_tables_[is+1][item],
|
||||
press);
|
||||
double val = val1 + w*(val2 - val1);
|
||||
return val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -34,10 +34,10 @@ namespace Opm
|
||||
class SinglePvtLiveOil : public SinglePvtInterface
|
||||
{
|
||||
public:
|
||||
typedef std::vector<std::vector<std::vector<double> > > table_t;
|
||||
typedef std::vector<std::vector<std::vector<double> > > table_t;
|
||||
|
||||
SinglePvtLiveOil(const table_t& pvto);
|
||||
virtual ~SinglePvtLiveOil();
|
||||
SinglePvtLiveOil(const table_t& pvto);
|
||||
virtual ~SinglePvtLiveOil();
|
||||
|
||||
/// Viscosity as a function of p and z.
|
||||
virtual void mu(const int n,
|
||||
@ -77,15 +77,15 @@ namespace Opm
|
||||
double evalR(double press, const double* surfvol) const;
|
||||
void evalRDeriv(double press, const double* surfvol, double& R, double& dRdp) const;
|
||||
|
||||
// item: 1=>1/B 2=>mu;
|
||||
double miscible_oil(const double press,
|
||||
// item: 1=>1/B 2=>mu;
|
||||
double miscible_oil(const double press,
|
||||
const double* surfvol,
|
||||
const int item,
|
||||
const bool deriv = false) const;
|
||||
const bool deriv = false) const;
|
||||
|
||||
// PVT properties of live oil (with dissolved gas)
|
||||
std::vector<std::vector<double> > saturated_oil_table_;
|
||||
std::vector<std::vector<std::vector<double> > > undersat_oil_tables_;
|
||||
// PVT properties of live oil (with dissolved gas)
|
||||
std::vector<std::vector<double> > saturated_oil_table_;
|
||||
std::vector<std::vector<std::vector<double> > > undersat_oil_tables_;
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -104,6 +104,8 @@ allocate_grid(size_t ndims ,
|
||||
nel = ncellfaces;
|
||||
G->cell_faces = malloc(nel * sizeof *G->cell_faces);
|
||||
|
||||
G->cell_facetag = malloc(nel * sizeof *G->cell_facetag);
|
||||
|
||||
nel = ncells + 1;
|
||||
G->cell_facepos = malloc(nel * sizeof *G->cell_facepos);
|
||||
|
||||
@ -121,6 +123,7 @@ allocate_grid(size_t ndims ,
|
||||
(G->face_normals == NULL) ||
|
||||
(G->face_areas == NULL) ||
|
||||
(G->cell_faces == NULL) ||
|
||||
(G->cell_facetag == NULL) ||
|
||||
(G->cell_facepos == NULL) ||
|
||||
(G->cell_centroids == NULL) ||
|
||||
(G->cell_volumes == NULL) )
|
||||
|
@ -118,7 +118,7 @@ create_grid_cart2d(int nx, int ny)
|
||||
/* --------------------------------------------------------------------- */
|
||||
|
||||
struct UnstructuredGrid *
|
||||
create_grid_tensor2d(int nx, int ny, double x[], double y[])
|
||||
create_grid_tensor2d(int nx, int ny, const double *x, const double *y)
|
||||
{
|
||||
struct UnstructuredGrid *G;
|
||||
|
||||
@ -136,9 +136,13 @@ create_grid_tensor2d(int nx, int ny, double x[], double y[])
|
||||
/* --------------------------------------------------------------------- */
|
||||
|
||||
struct UnstructuredGrid *
|
||||
create_grid_tensor3d(int nx, int ny , int nz ,
|
||||
double x[], double y[], double z[],
|
||||
const double depthz[])
|
||||
create_grid_tensor3d(int nx ,
|
||||
int ny ,
|
||||
int nz ,
|
||||
const double *x ,
|
||||
const double *y ,
|
||||
const double *z ,
|
||||
const double *depthz)
|
||||
{
|
||||
struct UnstructuredGrid *G;
|
||||
|
||||
@ -259,6 +263,11 @@ fill_cart_topology_3d(struct UnstructuredGrid *G)
|
||||
}
|
||||
}
|
||||
|
||||
for (k = 0; k < nx * ny * nz; ++k) {
|
||||
for (i = 0; i < 6; ++i) {
|
||||
G->cell_facetag[k*6 + i] = i;
|
||||
}
|
||||
}
|
||||
|
||||
fnodes = G->face_nodes;
|
||||
fnodepos = G->face_nodepos;
|
||||
@ -561,6 +570,12 @@ fill_cart_topology_2d(struct UnstructuredGrid *G)
|
||||
}
|
||||
}
|
||||
|
||||
for (j = 0; j < nx * ny; ++j) {
|
||||
G->cell_facetag[j*4 + 0] = 0;
|
||||
G->cell_facetag[j*4 + 1] = 2;
|
||||
G->cell_facetag[j*4 + 2] = 1;
|
||||
G->cell_facetag[j*4 + 3] = 3;
|
||||
}
|
||||
|
||||
|
||||
fnodes = G->face_nodes;
|
||||
|
@ -30,25 +30,140 @@
|
||||
#ifndef OPM_CART_GRID_H_HEADER
|
||||
#define OPM_CART_GRID_H_HEADER
|
||||
|
||||
/**
|
||||
* \file
|
||||
* Routines to construct fully formed grid structures from a simple Cartesian
|
||||
* (i.e., tensor product) description.
|
||||
*
|
||||
* The cells are lexicographically ordered with the @c i index cycling the most
|
||||
* rapidly, followed by the @c j index and then, in three space dimensions, the
|
||||
* @c k (`layer') index as the least rapidly cycling index.
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct UnstructuredGrid;
|
||||
|
||||
struct UnstructuredGrid *create_grid_cart2d(int nx, int ny);
|
||||
struct UnstructuredGrid *create_grid_cart3d(int nx, int ny, int nz);
|
||||
struct UnstructuredGrid *create_grid_hexa3d(int nx, int ny, int nz,
|
||||
double dx, double dy, double dz);
|
||||
|
||||
struct UnstructuredGrid *create_grid_tensor2d(int nx, int ny,
|
||||
double x[], double y[]);
|
||||
/**
|
||||
* Form geometrically Cartesian grid in two space dimensions with unit-sized
|
||||
* cells.
|
||||
*
|
||||
* @param[in] nx Number of cells in @c x direction.
|
||||
* @param[in] ny Number of cells in @c y direction.
|
||||
*
|
||||
* @return Fully formed grid structure containing valid geometric primitives.
|
||||
* Must be destroyed using function destroy_grid().
|
||||
*/
|
||||
struct UnstructuredGrid *
|
||||
create_grid_tensor3d(int nx, int ny, int nz,
|
||||
double x[], double y[], double z[],
|
||||
const double depthz[]);
|
||||
create_grid_cart2d(int nx, int ny);
|
||||
|
||||
|
||||
/**
|
||||
* Form geometrically Cartesian grid in three space dimensions with unit-sized
|
||||
* cells.
|
||||
*
|
||||
* @param[in] nx Number of cells in @c x direction.
|
||||
* @param[in] ny Number of cells in @c y direction.
|
||||
* @param[in] nz Number of cells in @c z direction.
|
||||
*
|
||||
* @return Fully formed grid structure containing valid geometric primitives.
|
||||
* Must be destroyed using function destroy_grid().
|
||||
*/
|
||||
struct UnstructuredGrid *
|
||||
create_grid_cart3d(int nx, int ny, int nz);
|
||||
|
||||
|
||||
/**
|
||||
* Form geometrically Cartesian grid in three space dimensions with equally
|
||||
* sized cells.
|
||||
*
|
||||
* Each cell has physical size (volume) \f$\mathit{dx}\times \mathit{dy}\times
|
||||
* \mathit{dz}\f$.
|
||||
*
|
||||
* @param[in] nx Number of cells in @c x direction.
|
||||
* @param[in] ny Number of cells in @c y direction.
|
||||
* @param[in] nz Number of cells in @c z direction.
|
||||
*
|
||||
* @param[in] dx Length, in meters, of each cell's @c x extent.
|
||||
* @param[in] dy Length, in meters, of each cell's @c y extent.
|
||||
* @param[in] dz Length, in meters, of each cell's @c z extent.
|
||||
*
|
||||
* @return Fully formed grid structure containing valid geometric primitives.
|
||||
* Must be destroyed using function destroy_grid().
|
||||
*/
|
||||
struct UnstructuredGrid *
|
||||
create_grid_hexa3d(int nx, int ny, int nz,
|
||||
double dx, double dy, double dz);
|
||||
|
||||
|
||||
/**
|
||||
* Form tensor product (Cartesian) grid in two space dimensions.
|
||||
*
|
||||
* The size (volume) of cell \f$(i,j)\f$ is
|
||||
* \f[
|
||||
* v_{ij} = (x_{i+1} - x_i)\cdot (y_{j+1} - y_j)
|
||||
* \f]
|
||||
* Similar relations hold for the cell and interface centroids as well as the
|
||||
* interface areas and normal vectors. In other words, cell \f$(i,j)\f$ is the
|
||||
* convex hull bounded by the tensor product of nodes \f$x_i\f$, \f$x_{i+1}\f$,
|
||||
* \f$y_j\f$, and \f$y_{j+1}\f$.
|
||||
*
|
||||
* @param[in] nx Number of cells in @c x direction.
|
||||
* @param[in] ny Number of cells in @c y direction.
|
||||
*
|
||||
* @param[in] x Position along @c x axis of each grid line with constant @c x
|
||||
* coordinate. Array of size <CODE>nx + 1</CODE>.
|
||||
* @param[in] y Position along @c y axis of each grid line with constant @c y
|
||||
* coordinate. Array of size <CODE>ny + 1</CODE>.
|
||||
*
|
||||
* @return Fully formed grid structure containing valid geometric primitives.
|
||||
* Must be destroyed using function destroy_grid().
|
||||
*/
|
||||
struct UnstructuredGrid *
|
||||
create_grid_tensor2d(int nx, int ny,
|
||||
const double *x , const double *y );
|
||||
|
||||
|
||||
/**
|
||||
* Form tensor product (i.e., topologically Cartesian) grid in three space
|
||||
* dimensions--possibly with a variable top-layer topography.
|
||||
*
|
||||
* If @c depthz is @c NULL, then geometric information such as volumes and
|
||||
* centroids is calculated from analytic expressions. Otherwise, these values
|
||||
* are computed using function compute_geometry().
|
||||
*
|
||||
* @param[in] nx Number of cells in @c x direction.
|
||||
* @param[in] ny Number of cells in @c y direction.
|
||||
* @param[in] nz Number of cells in @c z direction.
|
||||
*
|
||||
* @param[in] x Position along @c x axis of each grid line with constant @c x
|
||||
* coordinate. Array of size <CODE>nx + 1</CODE>.
|
||||
* @param[in] y Position along @c y axis of each grid line with constant @c y
|
||||
* coordinate. Array of size <CODE>ny + 1</CODE>.
|
||||
* @param[in] z Distance (depth) from top-layer measured along the @c z axis of
|
||||
* each grid line with constant @c z coordinate. Array of size
|
||||
* <CODE>nz + 1</CODE>.
|
||||
*
|
||||
* @param[in] depthz
|
||||
* Top-layer topography specification. If @c NULL, interpreted as
|
||||
* horizontal top-layer at <CODE>z=0</CODE>. Otherwise, must be
|
||||
* an array of size <CODE>(nx + 1) * (ny + 1)</CODE>, ordered
|
||||
* lexicographically, that defines the depth of each top-layer
|
||||
* pillar vertex.
|
||||
*
|
||||
* @return Fully formed grid structure containing valid geometric primitives.
|
||||
* Must be destroyed using function destroy_grid().
|
||||
*/
|
||||
struct UnstructuredGrid *
|
||||
create_grid_tensor3d(int nx ,
|
||||
int ny ,
|
||||
int nz ,
|
||||
const double *x ,
|
||||
const double *y ,
|
||||
const double *z ,
|
||||
const double *depthz);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -34,6 +34,12 @@
|
||||
#ifndef OPM_CORNERPOINT_GRID_HEADER_INCLUDED
|
||||
#define OPM_CORNERPOINT_GRID_HEADER_INCLUDED
|
||||
|
||||
/**
|
||||
* \file
|
||||
* Routines to form a complete UnstructuredGrid from a corner-point
|
||||
* specification.
|
||||
*/
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/grid/cpgpreprocess/preprocess.h>
|
||||
|
||||
@ -41,9 +47,53 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Construct grid representation from corner-point specification of a
|
||||
* particular geological model.
|
||||
*
|
||||
* Pinched cells will be removed irrespective of any explicit "active" map
|
||||
* in the geological model input specification. Geometric primitives such
|
||||
* as cell barycenters (i.e., centroids), volumes and interface areas are
|
||||
* computed internally using function compute_geometry(). The caller does
|
||||
* not need to compute this information separately.
|
||||
*
|
||||
* @param[in] in Corner-point specification. If "actnum" is NULL, then the
|
||||
* specification is interpreted as if all cells are initially
|
||||
* active.
|
||||
*
|
||||
* @param[in] tol Absolute tolerance of node-coincidence.
|
||||
*
|
||||
* @return Fully formed grid data structure that manages the grid defined by
|
||||
* the input corner-point specification. Must be destroyed using function
|
||||
* destroy_grid().
|
||||
*/
|
||||
struct UnstructuredGrid *
|
||||
create_grid_cornerpoint(const struct grdecl *in, double tol);
|
||||
|
||||
|
||||
/**
|
||||
* Compute derived geometric primitives in a grid.
|
||||
*
|
||||
* This function computes values for each of the following quantities
|
||||
* - Quantities pertaining to interfaces (connections, faces)
|
||||
* -# Barycenters (centroids), <CODE>g->dimensions</CODE> scalars per face
|
||||
* stored sequentially in <CODE>g->face_centroids</CODE>.
|
||||
* -# Areas, one scalar per face stored sequentially in
|
||||
* <CODE>g->face_areas</CODE>.
|
||||
* -# Normals, <CODE>g->dimensions</CODE> scalars per face stored
|
||||
* sequentially in <CODE>g->face_normals</CODE>. The Euclidian norm of
|
||||
* each normal is equal to the corresponding face's area.
|
||||
*
|
||||
* - Quantities pertaining to cells (volumes)
|
||||
* -# Barycenters (centroids), <CODE>g->dimensions</CODE> scalars per cell
|
||||
* stored sequentially in <CODE>g->cell_centroids</CODE>.
|
||||
* -# Volumes, one scalar per cell stored sequentially in
|
||||
* <CODE>g->cell_volumes</CODE>.
|
||||
*
|
||||
* These fields must be allocated prior to calling compute_geometry().
|
||||
*
|
||||
* @param[in,out] g Grid structure.
|
||||
*/
|
||||
void compute_geometry(struct UnstructuredGrid *g);
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
@ -587,8 +587,8 @@ get_zcorn_sign(int nx, int ny, int nz, const int *actnum,
|
||||
z1 = sign*zcorn[i+2*nx*(j+2*ny*(k))];
|
||||
z2 = sign*zcorn[i+2*nx*(j+2*ny*(k+1))];
|
||||
|
||||
c1 = i/2 + nx*(j/2 + ny*k/2);
|
||||
c2 = i/2 + nx*(j/2 + ny*(k+1)/2);
|
||||
c1 = i/2 + nx*(j/2 + ny*(k/2));
|
||||
c2 = i/2 + nx*(j/2 + ny*((k+1)/2));
|
||||
|
||||
if (((actnum == NULL) ||
|
||||
(actnum[c1] && actnum[c2]))
|
||||
@ -872,7 +872,7 @@ void process_grdecl(const struct grdecl *in,
|
||||
|
||||
/* -----------------------------------------------------------------*/
|
||||
/* (re)allocate space for and compute coordinates of nodes that
|
||||
* arise from intesecting cells (faults) */
|
||||
* arise from intersecting cells (faults) */
|
||||
compute_intersection_coordinates(intersections, out);
|
||||
|
||||
free (intersections);
|
||||
|
@ -35,48 +35,112 @@
|
||||
#ifndef OPENRS_PREPROCESS_HEADER
|
||||
#define OPENRS_PREPROCESS_HEADER
|
||||
|
||||
/**
|
||||
* \file
|
||||
* Low-level corner-point processing routines and supporting data structures.
|
||||
*
|
||||
* User code should typically employ higher-level routines such as
|
||||
* create_grid_cornerpoint() in order to construct fully formed UnstructuredGrid
|
||||
* data structures from a corner-point specification. Incidentally, the routines
|
||||
* provided by this module are used to implement function
|
||||
* create_grid_cornerpoint().
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* Input structure holding raw cornerpoint spec. */
|
||||
struct grdecl{
|
||||
int dims[3];
|
||||
const double *coord;
|
||||
const double *zcorn;
|
||||
const int *actnum;
|
||||
const double *mapaxes; /* 6 Element rotation vector - can be NULL. */
|
||||
/**
|
||||
* Raw corner-point specification of a particular geological model.
|
||||
*/
|
||||
struct grdecl {
|
||||
int dims[3]; /**< Cartesian box dimensions. */
|
||||
const double *coord; /**< Pillar end-points. */
|
||||
const double *zcorn; /**< Explicit "active" map. May be NULL.*/
|
||||
const int *actnum; /**< Corner-point depths. */
|
||||
const double *mapaxes; /**< 6 Element rotation vector - can be NULL. */
|
||||
};
|
||||
|
||||
/* Constant: I J K */
|
||||
enum face_tag { LEFT, BACK, TOP };
|
||||
|
||||
/* Output structure holding grid topology */
|
||||
struct processed_grid{
|
||||
int m; /** Upper bound on "number_of_faces" */
|
||||
int n; /** Upper bound on "number_of_nodes" */
|
||||
int dimensions[3]; /* Cartesian dimension */
|
||||
int number_of_faces;
|
||||
int *face_nodes; /* Nodes numbers of each face sequentially. */
|
||||
int *face_ptr; /* Start position for each face in face_nodes. */
|
||||
int *face_neighbors; /* Global cell numbers. 2 ints per face sequentially */
|
||||
enum face_tag *face_tag;
|
||||
|
||||
int number_of_nodes;
|
||||
int number_of_nodes_on_pillars; /** Total number of unique cell vertices that lie on pillars. */
|
||||
double *node_coordinates; /* 3 doubles per node, sequentially */
|
||||
|
||||
int number_of_cells; /* number of active cells */
|
||||
int *local_cell_index; /* Global to local map */
|
||||
/**
|
||||
* Connection taxonomy.
|
||||
*/
|
||||
enum face_tag {
|
||||
LEFT, /**< Connection topologically parallel to J-K plane. */
|
||||
BACK, /**< Connection topologically parallel to I-K plane. */
|
||||
TOP /**< Connection topologically parallel to I-J plane. */
|
||||
};
|
||||
|
||||
|
||||
void process_grdecl (const struct grdecl *g,
|
||||
double tol,
|
||||
struct processed_grid *out);
|
||||
/**
|
||||
* Result structure representing minimal derived topology and geometry of
|
||||
* a geological model in corner-point format.
|
||||
*/
|
||||
struct processed_grid {
|
||||
int m; /**< Upper bound on "number_of_faces". For internal use in
|
||||
function process_grid()'s memory management. */
|
||||
int n; /**< Upper bound on "number_of_nodes". For internal use in
|
||||
function process_grid()'s memory management. */
|
||||
|
||||
int dimensions[3]; /**< Cartesian box dimensions. */
|
||||
|
||||
int number_of_faces; /**< Total number of unique grid faces
|
||||
(i.e., connections). */
|
||||
int *face_nodes; /**< Node (vertex) numbers of each face,
|
||||
stored sequentially. */
|
||||
int *face_ptr; /**< Start position for each face's
|
||||
`face_nodes'. */
|
||||
int *face_neighbors; /**< Global cell numbers. Two elements per
|
||||
face, stored sequentially. */
|
||||
enum face_tag *face_tag; /**< Classification of grid's individual
|
||||
connections (faces). */
|
||||
|
||||
int number_of_nodes; /**< Number of unique grid vertices. */
|
||||
int number_of_nodes_on_pillars; /**< Total number of unique cell
|
||||
vertices that lie on pillars. */
|
||||
double *node_coordinates; /**< Vertex coordinates. Three doubles
|
||||
(\f$x\f$, \f$y\f$, \f$z\f$) per vertex,
|
||||
stored sequentially. */
|
||||
|
||||
int number_of_cells; /**< Number of active grid cells. */
|
||||
int *local_cell_index; /**< Deceptively named local-to-global cell
|
||||
index mapping. */
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Construct a prototypical grid representation from a corner-point
|
||||
* specification.
|
||||
*
|
||||
* Pinched cells will be removed irrespective of any explicit "active" map
|
||||
* in the geological model input specification. On input, the result
|
||||
* structure "out" must point to a valid management structure. In other
|
||||
* words, the result structure must point to a region of memory that is
|
||||
* typically backed by automatic or allocated (dynamic) storage duration.
|
||||
*
|
||||
* @param[in] g Corner-point specification. If "actnum" is NULL, then
|
||||
* the specification is interpreted as if all cells are
|
||||
* initially active.
|
||||
* @param[in] tol Absolute tolerance of node-coincidence.
|
||||
* @param[in,out] out Minimal grid representation featuring face-to-cell
|
||||
* neighbourship definition, vertex geometry, face's
|
||||
* constituent vertices, and local-to-global cell
|
||||
* mapping.
|
||||
*/
|
||||
void process_grdecl(const struct grdecl *g ,
|
||||
double tol,
|
||||
struct processed_grid *out);
|
||||
|
||||
/**
|
||||
* Release memory resources acquired in previous grid processing using
|
||||
* function process_grdecl().
|
||||
*
|
||||
* Note: This function releases the resources associated to the individual
|
||||
* fields of the processed_grid, but does not free() the structure itself.
|
||||
*
|
||||
* @param[in,out] g Prototypical grid representation obtained in an earlier
|
||||
* call to function process_grdecl().
|
||||
*/
|
||||
void free_processed_grid(struct processed_grid *g);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -65,13 +65,20 @@ namespace Opm
|
||||
rtol_ (rtol) ,
|
||||
is_spd_(is_spd)
|
||||
{
|
||||
#if !HAVE_AGMG
|
||||
THROW("AGMG support is not enabled in this library");
|
||||
#endif // HAVE_AGMG
|
||||
}
|
||||
|
||||
LinearSolverAGMG::LinearSolverAGMG(const parameter::ParameterGroup& param)
|
||||
: max_it_(100) ,
|
||||
rtol_ (1.0e-6),
|
||||
is_spd_(false)
|
||||
{
|
||||
max_it_ = param.getDefault("max_it", max_it_);
|
||||
rtol_ = param.getDefault("rtol" , rtol_ );
|
||||
is_spd_ = param.getDefault("is_spd", is_spd_);
|
||||
}
|
||||
|
||||
LinearSolverAGMG::~LinearSolverAGMG() {}
|
||||
|
||||
|
||||
LinearSolverInterface::LinearSolverReport
|
||||
LinearSolverAGMG::solve(const int size ,
|
||||
const int nonzeros,
|
||||
|
@ -43,6 +43,7 @@
|
||||
*/
|
||||
|
||||
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
@ -62,20 +63,29 @@ namespace Opm
|
||||
const double rtol = 1.0e-6,
|
||||
const bool is_spd = false);
|
||||
|
||||
/// Destructor.
|
||||
/**
|
||||
* Constructor.
|
||||
* \param[in] param ParameterGroup object containing the fields
|
||||
* max_it,rtol,is_spd as used in the constructor.
|
||||
*/
|
||||
LinearSolverAGMG(const parameter::ParameterGroup& param);
|
||||
|
||||
/**
|
||||
* Destructor.
|
||||
*/
|
||||
virtual ~LinearSolverAGMG();
|
||||
|
||||
using LinearSolverInterface::solve;
|
||||
|
||||
/// Solve a linear system, with a matrix given in compressed
|
||||
/// sparse row format.
|
||||
/// \param[in] size Number of rows (and colums).
|
||||
/// \param[in] nonzeros Number of (structural) non-zeros.
|
||||
/// \param[in] ia Row pointers.
|
||||
/// \param[in] ja Column indices.
|
||||
/// \param[in] sa (structurally) non-zero elements.
|
||||
/// \param[in] rhs System right-hand side.
|
||||
/// \param[inout] solution System solution.
|
||||
/// \param[in] size Number of rows (and columns).
|
||||
/// \param[in] nonzeros Number of (structural) non-zeros.
|
||||
/// \param[in] ia Row pointers.
|
||||
/// \param[in] ja Column indices.
|
||||
/// \param[in] sa (structurally) non-zero elements.
|
||||
/// \param[in] rhs System right-hand side.
|
||||
/// \param[in,out] solution System solution.
|
||||
/// \return Solver meta-data concerning most recent system solve.
|
||||
virtual LinearSolverInterface::LinearSolverReport
|
||||
solve(const int size, const int nonzeros,
|
||||
|
@ -31,6 +31,11 @@
|
||||
#include <opm/core/linalg/LinearSolverIstl.hpp>
|
||||
#endif
|
||||
|
||||
#if HAVE_AGMG
|
||||
#include <opm/core/linalg/LinearSolverAGMG.hpp>
|
||||
#endif
|
||||
|
||||
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <string>
|
||||
@ -70,6 +75,12 @@ namespace Opm
|
||||
#endif
|
||||
}
|
||||
|
||||
else if (ls == "agmg") {
|
||||
#if HAVE_AGMG
|
||||
solver_.reset(new LinearSolverAGMG(param));
|
||||
#endif
|
||||
}
|
||||
|
||||
else {
|
||||
THROW("Linear solver " << ls << " is unknown.");
|
||||
}
|
||||
|
@ -24,10 +24,7 @@
|
||||
|
||||
#include <opm/core/linalg/LinearSolverIstl.hpp>
|
||||
|
||||
// Work around the fact that istl headers expect
|
||||
// HAVE_BOOST to be 1, and not just defined.
|
||||
#undef HAVE_BOOST
|
||||
#define HAVE_BOOST 1
|
||||
#include <opm/core/utility/have_boost_redef.hpp>
|
||||
|
||||
// TODO: clean up includes.
|
||||
#include <dune/common/deprecated.hh>
|
||||
|
@ -30,6 +30,7 @@
|
||||
#include <opm/core/newwells.h>
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/fluid/RockCompressibility.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
@ -58,6 +59,7 @@ namespace Opm
|
||||
/// to change.
|
||||
CompressibleTpfa::CompressibleTpfa(const UnstructuredGrid& grid,
|
||||
const BlackoilPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp_props,
|
||||
const LinearSolverInterface& linsolver,
|
||||
const double residual_tol,
|
||||
const double change_tol,
|
||||
@ -66,6 +68,7 @@ namespace Opm
|
||||
const struct Wells* wells)
|
||||
: grid_(grid),
|
||||
props_(props),
|
||||
rock_comp_props_(rock_comp_props),
|
||||
linsolver_(linsolver),
|
||||
residual_tol_(residual_tol),
|
||||
change_tol_(change_tol),
|
||||
@ -74,8 +77,8 @@ namespace Opm
|
||||
wells_(wells),
|
||||
htrans_(grid.cell_facepos[ grid.number_of_cells ]),
|
||||
trans_ (grid.number_of_faces),
|
||||
porevol_(grid.number_of_cells),
|
||||
allcells_(grid.number_of_cells)
|
||||
allcells_(grid.number_of_cells),
|
||||
singular_(false)
|
||||
{
|
||||
if (wells_ && (wells_->number_of_phases != props.numPhases())) {
|
||||
THROW("Inconsistent number of phases specified (wells vs. props): "
|
||||
@ -86,7 +89,12 @@ namespace Opm
|
||||
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
|
||||
tpfa_htrans_compute(gg, props.permeability(), &htrans_[0]);
|
||||
tpfa_trans_compute(gg, &htrans_[0], &trans_[0]);
|
||||
computePorevolume(grid_, props.porosity(), porevol_);
|
||||
// If we have rock compressibility, pore volumes are updated
|
||||
// in the compute*() methods, otherwise they are constant and
|
||||
// hence may be computed here.
|
||||
if (rock_comp_props_ == NULL || !rock_comp_props_->isActive()) {
|
||||
computePorevolume(grid_, props.porosity(), porevol_);
|
||||
}
|
||||
for (int c = 0; c < grid.number_of_cells; ++c) {
|
||||
allcells_[c] = c;
|
||||
}
|
||||
@ -182,6 +190,21 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
/// @brief After solve(), was the resulting pressure singular.
|
||||
/// Returns true if the pressure is singular in the following
|
||||
/// sense: if everything is incompressible and there are no
|
||||
/// pressure conditions, the absolute values of the pressure
|
||||
/// solution are arbitrary. (But the differences in pressure
|
||||
/// are significant.)
|
||||
bool CompressibleTpfa::singularPressure() const
|
||||
{
|
||||
return singular_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/// Compute well potentials.
|
||||
void CompressibleTpfa::computeWellPotentials(const BlackoilState& state)
|
||||
{
|
||||
@ -230,6 +253,9 @@ namespace Opm
|
||||
const WellState& /*well_state*/)
|
||||
{
|
||||
computeWellPotentials(state);
|
||||
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
||||
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), initial_porevol_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -252,6 +278,8 @@ namespace Opm
|
||||
// std::vector<double> face_gravcap_;
|
||||
// std::vector<double> wellperf_A_;
|
||||
// std::vector<double> wellperf_phasemob_;
|
||||
// std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
|
||||
// std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
|
||||
computeCellDynamicData(dt, state, well_state);
|
||||
computeFaceDynamicData(dt, state, well_state);
|
||||
computeWellDynamicData(dt, state, well_state);
|
||||
@ -273,6 +301,8 @@ namespace Opm
|
||||
// std::vector<double> cell_viscosity_;
|
||||
// std::vector<double> cell_phasemob_;
|
||||
// std::vector<double> cell_voldisc_;
|
||||
// std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
|
||||
// std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = props_.numPhases();
|
||||
const double* cell_p = &state.pressure()[0];
|
||||
@ -296,6 +326,14 @@ namespace Opm
|
||||
// TODO: Check this!
|
||||
cell_voldisc_.clear();
|
||||
cell_voldisc_.resize(nc, 0.0);
|
||||
|
||||
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
||||
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol_);
|
||||
rock_comp_.resize(nc);
|
||||
for (int cell = 0; cell < nc; ++cell) {
|
||||
rock_comp_[cell] = rock_comp_props_->rockComp(state.pressure()[cell]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -341,7 +379,7 @@ namespace Opm
|
||||
const double depth_diff = face_depth - grid_.cell_centroids[c[j]*dim + dim - 1];
|
||||
props_.density(1, &cell_A_[np*np*c[j]], &gravcontrib[j][0]);
|
||||
for (int p = 0; p < np; ++p) {
|
||||
gravcontrib[j][p] *= depth_diff;
|
||||
gravcontrib[j][p] *= depth_diff*grav;
|
||||
}
|
||||
} else {
|
||||
std::fill(gravcontrib[j].begin(), gravcontrib[j].end(), 0.0);
|
||||
@ -465,9 +503,20 @@ namespace Opm
|
||||
cq.Af = &face_A_[0];
|
||||
cq.phasemobf = &face_phasemob_[0];
|
||||
cq.voldiscr = &cell_voldisc_[0];
|
||||
cfs_tpfa_res_assemble(gg, dt, &forces, z, &cq, &trans_[0],
|
||||
&face_gravcap_[0], cell_press, well_bhp,
|
||||
&porevol_[0], h_);
|
||||
int was_adjusted = 0;
|
||||
if (! (rock_comp_props_ && rock_comp_props_->isActive())) {
|
||||
was_adjusted =
|
||||
cfs_tpfa_res_assemble(gg, dt, &forces, z, &cq, &trans_[0],
|
||||
&face_gravcap_[0], cell_press, well_bhp,
|
||||
&porevol_[0], h_);
|
||||
} else {
|
||||
was_adjusted =
|
||||
cfs_tpfa_res_comprock_assemble(gg, dt, &forces, z, &cq, &trans_[0],
|
||||
&face_gravcap_[0], cell_press, well_bhp,
|
||||
&porevol_[0], &initial_porevol_[0],
|
||||
&rock_comp_[0], h_);
|
||||
}
|
||||
singular_ = (was_adjusted == 1);
|
||||
}
|
||||
|
||||
|
||||
|
@ -33,6 +33,7 @@ namespace Opm
|
||||
|
||||
class BlackoilState;
|
||||
class BlackoilPropertiesInterface;
|
||||
class RockCompressibility;
|
||||
class LinearSolverInterface;
|
||||
class WellState;
|
||||
|
||||
@ -44,23 +45,25 @@ namespace Opm
|
||||
{
|
||||
public:
|
||||
/// Construct solver.
|
||||
/// \param[in] grid A 2d or 3d grid.
|
||||
/// \param[in] props Rock and fluid properties.
|
||||
/// \param[in] linsolver Linear solver to use.
|
||||
/// \param[in] residual_tol Solution accepted if inf-norm of residual is smaller.
|
||||
/// \param[in] change_tol Solution accepted if inf-norm of change in pressure is smaller.
|
||||
/// \param[in] maxiter Maximum acceptable number of iterations.
|
||||
/// \param[in] gravity Gravity vector. If non-null, the array should
|
||||
/// have D elements.
|
||||
/// \param[in] wells The wells argument. Will be used in solution,
|
||||
/// is ignored if NULL.
|
||||
/// Note: this class observes the well object, and
|
||||
/// makes the assumption that the well topology
|
||||
/// and completions does not change during the
|
||||
/// run. However, controls (only) are allowed
|
||||
/// to change.
|
||||
CompressibleTpfa(const UnstructuredGrid& grid,
|
||||
/// \param[in] grid A 2d or 3d grid.
|
||||
/// \param[in] props Rock and fluid properties.
|
||||
/// \param[in] rock_comp_props Rock compressibility properties. May be null.
|
||||
/// \param[in] linsolver Linear solver to use.
|
||||
/// \param[in] residual_tol Solution accepted if inf-norm of residual is smaller.
|
||||
/// \param[in] change_tol Solution accepted if inf-norm of change in pressure is smaller.
|
||||
/// \param[in] maxiter Maximum acceptable number of iterations.
|
||||
/// \param[in] gravity Gravity vector. If non-null, the array should
|
||||
/// have D elements.
|
||||
/// \param[in] wells The wells argument. Will be used in solution,
|
||||
/// is ignored if NULL.
|
||||
/// Note: this class observes the well object, and
|
||||
/// makes the assumption that the well topology
|
||||
/// and completions does not change during the
|
||||
/// run. However, controls (only) are allowed
|
||||
/// to change.
|
||||
CompressibleTpfa(const UnstructuredGrid& grid,
|
||||
const BlackoilPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp_props,
|
||||
const LinearSolverInterface& linsolver,
|
||||
const double residual_tol,
|
||||
const double change_tol,
|
||||
@ -68,8 +71,8 @@ namespace Opm
|
||||
const double* gravity,
|
||||
const Wells* wells);
|
||||
|
||||
/// Destructor.
|
||||
~CompressibleTpfa();
|
||||
/// Destructor.
|
||||
~CompressibleTpfa();
|
||||
|
||||
/// Solve the pressure equation by Newton-Raphson scheme.
|
||||
/// May throw an exception if the number of iterations
|
||||
@ -78,17 +81,24 @@ namespace Opm
|
||||
BlackoilState& state,
|
||||
WellState& well_state);
|
||||
|
||||
/// @brief After solve(), was the resulting pressure singular.
|
||||
/// Returns true if the pressure is singular in the following
|
||||
/// sense: if everything is incompressible and there are no
|
||||
/// pressure conditions, the absolute values of the pressure
|
||||
/// solution are arbitrary. (But the differences in pressure
|
||||
/// are significant.)
|
||||
bool singularPressure() const;
|
||||
|
||||
private:
|
||||
void computePerSolveDynamicData(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state);
|
||||
void computeWellPotentials(const BlackoilState& state);
|
||||
virtual void computePerSolveDynamicData(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state);
|
||||
void computePerIterationDynamicData(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state);
|
||||
void computeCellDynamicData(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state);
|
||||
virtual void computeCellDynamicData(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state);
|
||||
void computeFaceDynamicData(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state);
|
||||
@ -101,28 +111,31 @@ namespace Opm
|
||||
void solveIncrement();
|
||||
double residualNorm() const;
|
||||
double incrementNorm() const;
|
||||
void computeResults(BlackoilState& state,
|
||||
void computeResults(BlackoilState& state,
|
||||
WellState& well_state) const;
|
||||
protected:
|
||||
void computeWellPotentials(const BlackoilState& state);
|
||||
|
||||
// ------ Data that will remain unmodified after construction. ------
|
||||
const UnstructuredGrid& grid_;
|
||||
const UnstructuredGrid& grid_;
|
||||
const BlackoilPropertiesInterface& props_;
|
||||
const RockCompressibility* rock_comp_props_;
|
||||
const LinearSolverInterface& linsolver_;
|
||||
const double residual_tol_;
|
||||
const double change_tol_;
|
||||
const int maxiter_;
|
||||
const double* gravity_; // May be NULL
|
||||
const Wells* wells_; // May be NULL, outside may modify controls (only) between calls to solve().
|
||||
std::vector<double> htrans_;
|
||||
std::vector<double> trans_ ;
|
||||
std::vector<double> porevol_;
|
||||
std::vector<double> htrans_;
|
||||
std::vector<double> trans_ ;
|
||||
std::vector<int> allcells_;
|
||||
|
||||
// ------ Internal data for the cfs_tpfa_res solver. ------
|
||||
struct cfs_tpfa_res_data* h_;
|
||||
struct cfs_tpfa_res_data* h_;
|
||||
|
||||
// ------ Data that will be modified for every solve. ------
|
||||
std::vector<double> wellperf_gpot_;
|
||||
std::vector<double> initial_porevol_;
|
||||
|
||||
// ------ Data that will be modified for every solver iteration. ------
|
||||
std::vector<double> cell_A_;
|
||||
@ -135,13 +148,15 @@ namespace Opm
|
||||
std::vector<double> face_gravcap_;
|
||||
std::vector<double> wellperf_A_;
|
||||
std::vector<double> wellperf_phasemob_;
|
||||
std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
|
||||
std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
|
||||
// The update to be applied to the pressures (cell and bhp).
|
||||
std::vector<double> pressure_increment_;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// True if the matrix assembled would be singular but for the
|
||||
// adjustment made in the cfs_*_assemble() calls. This happens
|
||||
// if everything is incompressible and there are no pressure
|
||||
// conditions.
|
||||
bool singular_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -27,8 +27,9 @@
|
||||
#include <opm/core/pressure/flow_bc.h>
|
||||
#include <opm/core/pressure/mimetic/mimetic.h> // for updating gpress
|
||||
#include <opm/core/GridAdapter.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <stdexcept>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
|
||||
/// @brief
|
||||
|
@ -358,28 +358,193 @@ hybsys_schur_comp_gen(int nc, const int *pconn,
|
||||
const double *Binv, const double *C2,
|
||||
const double *P, struct hybsys *sys);
|
||||
|
||||
/**
|
||||
* Compute elemental contributions to global, symmetric system of
|
||||
* simultaneous linear equations from cell<->well connections.
|
||||
*
|
||||
* Specifically, for a well @c w intersecting a cell @c c, this function
|
||||
* computes the elemental contributions
|
||||
* \f[
|
||||
* (F_1)_{wc} = C_{wc}^\mathsf{T} B_{wc}^{-1} D_{wc} = \mathit{WI}_{wc}
|
||||
* \f]
|
||||
* and
|
||||
* \f[
|
||||
* L_{wc} = C_{wc}^\mathsf{T} B_{wc}^{-1} C_{wc} = \mathit{WI}_{wc}
|
||||
* \f]
|
||||
* and incorporates the contributions into the global system quantities
|
||||
* as appropriate.
|
||||
*
|
||||
* This function modifies <CODE>sys->L</CODE> and <CODE>wsys->F1</CODE>.
|
||||
*
|
||||
* @param[in] nc Total number of grid cells.
|
||||
* @param[in] cwpos Indirection array that defines each cell's
|
||||
* connecting wells. Values typically computed
|
||||
* using function derive_cell_wells().
|
||||
* @param[in] WI Peaceman well connection indices. Array of
|
||||
* size <CODE>cwpos[nc]</CODE>. Must incorporate
|
||||
* effects of multiple phases (i.e., total mobility)
|
||||
* if applicable.
|
||||
* @param[in,out] sys Hybrid system management structure allocated
|
||||
* using hybsys_allocate_symm() and initialised
|
||||
* using hybsys_init() and/or filled using function
|
||||
* hybsys_schur_comp_symm().
|
||||
* @param[in,out] wsys Hybrid well-system management structure obtained
|
||||
* from function hybsys_well_allocate_symm().
|
||||
*/
|
||||
void
|
||||
hybsys_well_schur_comp_symm(int nc, const int *cwpos,
|
||||
double *WI,
|
||||
struct hybsys *sys,
|
||||
struct hybsys_well *wsys);
|
||||
|
||||
/**
|
||||
* Compute final (symmetric) Schur complement contributions to
|
||||
* global system of simultaneous linear equations.
|
||||
*
|
||||
* This function forms the coefficient matrix
|
||||
* \f[
|
||||
* S_c = D^\mathsf{T}B_c^{-1}D - F_c^\mathsf{T}L_c^{-1}F_c
|
||||
* \f]
|
||||
* and similar right-hand side \f$r_c\f$ elemental contributions.
|
||||
* These values must be subsequently assembled into the global system
|
||||
* using function hybsys_global_assemble_cell() after imposing any
|
||||
* applicable boundary conditions.
|
||||
*
|
||||
* This function overwrites the fields @c S and @c r of the hybrid system
|
||||
* structure.
|
||||
*
|
||||
* @param[in] c Cell for which to compute local contributions.
|
||||
* @param[in] nconn Number of connections (faces) of cell @c c.
|
||||
* @param[in] p1 Start address (into @c gpress) of the gravity
|
||||
* contributions of cell @c c.
|
||||
* @param[in] p2 Start address (into @c Binv) of the inverse
|
||||
* inner product of cell @c c.
|
||||
* @param[in] gpress Gravity contributions of all cells. Must
|
||||
* include effects of multiple phases if applicable.
|
||||
* @param[in] src Explicit source terms for all cells.
|
||||
* @param[in] Binv Inverse inner products for all cells. Must
|
||||
* include effects of multiple phases if applicable.
|
||||
* @param[in,out] sys Hybrid system management structure allocated
|
||||
* using hybsys_allocate_symm() and initialised
|
||||
* using hybsys_init() and/or filled using function
|
||||
* hybsys_schur_comp_symm() and
|
||||
* hybsys_well_schur_comp_symm() if applicable.
|
||||
*/
|
||||
void
|
||||
hybsys_cellcontrib_symm(int c, int nconn, int p1, int p2,
|
||||
const double *gpress, const double *src,
|
||||
const double *Binv, struct hybsys *sys);
|
||||
|
||||
|
||||
/**
|
||||
* Compute final (non-symmetric) Schur complement contributions to
|
||||
* global system of simultaneous linear equations.
|
||||
*
|
||||
* This function forms the coefficient matrix
|
||||
* \f[
|
||||
* S_c = D^\mathsf{T}B_c^{-1}D - (F_1)_c^\mathsf{T}L_c^{-1}(F_2)_c
|
||||
* \f]
|
||||
* and similar right-hand side \f$r_c\f$ elemental contributions.
|
||||
* These values must be subsequently assembled into the global system
|
||||
* using function hybsys_global_assemble_cell() after imposing any
|
||||
* applicable boundary conditions.
|
||||
*
|
||||
* This function overwrites the fields @c S and @c r of the hybrid system
|
||||
* structure.
|
||||
*
|
||||
* @param[in] c Cell for which to compute local contributions.
|
||||
* @param[in] nconn Number of connections (faces) of cell @c c.
|
||||
* @param[in] p1 Start address (into @c gpress) of the gravity
|
||||
* contributions of cell @c c.
|
||||
* @param[in] p2 Start address (into @c Binv) of the inverse
|
||||
* inner product of cell @c c.
|
||||
* @param[in] gpress Gravity contributions of all cells. Must
|
||||
* include effects of multiple phases if applicable.
|
||||
* @param[in] src Explicit source terms for all cells.
|
||||
* @param[in] Binv Inverse inner products for all cells. Must
|
||||
* include effects of multiple phases if applicable.
|
||||
* @param[in,out] sys Hybrid system management structure allocated
|
||||
* using hybsys_allocate_symm() and initialised
|
||||
* using hybsys_init() and/or filled using functions
|
||||
* hybsys_schur_comp_unsymm() or hybsys_schur_comp_gen().
|
||||
*/
|
||||
void
|
||||
hybsys_cellcontrib_unsymm(int c, int nconn, int p1, int p2,
|
||||
const double *gpress, const double *src,
|
||||
const double *Binv, struct hybsys *sys);
|
||||
|
||||
|
||||
/**
|
||||
* Form elemental direct contributions to global system of simultaneous linear
|
||||
* equations from cell<->well interactions.
|
||||
*
|
||||
* Plays a role similar to function hybsys_cellcontrib_symm(), but for wells.
|
||||
*
|
||||
* @param[in] c Cell for which to compute cell<->well Schur complement
|
||||
* @param[in] ngconn Number of inter-cell connections (faces) of cell @c c.
|
||||
* @param[in] p1 Start index (into <CODE>sys->F1</CODE>) of cell @c c.
|
||||
* @param[in] cwpos Indirection array that defines each cell's connecting
|
||||
* wells. Must coincide with equally named parameter of
|
||||
* function hybsys_well_schur_comp_symm().
|
||||
* @param[in] WI Peaceman well connection indices. Array of
|
||||
* size <CODE>pwconn[nc]</CODE>. Must coincide with
|
||||
* equally named parameter of contribution function
|
||||
* hybsys_well_schur_comp_symm().
|
||||
* @param[in] wdp Well connection gravity pressure adjustments.
|
||||
* One scalar for each well connection in an array of size
|
||||
* <CODE>pwconn[nc]</CODE>.
|
||||
* @param[in,out] sys Hybrid system management structure filled using
|
||||
* functions hybsys_schur_comp_unsymm() or
|
||||
* hybsys_schur_comp_gen().
|
||||
* @param[in,out] wsys Hybrid well-system management structure filled using
|
||||
* function hybsys_well_schur_comp_symm().
|
||||
*/
|
||||
void
|
||||
hybsys_well_cellcontrib_symm(int c, int ngconn, int p1,
|
||||
const int *cwpos,
|
||||
const double *WI, const double *wdp,
|
||||
struct hybsys *sys, struct hybsys_well *wsys);
|
||||
|
||||
|
||||
/**
|
||||
* Recover cell pressures and outward fluxes (with respect to cells--i.e., the
|
||||
* ``half-face fluxes'') through back substitution after solving a symmetric
|
||||
* (i.e., incompressible) Schur complement system of simultaneous linear
|
||||
* equations.
|
||||
*
|
||||
* Specifically, given the solution \f$\pi\f$ to the global system of
|
||||
* simultaneous linear equations, \f$A\pi=b\f$, that arises as a result of the
|
||||
* Schur complement analysis, this function recovers the cell pressures \f$p\f$
|
||||
* and outward fluxes \f$v\f$ defined by
|
||||
* \f[
|
||||
* \begin{aligned}
|
||||
* Lp &= g - C_2^\mathsf{T}B^{-1}G + F_2\pi \\
|
||||
* Bv &= G + C_1p - D\pi
|
||||
* \end{aligned}.
|
||||
* \f]
|
||||
*
|
||||
* @param[in] nc Total number of grid cells.
|
||||
* @param[in] pconn Cell-to-face start pointers.
|
||||
* @param[in] conn Cell-to-face mapping.
|
||||
* @param[in] gpress Gravity contributions of all cells. Must coincide with
|
||||
* equally named parameter in calls to cell contribution
|
||||
* functions such as hybsys_cellcontrib_symm().
|
||||
* @param[in] Binv Inverse inner products for all cells. Must coincide
|
||||
* with equally named parameter in calls to contribution
|
||||
* functions such as hybsys_cellcontrib_symm().
|
||||
* @param[in] sys Hybrid system management structure coinciding with
|
||||
* equally named parameter in contribution functions such
|
||||
* as hybsys_cellcontrib_symm() or
|
||||
* hybsys_cellcontrib_unsymm().
|
||||
* @param[in] pi Solution (interface/contact pressure) obtained from
|
||||
* solving the global system \f$A\pi = b\f$.
|
||||
* @param[out] press Cell pressures, \f$p\f$. Array of size @c nc.
|
||||
* @param[out] flux Outward interface fluxes, \f$v\f$. Array of size
|
||||
* <CODE>pconn[nc]</CODE>.
|
||||
* @param[in,out] work Scratch array for temporary results. Array of size at
|
||||
* least \f$\max_c \{ \mathit{pconn}_{c + 1}
|
||||
* - \mathit{pconn}_c \} \f$.
|
||||
*/
|
||||
void
|
||||
hybsys_compute_press_flux(int nc, const int *pconn, const int *conn,
|
||||
const double *gpress,
|
||||
@ -387,6 +552,52 @@ hybsys_compute_press_flux(int nc, const int *pconn, const int *conn,
|
||||
const double *pi, double *press, double *flux,
|
||||
double *work);
|
||||
|
||||
|
||||
/**
|
||||
* Recover well pressures (i.e., bottom-hole pressure values) and well
|
||||
* connection (perforation) fluxes.
|
||||
*
|
||||
* Specifically, this function performs the same role (i.e., back-substitution)
|
||||
* for wells as function hybsys_compute_press_flux() does for grid cells and
|
||||
* grid contacts (interfaces).
|
||||
*
|
||||
* @param[in] nc Total number of grid cells.
|
||||
* @param[in] pgconn Cell-to-face start pointers.
|
||||
* @param[in] nf Total number of grid faces.
|
||||
* @param[in] nw Total number of wells.
|
||||
* @param[in] pwconn Cell-to-well start pointers. If <CODE>nw > 0</CODE>,
|
||||
* then this parameter must coincide with the @c cwpos
|
||||
* array used in call to hybsys_well_schur_comp_symm().
|
||||
* @param[in] wconn Cell-to-well mapping.
|
||||
* @param[in] Binv Inverse inner products for all cells. Must coincide
|
||||
* with equally named parameter in calls to contribution
|
||||
* functions such as hybsys_well_cellcontrib_symm().
|
||||
* @param[in] WI Peaceman well connection indices. Array of
|
||||
* size <CODE>pwconn[nc]</CODE>. Must coincide with
|
||||
* equally named parameter of contribution function
|
||||
* hybsys_well_cellcontrib_symm().
|
||||
* @param[in] wdp Well connection gravity pressure adjustments.
|
||||
* @param[in] sys Hybrid system management structure coinciding with
|
||||
* equally named parameter in contribution functions such
|
||||
* as hybsys_cellcontrib_symm() and
|
||||
* hybsys_well_cellcontrib_symm().
|
||||
* @param[in] wsys Hybrid well-system management structure. Must coincide
|
||||
* with equally named paramter of contribution function
|
||||
* hybsys_well_cellcontrib_symm().
|
||||
* @param[in] pi Solution (interface/contact pressure and well BHPs)
|
||||
* obtained from solving the global system \f$A\pi = b\f$.
|
||||
* @param[in] cpress Cell pressures, \f$p\f$, obtained from a previous call
|
||||
* to function hybsys_compute_press_flux().
|
||||
* @param[in] cflux Outward fluxes, \f$v\f$, obtained from a previous call
|
||||
* to function hybsys_compute_press_flux().
|
||||
* @param[out] wpress Well (i.e., bottom-hole) pressures. Array of size
|
||||
* @c nw.
|
||||
* @param[out] wflux Well connection (perforation) fluxes. Array of size
|
||||
* <CODE>pwconn[nw]</CODE>.
|
||||
* @param[in,out] work Scratch array for storing intermediate results. Array
|
||||
* of size at least \f$\max_w \{ \mathit{pwconn}_{w + 1}
|
||||
* - \mathit{pwconn}_w\}\f$.
|
||||
*/
|
||||
void
|
||||
hybsys_compute_press_flux_well(int nc, const int *pgconn, int nf,
|
||||
int nw, const int *pwconn, const int *wconn,
|
||||
|
@ -1156,7 +1156,7 @@ cfs_tpfa_res_construct(struct UnstructuredGrid *G ,
|
||||
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
void
|
||||
int
|
||||
cfs_tpfa_res_assemble(struct UnstructuredGrid *G ,
|
||||
double dt ,
|
||||
struct cfs_tpfa_res_forces *forces ,
|
||||
@ -1170,7 +1170,7 @@ cfs_tpfa_res_assemble(struct UnstructuredGrid *G ,
|
||||
struct cfs_tpfa_res_data *h )
|
||||
/* ---------------------------------------------------------------------- */
|
||||
{
|
||||
int res_is_neumann, well_is_neumann, c, np2;
|
||||
int res_is_neumann, well_is_neumann, c, np2, singular;
|
||||
|
||||
csrmatrix_zero( h->J);
|
||||
vector_zero (h->J->m, h->F);
|
||||
@ -1207,9 +1207,76 @@ cfs_tpfa_res_assemble(struct UnstructuredGrid *G ,
|
||||
assemble_sources(dt, forces->src, h);
|
||||
}
|
||||
|
||||
if (res_is_neumann && well_is_neumann && h->pimpl->is_incomp) {
|
||||
h->J->sa[0] *= 2;
|
||||
singular = res_is_neumann && well_is_neumann && h->pimpl->is_incomp;
|
||||
if (singular) {
|
||||
h->J->sa[0] *= 2.0;
|
||||
}
|
||||
|
||||
return singular;
|
||||
}
|
||||
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
int
|
||||
cfs_tpfa_res_comprock_assemble(
|
||||
struct UnstructuredGrid *G ,
|
||||
double dt ,
|
||||
struct cfs_tpfa_res_forces *forces ,
|
||||
const double *zc ,
|
||||
struct compr_quantities_gen *cq ,
|
||||
const double *trans ,
|
||||
const double *gravcap_f,
|
||||
const double *cpress ,
|
||||
const double *wpress ,
|
||||
const double *porevol ,
|
||||
const double *porevol0 ,
|
||||
const double *rock_comp,
|
||||
struct cfs_tpfa_res_data *h )
|
||||
/* ---------------------------------------------------------------------- */
|
||||
{
|
||||
/* We want to add this term to the usual residual:
|
||||
*
|
||||
* (porevol(pressure)-porevol(initial_pressure))/dt.
|
||||
*
|
||||
* Its derivative (for the diagonal term of the Jacobian) is:
|
||||
*
|
||||
* porevol(pressure)*rock_comp(pressure)/dt
|
||||
*/
|
||||
|
||||
int c, rock_is_incomp, singular;
|
||||
size_t j;
|
||||
double dpv;
|
||||
|
||||
/* Assemble usual system (without rock compressibility). */
|
||||
singular = cfs_tpfa_res_assemble(G, dt, forces, zc, cq, trans, gravcap_f,
|
||||
cpress, wpress, porevol0, h);
|
||||
|
||||
/* If we made a singularity-removing adjustment in the
|
||||
regular assembly, we undo it here. */
|
||||
if (singular) {
|
||||
h->J->sa[0] /= 2.0;
|
||||
}
|
||||
|
||||
/* Add new terms to residual and Jacobian. */
|
||||
rock_is_incomp = 1;
|
||||
for (c = 0; c < G->number_of_cells; c++) {
|
||||
j = csrmatrix_elm_index(c, c, h->J);
|
||||
|
||||
dpv = (porevol[c] - porevol0[c]);
|
||||
if (dpv != 0.0 || rock_comp[c] != 0.0) {
|
||||
rock_is_incomp = 0;
|
||||
}
|
||||
|
||||
h->J->sa[j] += porevol[c] * rock_comp[c];
|
||||
h->F[c] += dpv;
|
||||
}
|
||||
|
||||
/* Re-do the singularity-removing adjustment if necessary */
|
||||
if (rock_is_incomp && singular) {
|
||||
h->J->sa[0] *= 2.0;
|
||||
}
|
||||
|
||||
return rock_is_incomp && singular;
|
||||
}
|
||||
|
||||
|
||||
|
@ -59,7 +59,11 @@ cfs_tpfa_res_construct(struct UnstructuredGrid *G ,
|
||||
void
|
||||
cfs_tpfa_res_destroy(struct cfs_tpfa_res_data *h);
|
||||
|
||||
void
|
||||
/* Return value is 1 if the assembled matrix was adjusted to remove a
|
||||
singularity. This happens if all fluids are incompressible and
|
||||
there are no pressure conditions on wells or boundaries.
|
||||
Otherwise return 0. */
|
||||
int
|
||||
cfs_tpfa_res_assemble(struct UnstructuredGrid *G,
|
||||
double dt,
|
||||
struct cfs_tpfa_res_forces *forces,
|
||||
@ -72,6 +76,27 @@ cfs_tpfa_res_assemble(struct UnstructuredGrid *G,
|
||||
const double *porevol,
|
||||
struct cfs_tpfa_res_data *h);
|
||||
|
||||
/* Return value is 1 if the assembled matrix was adjusted to remove a
|
||||
singularity. This happens if all fluids are incompressible, the
|
||||
rock is incompressible, and there are no pressure conditions on
|
||||
wells or boundaries.
|
||||
Otherwise return 0. */
|
||||
int
|
||||
cfs_tpfa_res_comprock_assemble(
|
||||
struct UnstructuredGrid *G,
|
||||
double dt,
|
||||
struct cfs_tpfa_res_forces *forces,
|
||||
const double *zc,
|
||||
struct compr_quantities_gen *cq,
|
||||
const double *trans,
|
||||
const double *gravcap_f,
|
||||
const double *cpress,
|
||||
const double *wpress,
|
||||
const double *porevol,
|
||||
const double *porevol0,
|
||||
const double *rock_comp,
|
||||
struct cfs_tpfa_res_data *h);
|
||||
|
||||
void
|
||||
cfs_tpfa_res_flux(struct UnstructuredGrid *G ,
|
||||
struct cfs_tpfa_res_forces *forces ,
|
||||
|
@ -771,7 +771,7 @@ ifs_tpfa_assemble_comprock_increment(struct UnstructuredGrid *G ,
|
||||
assemble_incompressible(G, F, trans, gpress, h, &system_singular, &ok);
|
||||
|
||||
/* We want to solve a Newton step for the residual
|
||||
* (porevol(pressure)-porevol(initial_pressure))/dt + residual_for_imcompressible
|
||||
* (porevol(pressure)-porevol(initial_pressure))/dt + residual_for_incompressible
|
||||
*
|
||||
*/
|
||||
|
||||
|
@ -20,6 +20,16 @@
|
||||
#ifndef OPM_IFS_TPFA_HEADER_INCLUDED
|
||||
#define OPM_IFS_TPFA_HEADER_INCLUDED
|
||||
|
||||
/**
|
||||
* \file
|
||||
* Interfaces and data structures to assemble a system of simultaneous linear
|
||||
* equations discretising a flow problem that is either incompressible or
|
||||
* features rock compressibility using the two-point flux approximation method.
|
||||
*
|
||||
* Includes support for reconstructing the Darcy flux field as well as well
|
||||
* connection fluxes.
|
||||
*/
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
@ -31,37 +41,66 @@ struct CSRMatrix;
|
||||
struct FlowBoundaryConditions;
|
||||
struct Wells;
|
||||
|
||||
/**
|
||||
* Main data structure presenting a view of an assembled system of simultaneous
|
||||
* linear equations which may be solved using external software.
|
||||
*/
|
||||
struct ifs_tpfa_data {
|
||||
struct CSRMatrix *A;
|
||||
double *b;
|
||||
double *x;
|
||||
struct CSRMatrix *A; /**< Coefficient matrix */
|
||||
double *b; /**< Right-hand side */
|
||||
double *x; /**< Solution */
|
||||
|
||||
struct ifs_tpfa_impl *pimpl;
|
||||
struct ifs_tpfa_impl *pimpl; /**< Internal management structure */
|
||||
};
|
||||
|
||||
/**
|
||||
* Solution variables.
|
||||
*/
|
||||
struct ifs_tpfa_solution {
|
||||
double *cell_press;
|
||||
double *face_flux ;
|
||||
double *cell_press; /**< Cell pressures */
|
||||
double *face_flux ; /**< Interface fluxes */
|
||||
|
||||
double *well_press; /* BHP */
|
||||
double *well_flux ; /* Perforation (total) fluxes */
|
||||
double *well_press; /**< Bottom-hole pressures for each well */
|
||||
double *well_flux ; /**< Well connection total fluxes */
|
||||
};
|
||||
|
||||
/**
|
||||
* Driving forces pertaining to a particular model setup.
|
||||
*/
|
||||
struct ifs_tpfa_forces {
|
||||
const double *src;
|
||||
const struct FlowBoundaryConditions *bc ;
|
||||
const double *src; /**< Explicit source terms */
|
||||
const struct FlowBoundaryConditions *bc ; /**< Boundary conditions */
|
||||
|
||||
const struct Wells *W ;
|
||||
const double *totmob;
|
||||
const double *wdp ;
|
||||
const struct Wells *W ; /**< Well topology */
|
||||
const double *totmob; /**< Total mobility in each cell */
|
||||
const double *wdp ; /**< Gravity adjustment at each perforation */
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Allocate TPFA management structure capable of assembling a system of
|
||||
* simultaneous linear equations corresponding to a particular grid and well
|
||||
* configuration.
|
||||
*
|
||||
* @param[in] G Grid.
|
||||
* @param[in] W Well topology.
|
||||
* @return Fully formed TPFA management structure if successful, @c NULL in case
|
||||
* of allocation failure.
|
||||
*/
|
||||
struct ifs_tpfa_data *
|
||||
ifs_tpfa_construct(struct UnstructuredGrid *G,
|
||||
struct Wells *W);
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @param[in] G
|
||||
* @param[in] F
|
||||
* @param[in] trans
|
||||
* @param[in] gpress
|
||||
* @param[in,out] h
|
||||
* @return
|
||||
*/
|
||||
int
|
||||
ifs_tpfa_assemble(struct UnstructuredGrid *G ,
|
||||
const struct ifs_tpfa_forces *F ,
|
||||
|
@ -20,23 +20,88 @@
|
||||
#ifndef OPM_TRANS_TPFA_HEADER_INCLUDED
|
||||
#define OPM_TRANS_TPFA_HEADER_INCLUDED
|
||||
|
||||
/**
|
||||
* \file
|
||||
* Routines to assist in the calculation of two-point transmissibilities.
|
||||
*/
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Calculate static, one-sided transmissibilities for use in the two-point flux
|
||||
* approximation method.
|
||||
*
|
||||
* The one-sided transmissibilities are defined by the formula
|
||||
* \f[
|
||||
* t_i = \frac{\vec{n}_f \mathsf{K}_c \vec{c}_c}{\lVert \vec{c}_c \rVert^2}
|
||||
* \f]
|
||||
* in which @c i is the half-face index corresponding to the cell-face index
|
||||
* pair <CODE>(c,f)</CODE> and \f$\vec{c}_{cf} = \Bar{x}_f - \Bar{x}_c\f$ is the
|
||||
* centroid difference vector.
|
||||
*
|
||||
* @param[in] G Grid.
|
||||
* @param[in] perm Permeability. One symmetric, positive definite tensor
|
||||
* per grid cell.
|
||||
* @param[out] htrans One-sided transmissibilities. Array of size at least
|
||||
* <CODE>G->cell_facepos[ G->number_of_cells ]</CODE>.
|
||||
*/
|
||||
void
|
||||
tpfa_htrans_compute(struct UnstructuredGrid *G, const double *perm, double *htrans);
|
||||
tpfa_htrans_compute(struct UnstructuredGrid *G ,
|
||||
const double *perm ,
|
||||
double *htrans);
|
||||
|
||||
/**
|
||||
* Compute two-point transmissibilities from one-sided transmissibilities.
|
||||
*
|
||||
* The two-point transmissibilities are given by the simple, near-harmonic
|
||||
* average (save a factor of two)
|
||||
* \f[
|
||||
* \mathsf{T}_f = \big(\frac{1}{t_1} + \frac{1}{t_2}\big)^{-1}
|
||||
* = \frac{t_1t_2}{t_1 + t_2}
|
||||
* \f]
|
||||
* in which \f$t_1\f$ and \f$t_2\f$ are the one-sided transmissibilities that
|
||||
* connect the neighbouring cells of face @c f.
|
||||
*
|
||||
* @param[in] G Grid.
|
||||
* @param[in] htrans One-sided transmissibilities as defined by function
|
||||
* tpfa_htrans_compute().
|
||||
* @param[out] trans Interface, two-point transmissibilities. Array of size
|
||||
* at least <CODE>G->number_of_faces</CODE>.
|
||||
*/
|
||||
void
|
||||
tpfa_trans_compute(struct UnstructuredGrid *G, const double *htrans, double *trans);
|
||||
tpfa_trans_compute(struct UnstructuredGrid *G ,
|
||||
const double *htrans,
|
||||
double *trans );
|
||||
|
||||
/**
|
||||
* Calculate effective two-point transmissibilities from one-sided, total
|
||||
* mobility weighted, transmissibilities.
|
||||
*
|
||||
* Specifically, compute the following product
|
||||
* \f[
|
||||
* \mathsf{T}_f = \big(\frac{1}{\lambda_1t_1} + \frac{1}{\lambda_2t_2}\big)^{-1}
|
||||
* = \lambda_1\lambda_2 \frac{t_1t_2}{t_1 + t_2}
|
||||
* \f]
|
||||
* in which \f$t_1\f$ and \f$t_2\f$ are the one-sided, static transmissibility
|
||||
* values connecting the cells of face @c f and \f$\lambda_1\f$ and
|
||||
* \f$\lambda_2\f$ denote the total mobilities of the respective cells.
|
||||
*
|
||||
* @param[in] G Grid.
|
||||
* @param[in] totmob Total mobilities. One positive scalar value for each cell.
|
||||
* @param[in] htrans One-sided transmissibilities as defined by function
|
||||
* tpfa_htrans_compute().
|
||||
* @param[out] trans Effective, two-point transmissibilities. Array of size at
|
||||
* least <CODE>G->number_of_faces</CODE>.
|
||||
*/
|
||||
void
|
||||
tpfa_eff_trans_compute(struct UnstructuredGrid *G,
|
||||
const double *totmob,
|
||||
const double *htrans,
|
||||
double *trans);
|
||||
tpfa_eff_trans_compute(struct UnstructuredGrid *G ,
|
||||
const double *totmob,
|
||||
const double *htrans,
|
||||
double *trans );
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -21,11 +21,11 @@
|
||||
#include "config.h"
|
||||
#endif // HAVE_CONFIG_H
|
||||
|
||||
#include <opm/core/simulator/SimulatorTwophase.hpp>
|
||||
#include <opm/core/simulator/SimulatorCompressibleTwophase.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
|
||||
#include <opm/core/pressure/IncompTpfa.hpp>
|
||||
#include <opm/core/pressure/CompressibleTpfa.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/newwells.h>
|
||||
@ -36,16 +36,19 @@
|
||||
#include <opm/core/utility/StopWatch.hpp>
|
||||
#include <opm/core/utility/writeVtkData.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
|
||||
|
||||
#include <opm/core/fluid/IncompPropertiesInterface.hpp>
|
||||
#include <opm/core/wells/WellsManager.hpp>
|
||||
|
||||
#include <opm/core/fluid/BlackoilPropertiesInterface.hpp>
|
||||
#include <opm/core/fluid/RockCompressibility.hpp>
|
||||
|
||||
#include <opm/core/utility/ColumnExtract.hpp>
|
||||
#include <opm/core/simulator/TwophaseState.hpp>
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
|
||||
#include <opm/core/transport/reorder/TransportModelCompressibleTwophase.hpp>
|
||||
|
||||
#include <boost/filesystem/convenience.hpp>
|
||||
#include <boost/filesystem.hpp>
|
||||
#include <boost/scoped_ptr.hpp>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
|
||||
@ -56,21 +59,21 @@
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class SimulatorTwophase::Impl
|
||||
class SimulatorCompressibleTwophase::Impl
|
||||
{
|
||||
public:
|
||||
Impl(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const IncompPropertiesInterface& props,
|
||||
const BlackoilPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp,
|
||||
const Wells* wells,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity);
|
||||
|
||||
SimulatorReport run(SimulatorTimer& timer,
|
||||
TwophaseState& state,
|
||||
BlackoilState& state,
|
||||
WellState& well_state);
|
||||
|
||||
private:
|
||||
@ -78,23 +81,27 @@ namespace Opm
|
||||
|
||||
// Parameters for output.
|
||||
bool output_;
|
||||
bool output_vtk_;
|
||||
std::string output_dir_;
|
||||
int output_interval_;
|
||||
// Parameters for well control
|
||||
bool check_well_controls_;
|
||||
int max_well_control_iterations_;
|
||||
// Parameters for transport solver.
|
||||
int num_transport_substeps_;
|
||||
bool use_segregation_split_;
|
||||
// Observed objects.
|
||||
const UnstructuredGrid& grid_;
|
||||
const IncompPropertiesInterface& props_;
|
||||
const BlackoilPropertiesInterface& props_;
|
||||
const RockCompressibility* rock_comp_;
|
||||
WellsManager& wells_manager_;
|
||||
const Wells* wells_;
|
||||
const std::vector<double>& src_;
|
||||
const FlowBoundaryConditions* bcs_;
|
||||
const LinearSolverInterface& linsolver_;
|
||||
const double* gravity_;
|
||||
// Solvers
|
||||
IncompTpfa psolver_;
|
||||
TransportModelTwophase tsolver_;
|
||||
CompressibleTpfa psolver_;
|
||||
TransportModelCompressibleTwophase tsolver_;
|
||||
// Needed by column-based gravity segregation solver.
|
||||
std::vector< std::vector<int> > columns_;
|
||||
// Misc. data
|
||||
@ -104,40 +111,48 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
SimulatorTwophase::SimulatorTwophase(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const IncompPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp,
|
||||
const Wells* wells,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity)
|
||||
SimulatorCompressibleTwophase::SimulatorCompressibleTwophase(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const BlackoilPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity)
|
||||
{
|
||||
pimpl_.reset(new Impl(param, grid, props, rock_comp, wells, src, bcs, linsolver, gravity));
|
||||
pimpl_.reset(new Impl(param, grid, props, rock_comp, wells_manager, src, bcs, linsolver, gravity));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
SimulatorReport SimulatorTwophase::run(SimulatorTimer& timer,
|
||||
TwophaseState& state,
|
||||
WellState& well_state)
|
||||
SimulatorReport SimulatorCompressibleTwophase::run(SimulatorTimer& timer,
|
||||
BlackoilState& state,
|
||||
WellState& well_state)
|
||||
{
|
||||
return pimpl_->run(timer, state, well_state);
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void outputState(const UnstructuredGrid& grid,
|
||||
const Opm::TwophaseState& state,
|
||||
const int step,
|
||||
const std::string& output_dir)
|
||||
static void outputStateVtk(const UnstructuredGrid& grid,
|
||||
const Opm::BlackoilState& state,
|
||||
const int step,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
// Write data in VTK format.
|
||||
std::ostringstream vtkfilename;
|
||||
vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
|
||||
vtkfilename << output_dir << "/vtk_files";
|
||||
boost::filesystem::path fpath(vtkfilename.str());
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
vtkfilename << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
|
||||
std::ofstream vtkfile(vtkfilename.str().c_str());
|
||||
if (!vtkfile) {
|
||||
THROW("Failed to open " << vtkfilename.str());
|
||||
@ -149,11 +164,33 @@ namespace Opm
|
||||
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
|
||||
dm["velocity"] = &cell_velocity;
|
||||
Opm::writeVtkData(grid, dm, vtkfile);
|
||||
}
|
||||
|
||||
|
||||
static void outputStateMatlab(const UnstructuredGrid& grid,
|
||||
const Opm::BlackoilState& state,
|
||||
const int step,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
Opm::DataMap dm;
|
||||
dm["saturation"] = &state.saturation();
|
||||
dm["pressure"] = &state.pressure();
|
||||
std::vector<double> cell_velocity;
|
||||
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
|
||||
dm["velocity"] = &cell_velocity;
|
||||
|
||||
// Write data (not grid) in Matlab format
|
||||
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
|
||||
std::ostringstream fname;
|
||||
fname << output_dir << "/" << it->first << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
|
||||
fname << output_dir << "/" << it->first;
|
||||
boost::filesystem::path fpath = fname.str();
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
|
||||
std::ofstream file(fname.str().c_str());
|
||||
if (!file) {
|
||||
THROW("Failed to open " << fname.str());
|
||||
@ -191,30 +228,28 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
SimulatorTwophase::Impl::Impl(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const IncompPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp,
|
||||
const Wells* wells,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity)
|
||||
// \TODO: make CompressibleTpfa take src and bcs.
|
||||
SimulatorCompressibleTwophase::Impl::Impl(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const BlackoilPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity)
|
||||
: grid_(grid),
|
||||
props_(props),
|
||||
rock_comp_(rock_comp),
|
||||
wells_(wells),
|
||||
wells_manager_(wells_manager),
|
||||
wells_(wells_manager.c_wells()),
|
||||
src_(src),
|
||||
bcs_(bcs),
|
||||
linsolver_(linsolver),
|
||||
gravity_(gravity),
|
||||
psolver_(grid, props, rock_comp, linsolver,
|
||||
param.getDefault("nl_pressure_residual_tolerance", 0.0),
|
||||
param.getDefault("nl_pressure_change_tolerance", 1.0),
|
||||
param.getDefault("nl_pressure_maxiter", 10),
|
||||
gravity, wells, src, bcs),
|
||||
gravity, wells_manager.c_wells() /*, src, bcs*/),
|
||||
tsolver_(grid, props,
|
||||
param.getDefault("nl_tolerance", 1e-9),
|
||||
param.getDefault("nl_maxiter", 30))
|
||||
@ -222,6 +257,7 @@ namespace Opm
|
||||
// For output.
|
||||
output_ = param.getDefault("output", true);
|
||||
if (output_) {
|
||||
output_vtk_ = param.getDefault("output_vtk", true);
|
||||
output_dir_ = param.getDefault("output_dir", std::string("output"));
|
||||
// Ensure that output dir exists
|
||||
boost::filesystem::path fpath(output_dir_);
|
||||
@ -234,6 +270,10 @@ namespace Opm
|
||||
output_interval_ = param.getDefault("output_interval", 1);
|
||||
}
|
||||
|
||||
// Well control related init.
|
||||
check_well_controls_ = param.getDefault("check_well_controls", false);
|
||||
max_well_control_iterations_ = param.getDefault("max_well_control_iterations", 10);
|
||||
|
||||
// Transport related init.
|
||||
num_transport_substeps_ = param.getDefault("num_transport_substeps", 1);
|
||||
use_segregation_split_ = param.getDefault("use_segregation_split", false);
|
||||
@ -253,9 +293,9 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
SimulatorReport SimulatorTwophase::Impl::run(SimulatorTimer& timer,
|
||||
TwophaseState& state,
|
||||
WellState& well_state)
|
||||
SimulatorReport SimulatorCompressibleTwophase::Impl::run(SimulatorTimer& timer,
|
||||
BlackoilState& state,
|
||||
WellState& well_state)
|
||||
{
|
||||
std::vector<double> transport_src;
|
||||
|
||||
@ -267,13 +307,14 @@ namespace Opm
|
||||
computePorevolume(grid_, props_.porosity(), porevol);
|
||||
}
|
||||
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
|
||||
|
||||
std::vector<double> initial_porevol = porevol;
|
||||
|
||||
// Main simulation loop.
|
||||
Opm::time::StopWatch pressure_timer;
|
||||
double ptime = 0.0;
|
||||
Opm::time::StopWatch transport_timer;
|
||||
double ttime = 0.0;
|
||||
Opm::time::StopWatch step_timer;
|
||||
Opm::time::StopWatch total_timer;
|
||||
total_timer.start();
|
||||
double init_satvol[2] = { 0.0 };
|
||||
@ -292,27 +333,102 @@ namespace Opm
|
||||
std::vector<double> well_resflows_phase;
|
||||
if (wells_) {
|
||||
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
|
||||
wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
|
||||
wellreport.push(props_, *wells_,
|
||||
state.pressure(), state.surfacevol(), state.saturation(),
|
||||
0.0, well_state.bhp(), well_state.perfRates());
|
||||
}
|
||||
std::fstream tstep_os;
|
||||
if (output_) {
|
||||
std::string filename = output_dir_ + "/step_timing.param";
|
||||
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
|
||||
}
|
||||
for (; !timer.done(); ++timer) {
|
||||
// Report timestep and (optionally) write state to disk.
|
||||
step_timer.start();
|
||||
timer.report(std::cout);
|
||||
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
|
||||
outputState(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
if (output_vtk_) {
|
||||
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
}
|
||||
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
}
|
||||
|
||||
// Solve pressure.
|
||||
SimulatorReport sreport;
|
||||
|
||||
// Solve pressure equation.
|
||||
if (check_well_controls_) {
|
||||
computeFractionalFlow(props_, allcells_,
|
||||
state.pressure(), state.surfacevol(), state.saturation(),
|
||||
fractional_flows);
|
||||
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
|
||||
}
|
||||
bool well_control_passed = !check_well_controls_;
|
||||
int well_control_iteration = 0;
|
||||
do {
|
||||
// Run solver.
|
||||
pressure_timer.start();
|
||||
std::vector<double> initial_pressure = state.pressure();
|
||||
psolver_.solve(timer.currentStepLength(), state, well_state);
|
||||
|
||||
// Renormalize pressure if both fluids and rock are
|
||||
// incompressible, and there are no pressure
|
||||
// conditions (bcs or wells). It is deemed sufficient
|
||||
// for now to renormalize using geometric volume
|
||||
// instead of pore volume.
|
||||
if (psolver_.singularPressure()) {
|
||||
// Compute average pressures of previous and last
|
||||
// step, and total volume.
|
||||
double av_prev_press = 0.0;
|
||||
double av_press = 0.0;
|
||||
double tot_vol = 0.0;
|
||||
const int num_cells = grid_.number_of_cells;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
|
||||
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
|
||||
tot_vol += grid_.cell_volumes[cell];
|
||||
}
|
||||
// Renormalization constant
|
||||
const double ren_const = (av_prev_press - av_press)/tot_vol;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
state.pressure()[cell] += ren_const;
|
||||
}
|
||||
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
|
||||
for (int well = 0; well < num_wells; ++well) {
|
||||
well_state.bhp()[well] += ren_const;
|
||||
}
|
||||
}
|
||||
|
||||
// Stop timer and report.
|
||||
pressure_timer.stop();
|
||||
double pt = pressure_timer.secsSinceStart();
|
||||
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
|
||||
ptime += pt;
|
||||
} while (false);
|
||||
sreport.pressure_time = pt;
|
||||
|
||||
// Optionally, check if well controls are satisfied.
|
||||
if (check_well_controls_) {
|
||||
Opm::computePhaseFlowRatesPerWell(*wells_,
|
||||
fractional_flows,
|
||||
well_state.perfRates(),
|
||||
well_resflows_phase);
|
||||
std::cout << "Checking well conditions." << std::endl;
|
||||
// For testing we set surface := reservoir
|
||||
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
|
||||
++well_control_iteration;
|
||||
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
|
||||
THROW("Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
|
||||
}
|
||||
if (!well_control_passed) {
|
||||
std::cout << "Well controls not passed, solving again." << std::endl;
|
||||
} else {
|
||||
std::cout << "Well conditions met." << std::endl;
|
||||
}
|
||||
}
|
||||
} while (!well_control_passed);
|
||||
|
||||
// Update pore volumes if rock is compressible.
|
||||
if (rock_comp_ && rock_comp_->isActive()) {
|
||||
initial_porevol = porevol;
|
||||
computePorevolume(grid_, props_.porosity(), *rock_comp_, state.pressure(), porevol);
|
||||
}
|
||||
|
||||
@ -328,18 +444,22 @@ namespace Opm
|
||||
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
|
||||
}
|
||||
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
|
||||
tsolver_.solve(&state.faceflux()[0], &porevol[0], &transport_src[0],
|
||||
stepsize, state.saturation());
|
||||
Opm::computeInjectedProduced(props_, state.saturation(), transport_src, stepsize, injected, produced);
|
||||
if (use_segregation_split_) {
|
||||
tsolver_.solveGravity(columns_, &porevol[0], stepsize, state.saturation());
|
||||
tsolver_.solve(&state.faceflux()[0], &state.pressure()[0],
|
||||
&porevol[0], &initial_porevol[0], &transport_src[0], stepsize,
|
||||
state.saturation(), state.surfacevol());
|
||||
Opm::computeInjectedProduced(props_,
|
||||
state.pressure(), state.surfacevol(), state.saturation(),
|
||||
transport_src, stepsize, injected, produced);
|
||||
if (gravity_ != 0 && use_segregation_split_) {
|
||||
tsolver_.solveGravity(columns_, &state.pressure()[0], &initial_porevol[0],
|
||||
stepsize, state.saturation(), state.surfacevol());
|
||||
}
|
||||
}
|
||||
transport_timer.stop();
|
||||
double tt = transport_timer.secsSinceStart();
|
||||
sreport.transport_time = tt;
|
||||
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
|
||||
ttime += tt;
|
||||
|
||||
// Report volume balances.
|
||||
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
|
||||
tot_injected[0] += injected[0];
|
||||
@ -377,18 +497,27 @@ namespace Opm
|
||||
produced[0]/(produced[0] + produced[1]),
|
||||
tot_produced[0]/tot_porevol_init);
|
||||
if (wells_) {
|
||||
wellreport.push(props_, *wells_, state.saturation(),
|
||||
wellreport.push(props_, *wells_,
|
||||
state.pressure(), state.surfacevol(), state.saturation(),
|
||||
timer.currentTime() + timer.currentStepLength(),
|
||||
well_state.bhp(), well_state.perfRates());
|
||||
}
|
||||
sreport.total_time = step_timer.secsSinceStart();
|
||||
if (output_) {
|
||||
sreport.reportParam(tstep_os);
|
||||
}
|
||||
}
|
||||
|
||||
if (output_) {
|
||||
outputState(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
if (output_vtk_) {
|
||||
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
}
|
||||
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
outputWaterCut(watercut, output_dir_);
|
||||
if (wells_) {
|
||||
outputWellReport(wellreport, output_dir_);
|
||||
}
|
||||
tstep_os.close();
|
||||
}
|
||||
|
||||
total_timer.stop();
|
99
opm/core/simulator/SimulatorCompressibleTwophase.hpp
Normal file
99
opm/core/simulator/SimulatorCompressibleTwophase.hpp
Normal file
@ -0,0 +1,99 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_SIMULATORCOMPRESSIBLETWOPHASE_HEADER_INCLUDED
|
||||
#define OPM_SIMULATORCOMPRESSIBLETWOPHASE_HEADER_INCLUDED
|
||||
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#include <vector>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
struct Wells;
|
||||
struct FlowBoundaryConditions;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
namespace parameter { class ParameterGroup; }
|
||||
class BlackoilPropertiesInterface;
|
||||
class RockCompressibility;
|
||||
class WellsManager;
|
||||
class LinearSolverInterface;
|
||||
class SimulatorTimer;
|
||||
class BlackoilState;
|
||||
class WellState;
|
||||
struct SimulatorReport;
|
||||
|
||||
/// Class collecting all necessary components for a two-phase simulation.
|
||||
class SimulatorCompressibleTwophase
|
||||
{
|
||||
public:
|
||||
/// Initialise from parameters and objects to observe.
|
||||
/// \param[in] param parameters, this class accepts the following:
|
||||
/// parameter (default) effect
|
||||
/// -----------------------------------------------------------
|
||||
/// output (true) write output to files?
|
||||
/// output_dir ("output") output directoty
|
||||
/// output_interval (1) output every nth step
|
||||
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
|
||||
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
|
||||
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
|
||||
/// nl_maxiter (30) max nonlinear iterations in transport
|
||||
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
|
||||
/// num_transport_substeps (1) number of transport steps per pressure step
|
||||
/// use_segregation_split (false) solve for gravity segregation (if false,
|
||||
/// segregation is ignored).
|
||||
///
|
||||
/// \param[in] grid grid data structure
|
||||
/// \param[in] props fluid and rock properties
|
||||
/// \param[in] rock_comp if non-null, rock compressibility properties
|
||||
/// \param[in] well_manager well manager, may manage no (null) wells
|
||||
/// \param[in] src source terms
|
||||
/// \param[in] bcs boundary conditions, treat as all noflow if null
|
||||
/// \param[in] linsolver linear solver
|
||||
/// \param[in] gravity if non-null, gravity vector
|
||||
SimulatorCompressibleTwophase(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const BlackoilPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity);
|
||||
|
||||
/// Run the simulation.
|
||||
/// This will run succesive timesteps until timer.done() is true. It will
|
||||
/// modify the reservoir and well states.
|
||||
/// \param[in,out] timer governs the requested reporting timesteps
|
||||
/// \param[in,out] state state of reservoir: pressure, fluxes
|
||||
/// \param[in,out] well_state state of wells: bhp, perforation rates
|
||||
/// \return simulation report, with timing data
|
||||
SimulatorReport run(SimulatorTimer& timer,
|
||||
BlackoilState& state,
|
||||
WellState& well_state);
|
||||
|
||||
private:
|
||||
class Impl;
|
||||
// Using shared_ptr instead of scoped_ptr since scoped_ptr requires complete type for Impl.
|
||||
boost::shared_ptr<Impl> pimpl_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_SIMULATORCOMPRESSIBLETWOPHASE_HEADER_INCLUDED
|
586
opm/core/simulator/SimulatorIncompTwophase.cpp
Normal file
586
opm/core/simulator/SimulatorIncompTwophase.cpp
Normal file
@ -0,0 +1,586 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#if HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif // HAVE_CONFIG_H
|
||||
|
||||
#include <opm/core/simulator/SimulatorIncompTwophase.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
|
||||
#include <opm/core/pressure/IncompTpfa.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/newwells.h>
|
||||
#include <opm/core/pressure/flow_bc.h>
|
||||
|
||||
#include <opm/core/simulator/SimulatorReport.hpp>
|
||||
#include <opm/core/simulator/SimulatorTimer.hpp>
|
||||
#include <opm/core/utility/StopWatch.hpp>
|
||||
#include <opm/core/utility/writeVtkData.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
|
||||
#include <opm/core/wells/WellsManager.hpp>
|
||||
|
||||
#include <opm/core/fluid/IncompPropertiesInterface.hpp>
|
||||
#include <opm/core/fluid/RockCompressibility.hpp>
|
||||
|
||||
#include <opm/core/utility/ColumnExtract.hpp>
|
||||
#include <opm/core/simulator/TwophaseState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
|
||||
|
||||
#include <boost/filesystem.hpp>
|
||||
#include <boost/scoped_ptr.hpp>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
|
||||
#include <numeric>
|
||||
#include <fstream>
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class SimulatorIncompTwophase::Impl
|
||||
{
|
||||
public:
|
||||
Impl(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const IncompPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity);
|
||||
|
||||
SimulatorReport run(SimulatorTimer& timer,
|
||||
TwophaseState& state,
|
||||
WellState& well_state);
|
||||
|
||||
private:
|
||||
// Data.
|
||||
// Parameters for output.
|
||||
bool output_;
|
||||
bool output_vtk_;
|
||||
std::string output_dir_;
|
||||
int output_interval_;
|
||||
// Parameters for well control
|
||||
bool check_well_controls_;
|
||||
int max_well_control_iterations_;
|
||||
// Parameters for transport solver.
|
||||
int num_transport_substeps_;
|
||||
bool use_segregation_split_;
|
||||
// Observed objects.
|
||||
const UnstructuredGrid& grid_;
|
||||
const IncompPropertiesInterface& props_;
|
||||
const RockCompressibility* rock_comp_;
|
||||
WellsManager& wells_manager_;
|
||||
const Wells* wells_;
|
||||
const std::vector<double>& src_;
|
||||
const FlowBoundaryConditions* bcs_;
|
||||
// Solvers
|
||||
IncompTpfa psolver_;
|
||||
TransportModelTwophase tsolver_;
|
||||
// Needed by column-based gravity segregation solver.
|
||||
std::vector< std::vector<int> > columns_;
|
||||
// Misc. data
|
||||
std::vector<int> allcells_;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
SimulatorIncompTwophase::SimulatorIncompTwophase(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const IncompPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity)
|
||||
{
|
||||
pimpl_.reset(new Impl(param, grid, props, rock_comp, wells_manager, src, bcs, linsolver, gravity));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
SimulatorReport SimulatorIncompTwophase::run(SimulatorTimer& timer,
|
||||
TwophaseState& state,
|
||||
WellState& well_state)
|
||||
{
|
||||
return pimpl_->run(timer, state, well_state);
|
||||
}
|
||||
|
||||
static void reportVolumes(std::ostream &os, double satvol[2], double tot_porevol_init,
|
||||
double tot_injected[2], double tot_produced[2],
|
||||
double injected[2], double produced[2],
|
||||
double init_satvol[2])
|
||||
{
|
||||
std::cout.precision(5);
|
||||
const int width = 18;
|
||||
os << "\nVolume balance report (all numbers relative to total pore volume).\n";
|
||||
os << " Saturated volumes: "
|
||||
<< std::setw(width) << satvol[0]/tot_porevol_init
|
||||
<< std::setw(width) << satvol[1]/tot_porevol_init << std::endl;
|
||||
os << " Injected volumes: "
|
||||
<< std::setw(width) << injected[0]/tot_porevol_init
|
||||
<< std::setw(width) << injected[1]/tot_porevol_init << std::endl;
|
||||
os << " Produced volumes: "
|
||||
<< std::setw(width) << produced[0]/tot_porevol_init
|
||||
<< std::setw(width) << produced[1]/tot_porevol_init << std::endl;
|
||||
os << " Total inj volumes: "
|
||||
<< std::setw(width) << tot_injected[0]/tot_porevol_init
|
||||
<< std::setw(width) << tot_injected[1]/tot_porevol_init << std::endl;
|
||||
os << " Total prod volumes: "
|
||||
<< std::setw(width) << tot_produced[0]/tot_porevol_init
|
||||
<< std::setw(width) << tot_produced[1]/tot_porevol_init << std::endl;
|
||||
os << " In-place + prod - inj: "
|
||||
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
|
||||
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init << std::endl;
|
||||
os << " Init - now - pr + inj: "
|
||||
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
|
||||
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
|
||||
<< std::endl;
|
||||
os.precision(8);
|
||||
}
|
||||
|
||||
static void outputStateVtk(const UnstructuredGrid& grid,
|
||||
const Opm::TwophaseState& state,
|
||||
const int step,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
// Write data in VTK format.
|
||||
std::ostringstream vtkfilename;
|
||||
vtkfilename << output_dir << "/vtk_files";
|
||||
boost::filesystem::path fpath(vtkfilename.str());
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
vtkfilename << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
|
||||
std::ofstream vtkfile(vtkfilename.str().c_str());
|
||||
if (!vtkfile) {
|
||||
THROW("Failed to open " << vtkfilename.str());
|
||||
}
|
||||
Opm::DataMap dm;
|
||||
dm["saturation"] = &state.saturation();
|
||||
dm["pressure"] = &state.pressure();
|
||||
std::vector<double> cell_velocity;
|
||||
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
|
||||
dm["velocity"] = &cell_velocity;
|
||||
Opm::writeVtkData(grid, dm, vtkfile);
|
||||
}
|
||||
|
||||
static void outputVectorMatlab(const std::string& name,
|
||||
const std::vector<int>& vec,
|
||||
const int step,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
std::ostringstream fname;
|
||||
fname << output_dir << "/" << name;
|
||||
boost::filesystem::path fpath = fname.str();
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
|
||||
std::ofstream file(fname.str().c_str());
|
||||
if (!file) {
|
||||
THROW("Failed to open " << fname.str());
|
||||
}
|
||||
std::copy(vec.begin(), vec.end(), std::ostream_iterator<double>(file, "\n"));
|
||||
}
|
||||
|
||||
static void outputStateMatlab(const UnstructuredGrid& grid,
|
||||
const Opm::TwophaseState& state,
|
||||
const int step,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
Opm::DataMap dm;
|
||||
dm["saturation"] = &state.saturation();
|
||||
dm["pressure"] = &state.pressure();
|
||||
std::vector<double> cell_velocity;
|
||||
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
|
||||
dm["velocity"] = &cell_velocity;
|
||||
|
||||
// Write data (not grid) in Matlab format
|
||||
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
|
||||
std::ostringstream fname;
|
||||
fname << output_dir << "/" << it->first;
|
||||
boost::filesystem::path fpath = fname.str();
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
|
||||
std::ofstream file(fname.str().c_str());
|
||||
if (!file) {
|
||||
THROW("Failed to open " << fname.str());
|
||||
}
|
||||
const std::vector<double>& d = *(it->second);
|
||||
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void outputWaterCut(const Opm::Watercut& watercut,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
// Write water cut curve.
|
||||
std::string fname = output_dir + "/watercut.txt";
|
||||
std::ofstream os(fname.c_str());
|
||||
if (!os) {
|
||||
THROW("Failed to open " << fname);
|
||||
}
|
||||
watercut.write(os);
|
||||
}
|
||||
|
||||
|
||||
static void outputWellReport(const Opm::WellReport& wellreport,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
// Write well report.
|
||||
std::string fname = output_dir + "/wellreport.txt";
|
||||
std::ofstream os(fname.c_str());
|
||||
if (!os) {
|
||||
THROW("Failed to open " << fname);
|
||||
}
|
||||
wellreport.write(os);
|
||||
}
|
||||
|
||||
|
||||
static bool allNeumannBCs(const FlowBoundaryConditions* bcs)
|
||||
{
|
||||
if (bcs == NULL) {
|
||||
return true;
|
||||
} else {
|
||||
return std::find(bcs->type, bcs->type + bcs->nbc, BC_PRESSURE)
|
||||
== bcs->type + bcs->nbc;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static bool allRateWells(const Wells* wells)
|
||||
{
|
||||
if (wells == NULL) {
|
||||
return true;
|
||||
}
|
||||
const int nw = wells->number_of_wells;
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const WellControls* wc = wells->ctrls[w];
|
||||
if (wc->current >= 0) {
|
||||
if (wc->type[wc->current] == BHP) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
SimulatorIncompTwophase::Impl::Impl(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const IncompPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity)
|
||||
: grid_(grid),
|
||||
props_(props),
|
||||
rock_comp_(rock_comp),
|
||||
wells_manager_(wells_manager),
|
||||
wells_(wells_manager.c_wells()),
|
||||
src_(src),
|
||||
bcs_(bcs),
|
||||
psolver_(grid, props, rock_comp, linsolver,
|
||||
param.getDefault("nl_pressure_residual_tolerance", 0.0),
|
||||
param.getDefault("nl_pressure_change_tolerance", 1.0),
|
||||
param.getDefault("nl_pressure_maxiter", 10),
|
||||
gravity, wells_manager.c_wells(), src, bcs),
|
||||
tsolver_(grid, props,
|
||||
param.getDefault("nl_tolerance", 1e-9),
|
||||
param.getDefault("nl_maxiter", 30))
|
||||
{
|
||||
// For output.
|
||||
output_ = param.getDefault("output", true);
|
||||
if (output_) {
|
||||
output_vtk_ = param.getDefault("output_vtk", true);
|
||||
output_dir_ = param.getDefault("output_dir", std::string("output"));
|
||||
// Ensure that output dir exists
|
||||
boost::filesystem::path fpath(output_dir_);
|
||||
try {
|
||||
create_directories(fpath);
|
||||
}
|
||||
catch (...) {
|
||||
THROW("Creating directories failed: " << fpath);
|
||||
}
|
||||
output_interval_ = param.getDefault("output_interval", 1);
|
||||
}
|
||||
|
||||
// Well control related init.
|
||||
check_well_controls_ = param.getDefault("check_well_controls", false);
|
||||
max_well_control_iterations_ = param.getDefault("max_well_control_iterations", 10);
|
||||
|
||||
// Transport related init.
|
||||
num_transport_substeps_ = param.getDefault("num_transport_substeps", 1);
|
||||
use_segregation_split_ = param.getDefault("use_segregation_split", false);
|
||||
if (gravity != 0 && use_segregation_split_){
|
||||
tsolver_.initGravity(gravity);
|
||||
extractColumn(grid_, columns_);
|
||||
}
|
||||
|
||||
// Misc init.
|
||||
const int num_cells = grid.number_of_cells;
|
||||
allcells_.resize(num_cells);
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
allcells_[cell] = cell;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
SimulatorReport SimulatorIncompTwophase::Impl::run(SimulatorTimer& timer,
|
||||
TwophaseState& state,
|
||||
WellState& well_state)
|
||||
{
|
||||
std::vector<double> transport_src;
|
||||
|
||||
// Initialisation.
|
||||
std::vector<double> porevol;
|
||||
if (rock_comp_ && rock_comp_->isActive()) {
|
||||
computePorevolume(grid_, props_.porosity(), *rock_comp_, state.pressure(), porevol);
|
||||
} else {
|
||||
computePorevolume(grid_, props_.porosity(), porevol);
|
||||
}
|
||||
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
|
||||
std::vector<double> initial_porevol = porevol;
|
||||
|
||||
// Main simulation loop.
|
||||
Opm::time::StopWatch pressure_timer;
|
||||
double ptime = 0.0;
|
||||
Opm::time::StopWatch transport_timer;
|
||||
double ttime = 0.0;
|
||||
Opm::time::StopWatch step_timer;
|
||||
Opm::time::StopWatch total_timer;
|
||||
total_timer.start();
|
||||
double init_satvol[2] = { 0.0 };
|
||||
double satvol[2] = { 0.0 };
|
||||
double injected[2] = { 0.0 };
|
||||
double produced[2] = { 0.0 };
|
||||
double tot_injected[2] = { 0.0 };
|
||||
double tot_produced[2] = { 0.0 };
|
||||
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
|
||||
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
|
||||
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
|
||||
Opm::Watercut watercut;
|
||||
watercut.push(0.0, 0.0, 0.0);
|
||||
Opm::WellReport wellreport;
|
||||
std::vector<double> fractional_flows;
|
||||
std::vector<double> well_resflows_phase;
|
||||
if (wells_) {
|
||||
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
|
||||
wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
|
||||
}
|
||||
std::fstream tstep_os;
|
||||
if (output_) {
|
||||
std::string filename = output_dir_ + "/step_timing.param";
|
||||
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
|
||||
}
|
||||
for (; !timer.done(); ++timer) {
|
||||
// Report timestep and (optionally) write state to disk.
|
||||
step_timer.start();
|
||||
timer.report(std::cout);
|
||||
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
|
||||
if (output_vtk_) {
|
||||
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
}
|
||||
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
outputVectorMatlab(std::string("reorder_it"),
|
||||
tsolver_.getReorderIterations(),
|
||||
timer.currentStepNum(), output_dir_);
|
||||
}
|
||||
|
||||
SimulatorReport sreport;
|
||||
|
||||
// Solve pressure equation.
|
||||
if (check_well_controls_) {
|
||||
computeFractionalFlow(props_, allcells_, state.saturation(), fractional_flows);
|
||||
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
|
||||
}
|
||||
bool well_control_passed = !check_well_controls_;
|
||||
int well_control_iteration = 0;
|
||||
do {
|
||||
// Run solver.
|
||||
pressure_timer.start();
|
||||
std::vector<double> initial_pressure = state.pressure();
|
||||
psolver_.solve(timer.currentStepLength(), state, well_state);
|
||||
|
||||
// Renormalize pressure if rock is incompressible, and
|
||||
// there are no pressure conditions (bcs or wells).
|
||||
// It is deemed sufficient for now to renormalize
|
||||
// using geometric volume instead of pore volume.
|
||||
if ((rock_comp_ == NULL || !rock_comp_->isActive())
|
||||
&& allNeumannBCs(bcs_) && allRateWells(wells_)) {
|
||||
// Compute average pressures of previous and last
|
||||
// step, and total volume.
|
||||
double av_prev_press = 0.0;
|
||||
double av_press = 0.0;
|
||||
double tot_vol = 0.0;
|
||||
const int num_cells = grid_.number_of_cells;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
|
||||
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
|
||||
tot_vol += grid_.cell_volumes[cell];
|
||||
}
|
||||
// Renormalization constant
|
||||
const double ren_const = (av_prev_press - av_press)/tot_vol;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
state.pressure()[cell] += ren_const;
|
||||
}
|
||||
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
|
||||
for (int well = 0; well < num_wells; ++well) {
|
||||
well_state.bhp()[well] += ren_const;
|
||||
}
|
||||
}
|
||||
|
||||
// Stop timer and report.
|
||||
pressure_timer.stop();
|
||||
double pt = pressure_timer.secsSinceStart();
|
||||
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
|
||||
ptime += pt;
|
||||
sreport.pressure_time = pt;
|
||||
|
||||
// Optionally, check if well controls are satisfied.
|
||||
if (check_well_controls_) {
|
||||
Opm::computePhaseFlowRatesPerWell(*wells_,
|
||||
fractional_flows,
|
||||
well_state.perfRates(),
|
||||
well_resflows_phase);
|
||||
std::cout << "Checking well conditions." << std::endl;
|
||||
// For testing we set surface := reservoir
|
||||
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
|
||||
++well_control_iteration;
|
||||
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
|
||||
THROW("Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
|
||||
}
|
||||
if (!well_control_passed) {
|
||||
std::cout << "Well controls not passed, solving again." << std::endl;
|
||||
} else {
|
||||
std::cout << "Well conditions met." << std::endl;
|
||||
}
|
||||
}
|
||||
} while (!well_control_passed);
|
||||
|
||||
// Update pore volumes if rock is compressible.
|
||||
if (rock_comp_ && rock_comp_->isActive()) {
|
||||
initial_porevol = porevol;
|
||||
computePorevolume(grid_, props_.porosity(), *rock_comp_, state.pressure(), porevol);
|
||||
}
|
||||
|
||||
// Process transport sources (to include bdy terms and well flows).
|
||||
Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
|
||||
wells_, well_state.perfRates(), transport_src);
|
||||
|
||||
// Solve transport.
|
||||
transport_timer.start();
|
||||
double stepsize = timer.currentStepLength();
|
||||
if (num_transport_substeps_ != 1) {
|
||||
stepsize /= double(num_transport_substeps_);
|
||||
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
|
||||
}
|
||||
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
|
||||
tsolver_.solve(&state.faceflux()[0], &initial_porevol[0], &transport_src[0],
|
||||
stepsize, state.saturation());
|
||||
Opm::computeInjectedProduced(props_, state.saturation(), transport_src, stepsize, injected, produced);
|
||||
if (use_segregation_split_) {
|
||||
tsolver_.solveGravity(columns_, &initial_porevol[0], stepsize, state.saturation());
|
||||
}
|
||||
watercut.push(timer.currentTime() + timer.currentStepLength(),
|
||||
produced[0]/(produced[0] + produced[1]),
|
||||
tot_produced[0]/tot_porevol_init);
|
||||
if (wells_) {
|
||||
wellreport.push(props_, *wells_, state.saturation(),
|
||||
timer.currentTime() + timer.currentStepLength(),
|
||||
well_state.bhp(), well_state.perfRates());
|
||||
}
|
||||
}
|
||||
transport_timer.stop();
|
||||
double tt = transport_timer.secsSinceStart();
|
||||
sreport.transport_time = tt;
|
||||
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
|
||||
ttime += tt;
|
||||
// Report volume balances.
|
||||
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
|
||||
tot_injected[0] += injected[0];
|
||||
tot_injected[1] += injected[1];
|
||||
tot_produced[0] += produced[0];
|
||||
tot_produced[1] += produced[1];
|
||||
reportVolumes(std::cout,satvol, tot_porevol_init,
|
||||
tot_injected, tot_produced,
|
||||
injected, produced,
|
||||
init_satvol);
|
||||
sreport.total_time = step_timer.secsSinceStart();
|
||||
if (output_) {
|
||||
sreport.reportParam(tstep_os);
|
||||
}
|
||||
}
|
||||
|
||||
if (output_) {
|
||||
if (output_vtk_) {
|
||||
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
}
|
||||
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
|
||||
outputVectorMatlab(std::string("reorder_it"),
|
||||
tsolver_.getReorderIterations(),
|
||||
timer.currentStepNum(), output_dir_);
|
||||
outputWaterCut(watercut, output_dir_);
|
||||
if (wells_) {
|
||||
outputWellReport(wellreport, output_dir_);
|
||||
}
|
||||
tstep_os.close();
|
||||
}
|
||||
|
||||
total_timer.stop();
|
||||
|
||||
SimulatorReport report;
|
||||
report.pressure_time = ptime;
|
||||
report.transport_time = ttime;
|
||||
report.total_time = total_timer.secsSinceStart();
|
||||
return report;
|
||||
}
|
||||
|
||||
|
||||
} // namespace Opm
|
@ -17,8 +17,8 @@
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_SIMULATORTWOPHASE_HEADER_INCLUDED
|
||||
#define OPM_SIMULATORTWOPHASE_HEADER_INCLUDED
|
||||
#ifndef OPM_SIMULATORINCOMPTWOPHASE_HEADER_INCLUDED
|
||||
#define OPM_SIMULATORINCOMPTWOPHASE_HEADER_INCLUDED
|
||||
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#include <vector>
|
||||
@ -32,14 +32,15 @@ namespace Opm
|
||||
namespace parameter { class ParameterGroup; }
|
||||
class IncompPropertiesInterface;
|
||||
class RockCompressibility;
|
||||
class WellsManager;
|
||||
class LinearSolverInterface;
|
||||
class SimulatorTimer;
|
||||
class TwophaseState;
|
||||
class WellState;
|
||||
class SimulatorReport;
|
||||
struct SimulatorReport;
|
||||
|
||||
/// Class collecting all necessary components for a two-phase simulation.
|
||||
class SimulatorTwophase
|
||||
class SimulatorIncompTwophase
|
||||
{
|
||||
public:
|
||||
/// Initialise from parameters and objects to observe.
|
||||
@ -58,23 +59,23 @@ namespace Opm
|
||||
/// use_segregation_split (false) solve for gravity segregation (if false,
|
||||
/// segregation is ignored).
|
||||
///
|
||||
/// \param[in] grid grid data structure
|
||||
/// \param[in] props fluid and rock properties
|
||||
/// \param[in] rock_comp if non-null, rock compressibility properties
|
||||
/// \param[in] wells if non-null, wells data structure
|
||||
/// \param[in] src source terms
|
||||
/// \param[in] bcs boundary conditions, treat as all noflow if null
|
||||
/// \param[in] linsolver linear solver
|
||||
/// \param[in] gravity if non-null, gravity vector
|
||||
SimulatorTwophase(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const IncompPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp,
|
||||
const Wells* wells,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity);
|
||||
/// \param[in] grid grid data structure
|
||||
/// \param[in] props fluid and rock properties
|
||||
/// \param[in] rock_comp if non-null, rock compressibility properties
|
||||
/// \param[in] well_manager well manager, may manage no (null) wells
|
||||
/// \param[in] src source terms
|
||||
/// \param[in] bcs boundary conditions, treat as all noflow if null
|
||||
/// \param[in] linsolver linear solver
|
||||
/// \param[in] gravity if non-null, gravity vector
|
||||
SimulatorIncompTwophase(const parameter::ParameterGroup& param,
|
||||
const UnstructuredGrid& grid,
|
||||
const IncompPropertiesInterface& props,
|
||||
const RockCompressibility* rock_comp,
|
||||
WellsManager& wells_manager,
|
||||
const std::vector<double>& src,
|
||||
const FlowBoundaryConditions* bcs,
|
||||
LinearSolverInterface& linsolver,
|
||||
const double* gravity);
|
||||
|
||||
/// Run the simulation.
|
||||
/// This will run succesive timesteps until timer.done() is true. It will
|
||||
@ -95,4 +96,4 @@ namespace Opm
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_SIMULATORTWOPHASE_HEADER_INCLUDED
|
||||
#endif // OPM_SIMULATORINCOMPTWOPHASE_HEADER_INCLUDED
|
@ -42,6 +42,12 @@ namespace Opm
|
||||
<< "\n Pressure time: " << pressure_time
|
||||
<< "\n Transport time: " << transport_time << std::endl;
|
||||
}
|
||||
void SimulatorReport::reportParam(std::ostream& os)
|
||||
{
|
||||
os << "/timing/total_time=" << total_time
|
||||
<< "\n/timing/pressure/total_time=" << pressure_time
|
||||
<< "\n/timing/transport/total_time=" << transport_time << std::endl;
|
||||
}
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -38,6 +38,7 @@ namespace Opm
|
||||
void operator+=(const SimulatorReport& sr);
|
||||
/// Print a report to the given stream.
|
||||
void report(std::ostream& os);
|
||||
void reportParam(std::ostream& os);
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -47,7 +47,9 @@ namespace Opm {
|
||||
|
||||
public:
|
||||
ImplicitAssembly(Model& model)
|
||||
: model_(model)
|
||||
: model_(model),
|
||||
nconn_(-1) ,
|
||||
asm_buffer_()
|
||||
{}
|
||||
|
||||
template <class Grid ,
|
||||
|
@ -33,6 +33,12 @@
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* \file
|
||||
* Numerical model and support classes needed to model transport of two
|
||||
* incompressible fluid phases. Intended for the ImplicitTransport system.
|
||||
*/
|
||||
|
||||
#ifndef OPM_SINGLEPOINTUPWINDTWOPHASE_HPP_HEADER
|
||||
#define OPM_SINGLEPOINTUPWINDTWOPHASE_HPP_HEADER
|
||||
|
||||
@ -45,8 +51,43 @@
|
||||
|
||||
namespace Opm {
|
||||
namespace spu_2p {
|
||||
/**
|
||||
* Internal class to manage the direct and derived quantities needed to
|
||||
* formulate the fluid transport system.
|
||||
*
|
||||
* Note: This class elides off-diagonal elements of the phase mobility
|
||||
* Jacobian, \f$(\partial_{s_\beta} \lambda_\alpha)_{\alpha\beta}\f$.
|
||||
* These elements are assumed to be strictly equal to zero. In other
|
||||
* words, the relative permeability of phase \f$\alpha\f$ is assumed to
|
||||
* depend only on the saturation of phase \f$\alpha\f$. This convention
|
||||
* allows storing only the two diagonals of the mobility Jacobian per
|
||||
* grid cell.
|
||||
*
|
||||
* The static gravity term is the scalar value
|
||||
* \f[
|
||||
* \Delta G_i = \mathsf{T}_f\, \vec{g}\cdot(\Bar{x}_f - \Bar{x}_c)
|
||||
* \f]
|
||||
* in which @c i is the half face index corresponding to the cell-face
|
||||
* pair <CODE>(f,c)</CODE> and \f$\mathsf{T}_f\f$ is the absolute
|
||||
* (bacground) two-point transmissibility of face @c f.
|
||||
*
|
||||
* The fluid transport problem is formulated in terms of saturation
|
||||
* changes, \f$\Delta s\f$, per cell. These changes are the primary
|
||||
* degrees of freedom in this model.
|
||||
*
|
||||
* Capillary pressures are defined by the fluid model, but usually
|
||||
* correspond to \f$p_w - p_n\f$ (e.g., \f$p_\mathit{oil} -
|
||||
* p_\mathit{water}\f$).
|
||||
*/
|
||||
class ModelParameterStorage {
|
||||
public:
|
||||
/**
|
||||
* Constructor.
|
||||
*
|
||||
* @param[in] nc Total number of grid cells.
|
||||
* @param[in] totconn Total number of connections, accumulated per
|
||||
* cell (``half faces'').
|
||||
*/
|
||||
ModelParameterStorage(int nc, int totconn)
|
||||
: drho_(0.0), mob_(0), dmob_(0),
|
||||
porevol_(0), dg_(0), ds_(0), pc_(0), dpc_(0), trans_(0),
|
||||
@ -74,44 +115,160 @@ namespace Opm {
|
||||
trans_ = dpc_ + (1 * nc );
|
||||
}
|
||||
|
||||
/**
|
||||
* Modifiable density difference.
|
||||
* @return Reference to modifiable internal representation of fluid
|
||||
* phase density difference.
|
||||
*/
|
||||
double& drho () { return drho_ ; }
|
||||
/**
|
||||
* Read-only density difference.
|
||||
* @return Read-only value of current fluid phase difference value.
|
||||
*/
|
||||
double drho () const { return drho_ ; }
|
||||
|
||||
/**
|
||||
* Phase mobility in cell.
|
||||
* @param[in] c Cell.
|
||||
* @return Read-write reference to two consecutive phase mobilities
|
||||
* in cell @c c.
|
||||
*/
|
||||
double* mob (int c) { return mob_ + (2*c + 0); }
|
||||
/**
|
||||
* Phase mobility in cell.
|
||||
* @param[in] c Cell.
|
||||
* @return Read-only reference to two consecutive phase mobilities
|
||||
* in cell @c c.
|
||||
*/
|
||||
const double* mob (int c) const { return mob_ + (2*c + 0); }
|
||||
|
||||
/**
|
||||
* Diagonal elements of phase mobility derivative (Jacobian).
|
||||
*
|
||||
* @param[in] c Cell.
|
||||
* @return Read-write reference to diagonal elements of phase
|
||||
* mobility Jacobian in cell @c c.
|
||||
*/
|
||||
double* dmob (int c) { return dmob_ + (2*c + 0); }
|
||||
/**
|
||||
* Diagonal elements of phase mobility derivative (Jacobian).
|
||||
*
|
||||
* @param[in] c Cell.
|
||||
* @return Read-only reference to two consecutive diagonal elements
|
||||
* of phase mobility Jacobian in cell @c c.
|
||||
*/
|
||||
const double* dmob (int c) const { return dmob_ + (2*c + 0); }
|
||||
|
||||
/**
|
||||
* Retrieve pore volumes for all cells.
|
||||
* @return Modifiable vector of pore volumes for all cells.
|
||||
*/
|
||||
double* porevol() { return porevol_ ; }
|
||||
/**
|
||||
* Pore volume of single cell.
|
||||
* @param[in] c Cell.
|
||||
* @return Pore volume of cell @c c.
|
||||
*/
|
||||
double porevol(int c) const { return porevol_[c] ; }
|
||||
|
||||
/**
|
||||
* Static gravity term associated to single half face.
|
||||
*
|
||||
* @param[in] i Half face index corresponding to particular
|
||||
* cell-face pair.
|
||||
* @return Read-write reference to static gravity term of single
|
||||
* half face.
|
||||
*/
|
||||
double& dg(int i) { return dg_[i] ; }
|
||||
/**
|
||||
* Static gravity term associated to single half face.
|
||||
* @param[in] i Half face index corresponding to particular
|
||||
* cell-face pair.
|
||||
* @return Read-only reference to static gravity term of single half
|
||||
* face.
|
||||
*/
|
||||
double dg(int i) const { return dg_[i] ; }
|
||||
|
||||
/**
|
||||
* Saturation change in particular cell.
|
||||
*
|
||||
* @param[in] c
|
||||
* @return Read-write reference to saturation change (scalar) in
|
||||
* cell @c c.
|
||||
*/
|
||||
double& ds(int c) { return ds_[c] ; }
|
||||
/**
|
||||
* Saturation change in particular cell.
|
||||
*
|
||||
* @param[in] c
|
||||
* @return Read-only reference to saturation change (scalar) in cell
|
||||
* @c c.
|
||||
*/
|
||||
double ds(int c) const { return ds_[c] ; }
|
||||
|
||||
/**
|
||||
* Capillary pressure in particular cell.
|
||||
*
|
||||
* @param[in] c Cell.
|
||||
* @return Read-write reference to capillary pressure in cell @c c.
|
||||
*/
|
||||
double& pc(int c) { return pc_[c] ; }
|
||||
/**
|
||||
* Capillary pressure in particular cell.
|
||||
*
|
||||
* @param[in] c Cell
|
||||
* @return Read-only reference to capillary pressure in cell @c c.
|
||||
*/
|
||||
double pc(int c) const { return pc_[c] ; }
|
||||
|
||||
/**
|
||||
* Derivative of capillary pressure with respect to saturation.
|
||||
*
|
||||
* @param[in] c Cell
|
||||
* @return Read-write reference to capillary pressure derivative
|
||||
* with respect to primary saturation in cell @c c.
|
||||
*/
|
||||
double& dpc(int c) { return dpc_[c] ; }
|
||||
/**
|
||||
* Derivative of capillary pressure with respect to saturation.
|
||||
*
|
||||
* @param[in] c Cell
|
||||
* @return Read-only reference to capillary pressure derivative with
|
||||
* respect to primary saturation in cell @c c.
|
||||
*/
|
||||
double dpc(int c) const { return dpc_[c] ; }
|
||||
|
||||
/**
|
||||
* Background (absolute) face transmissibility of particular face.
|
||||
*
|
||||
* @param[in] f Face
|
||||
* @return Read-write reference to background face transmissibility
|
||||
* of face @c f.
|
||||
*/
|
||||
double& trans(int f) { return trans_[f] ; }
|
||||
/**
|
||||
* Background (absolute) face transmissibility of particular face.
|
||||
*
|
||||
* @param[in] f Face
|
||||
* @return Read-only reference to bacground face transmissibility of
|
||||
* face @c f.
|
||||
*/
|
||||
double trans(int f) const { return trans_[f] ; }
|
||||
|
||||
private:
|
||||
double drho_ ;
|
||||
double *mob_ ;
|
||||
double *dmob_ ;
|
||||
double *porevol_;
|
||||
double *dg_ ;
|
||||
double *ds_ ;
|
||||
double *pc_ ;
|
||||
double *dpc_ ;
|
||||
double *trans_ ;
|
||||
double drho_ ; /**< Fluid phase density difference */
|
||||
double *mob_ ; /**< Fluid phase mobility in all cells */
|
||||
double *dmob_ ; /**< Derivative of phase mobility in all cells */
|
||||
double *porevol_; /**< Pore volume in all cells */
|
||||
double *dg_ ; /**< Static gravity term on all half faces */
|
||||
double *ds_ ; /**< Saturation change in all cells */
|
||||
double *pc_ ; /**< Capillary pressure in all cells */
|
||||
double *dpc_ ; /**< Derivative of cap. pressure in all cells */
|
||||
double *trans_ ; /**< Absolute transmissibility on all faces */
|
||||
|
||||
/**
|
||||
* Data storage from which individual quantities are managed.
|
||||
*/
|
||||
std::vector<double> data_;
|
||||
};
|
||||
}
|
||||
@ -149,42 +306,42 @@ namespace Opm {
|
||||
|
||||
std::copy(porevol.begin(), porevol.end(), store_.porevol());
|
||||
}
|
||||
void makefhfQPeriodic( const std::vector<int>& p_faces,const std::vector<int>& hf_faces,
|
||||
const std::vector<int>& nb_faces)
|
||||
|
||||
void
|
||||
makefhfQPeriodic(const std::vector<int>& p_faces ,
|
||||
const std::vector<int>& hf_faces,
|
||||
const std::vector<int>& nb_faces)
|
||||
{
|
||||
assert (! p_faces.empty());
|
||||
assert (p_faces.size() == hf_faces.size());
|
||||
assert (hf_faces.size() == nb_faces.size());
|
||||
|
||||
std::vector<int> nbhf(hf_faces.size());
|
||||
for(unsigned int i=0; i<p_faces.size(); ++i){
|
||||
int nbf = nb_faces[i];
|
||||
if(f2hf_[2*nbf] == -1){
|
||||
nbhf[i] = f2hf_[2*nbf+1];
|
||||
}else{
|
||||
assert(f2hf_[2*nbf+1]==-1);
|
||||
nbhf[i] = f2hf_[2*nbf];
|
||||
}
|
||||
|
||||
for (std::vector<int>::size_type i = 0; i < p_faces.size(); ++i) {
|
||||
const int nbf = nb_faces[i];
|
||||
|
||||
assert (2*std::vector<int>::size_type(nbf) + 1 < f2hf_.size());
|
||||
assert ((f2hf_[2*nbf + 0] < 0) ^ (f2hf_[2*nbf + 1] < 0));
|
||||
|
||||
const int p = (f2hf_[2*nbf + 0] < 0) ? 1 : 0; // "Self"
|
||||
nbhf[ i ] = f2hf_[2*nbf + p];
|
||||
}
|
||||
for(unsigned int i=0; i<p_faces.size(); ++i){
|
||||
|
||||
int f = p_faces[i];
|
||||
int hf = hf_faces[i];
|
||||
bool changed=false;
|
||||
for (std::vector<int>::size_type i = 0; i < p_faces.size(); ++i) {
|
||||
const int f = p_faces [i];
|
||||
const int hf = hf_faces[i];
|
||||
|
||||
if(f2hf_[2*f] == hf){
|
||||
assert(f2hf_[2*f+1]==-1);
|
||||
}else{
|
||||
assert(f2hf_[2*f]==-1);
|
||||
f2hf_[2*f]=nbhf[i];
|
||||
changed=true;
|
||||
}
|
||||
if(!changed){
|
||||
if(f2hf_[2*f+1]== hf){
|
||||
assert(f2hf_[2*f]==-1);
|
||||
}else{
|
||||
assert(f2hf_[2*f+1]==-1);
|
||||
f2hf_[2*f+1]=nbhf[i];
|
||||
changed=true;
|
||||
}
|
||||
}
|
||||
assert(changed);
|
||||
assert (0 <= f);
|
||||
assert (0 <= hf);
|
||||
assert (2*std::vector<int>::size_type(f) + 1 < f2hf_.size());
|
||||
|
||||
assert ((f2hf_[2*f + 0] < 0 ) ^ (f2hf_[2*f + 1] < 0 ));
|
||||
assert ((f2hf_[2*f + 0] == hf) ^ (f2hf_[2*f + 1] == hf));
|
||||
|
||||
const int p = (f2hf_[2*f + 0] == hf) ? 1 : 0; // "Other"
|
||||
|
||||
f2hf_[2*f + p] = nbhf[ i ];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -24,6 +24,7 @@
|
||||
#include <opm/core/transport/reorder/reordersequence.h>
|
||||
#include <opm/core/utility/RootFinders.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
|
||||
#include <opm/core/pressure/tpfa/trans_tpfa.h>
|
||||
|
||||
#include <fstream>
|
||||
@ -38,263 +39,277 @@ namespace Opm
|
||||
typedef RegulaFalsi<WarnAndContinueOnError> RootFinder;
|
||||
|
||||
|
||||
TransportModelCompressibleTwophase::TransportModelCompressibleTwophase(const UnstructuredGrid& grid,
|
||||
const Opm::BlackoilPropertiesInterface& props,
|
||||
const double tol,
|
||||
const int maxit)
|
||||
: grid_(grid),
|
||||
props_(props),
|
||||
tol_(tol),
|
||||
maxit_(maxit),
|
||||
darcyflux_(0),
|
||||
source_(0),
|
||||
dt_(0.0),
|
||||
saturation_(grid.number_of_cells, -1.0),
|
||||
fractionalflow_(grid.number_of_cells, -1.0),
|
||||
mob_(2*grid.number_of_cells, -1.0),
|
||||
TransportModelCompressibleTwophase::TransportModelCompressibleTwophase(
|
||||
const UnstructuredGrid& grid,
|
||||
const Opm::BlackoilPropertiesInterface& props,
|
||||
const double tol,
|
||||
const int maxit)
|
||||
: grid_(grid),
|
||||
props_(props),
|
||||
tol_(tol),
|
||||
maxit_(maxit),
|
||||
darcyflux_(0),
|
||||
source_(0),
|
||||
dt_(0.0),
|
||||
saturation_(grid.number_of_cells, -1.0),
|
||||
fractionalflow_(grid.number_of_cells, -1.0),
|
||||
gravity_(0),
|
||||
mob_(2*grid.number_of_cells, -1.0),
|
||||
ia_upw_(grid.number_of_cells + 1, -1),
|
||||
ja_upw_(grid.number_of_faces, -1),
|
||||
ia_downw_(grid.number_of_cells + 1, -1),
|
||||
ja_downw_(grid.number_of_faces, -1)
|
||||
ja_upw_(grid.number_of_faces, -1),
|
||||
ia_downw_(grid.number_of_cells + 1, -1),
|
||||
ja_downw_(grid.number_of_faces, -1)
|
||||
{
|
||||
if (props.numPhases() != 2) {
|
||||
THROW("Property object must have 2 phases");
|
||||
}
|
||||
if (props.numPhases() != 2) {
|
||||
THROW("Property object must have 2 phases");
|
||||
}
|
||||
int np = props.numPhases();
|
||||
int num_cells = props.numCells();
|
||||
visc_.resize(np*num_cells);
|
||||
int num_cells = props.numCells();
|
||||
visc_.resize(np*num_cells);
|
||||
A_.resize(np*np*num_cells);
|
||||
smin_.resize(np*num_cells);
|
||||
smax_.resize(np*num_cells);
|
||||
allcells_.resize(num_cells);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
allcells_[i] = i;
|
||||
}
|
||||
props.satRange(props.numCells(), &allcells_[0], &smin_[0], &smax_[0]);
|
||||
smin_.resize(np*num_cells);
|
||||
smax_.resize(np*num_cells);
|
||||
allcells_.resize(num_cells);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
allcells_[i] = i;
|
||||
}
|
||||
props.satRange(props.numCells(), &allcells_[0], &smin_[0], &smax_[0]);
|
||||
}
|
||||
|
||||
void TransportModelCompressibleTwophase::solve(const double* darcyflux,
|
||||
const double* pressure,
|
||||
const double* surfacevol0,
|
||||
const double* porevolume0,
|
||||
const double* porevolume,
|
||||
const double* source,
|
||||
const double dt,
|
||||
std::vector<double>& saturation)
|
||||
std::vector<double>& saturation,
|
||||
std::vector<double>& surfacevol)
|
||||
{
|
||||
darcyflux_ = darcyflux;
|
||||
surfacevol0_ = surfacevol0;
|
||||
darcyflux_ = darcyflux;
|
||||
surfacevol0_ = &surfacevol[0];
|
||||
porevolume0_ = porevolume0;
|
||||
porevolume_ = porevolume;
|
||||
source_ = source;
|
||||
dt_ = dt;
|
||||
source_ = source;
|
||||
dt_ = dt;
|
||||
toWaterSat(saturation, saturation_);
|
||||
|
||||
props_.viscosity(props_.numCells(), pressure, NULL, &allcells_[0], &visc_[0], NULL);
|
||||
props_.matrix(props_.numCells(), pressure, NULL, &allcells_[0], &A_[0], NULL);
|
||||
|
||||
std::vector<int> seq(grid_.number_of_cells);
|
||||
std::vector<int> comp(grid_.number_of_cells + 1);
|
||||
int ncomp;
|
||||
compute_sequence_graph(&grid_, darcyflux_,
|
||||
&seq[0], &comp[0], &ncomp,
|
||||
&ia_upw_[0], &ja_upw_[0]);
|
||||
const int nf = grid_.number_of_faces;
|
||||
std::vector<double> neg_darcyflux(nf);
|
||||
std::transform(darcyflux, darcyflux + nf, neg_darcyflux.begin(), std::negate<double>());
|
||||
compute_sequence_graph(&grid_, &neg_darcyflux[0],
|
||||
&seq[0], &comp[0], &ncomp,
|
||||
&ia_downw_[0], &ja_downw_[0]);
|
||||
reorderAndTransport(grid_, darcyflux);
|
||||
// Check immiscibility requirement (only done for first cell).
|
||||
if (A_[1] != 0.0 || A_[2] != 0.0) {
|
||||
THROW("TransportModelCompressibleTwophase requires a property object without miscibility.");
|
||||
}
|
||||
|
||||
std::vector<int> seq(grid_.number_of_cells);
|
||||
std::vector<int> comp(grid_.number_of_cells + 1);
|
||||
int ncomp;
|
||||
compute_sequence_graph(&grid_, darcyflux_,
|
||||
&seq[0], &comp[0], &ncomp,
|
||||
&ia_upw_[0], &ja_upw_[0]);
|
||||
const int nf = grid_.number_of_faces;
|
||||
std::vector<double> neg_darcyflux(nf);
|
||||
std::transform(darcyflux, darcyflux + nf, neg_darcyflux.begin(), std::negate<double>());
|
||||
compute_sequence_graph(&grid_, &neg_darcyflux[0],
|
||||
&seq[0], &comp[0], &ncomp,
|
||||
&ia_downw_[0], &ja_downw_[0]);
|
||||
reorderAndTransport(grid_, darcyflux);
|
||||
toBothSat(saturation_, saturation);
|
||||
|
||||
// Compute surface volume as a postprocessing step from saturation and A_
|
||||
computeSurfacevol(grid_.number_of_cells, props_.numPhases(), &A_[0], &saturation[0], &surfacevol[0]);
|
||||
}
|
||||
|
||||
// Residual function r(s) for a single-cell implicit Euler transport
|
||||
//
|
||||
// [[ incompressible was: r(s) = s - s0 + dt/pv*( influx + outflux*f(s) ) ]]
|
||||
//
|
||||
// r(s) = s - B*z0 + dt/pv*( influx + outflux*f(s))
|
||||
// r(s) = s - B*z0 + s*(poro - poro0)/poro0 + dt/pv*( influx + outflux*f(s) )
|
||||
//
|
||||
// @@@ What about the source term
|
||||
//
|
||||
//
|
||||
// where influx is water influx, outflux is total outflux.
|
||||
// We need the formula influx = B_i sum_{j->i} b_j v_{ij} + q_w.
|
||||
// outflux = B_i sum_{i->j} b_i v_{ij} - q = sum_{i->j} v_{ij} - q (as before)
|
||||
// We need the formula influx = B_i sum_{j->i} b_j v_{ij} - B_i q_w.
|
||||
// outflux = B_i sum_{i->j} b_i v_{ij} - B_i q = sum_{i->j} v_{ij} - B_i q
|
||||
// Influxes are negative, outfluxes positive.
|
||||
struct TransportModelCompressibleTwophase::Residual
|
||||
{
|
||||
int cell;
|
||||
double s0;
|
||||
double influx; // sum_j min(v_ij, 0)*f(s_j) + q_w // TODO: fix comment.
|
||||
double outflux; // sum_j max(v_ij, 0) - q
|
||||
int cell;
|
||||
double B_cell;
|
||||
double z0;
|
||||
double influx; // B_i sum_j b_j min(v_ij, 0)*f(s_j) - B_i q_w
|
||||
double outflux; // sum_j max(v_ij, 0) - B_i q
|
||||
// @@@ TODO: figure out change to rock-comp. terms with fluid compr.
|
||||
// double comp_term; // q - sum_j v_ij
|
||||
double dtpv; // dt/pv(i)
|
||||
const TransportModelCompressibleTwophase& tm;
|
||||
explicit Residual(const TransportModelCompressibleTwophase& tmodel, int cell_index)
|
||||
: tm(tmodel)
|
||||
{
|
||||
cell = cell_index;
|
||||
s0 = tm.saturation_[cell];
|
||||
double comp_term; // Now: used to be: q - sum_j v_ij
|
||||
double dtpv; // dt/pv(i)
|
||||
const TransportModelCompressibleTwophase& tm;
|
||||
explicit Residual(const TransportModelCompressibleTwophase& tmodel, int cell_index)
|
||||
: tm(tmodel)
|
||||
{
|
||||
cell = cell_index;
|
||||
const int np = tm.props_.numPhases();
|
||||
const double B_cell = 1.0/tm.A_[np*np*cell + 0];
|
||||
z0 = tm.surfacevol0_[np*cell + 0]; // I.e. water surface volume
|
||||
B_cell = 1.0/tm.A_[np*np*cell + 0];
|
||||
double src_flux = -tm.source_[cell];
|
||||
bool src_is_inflow = src_flux < 0.0;
|
||||
influx = src_is_inflow ? src_flux : 0.0;
|
||||
outflux = !src_is_inflow ? src_flux : 0.0;
|
||||
// comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water.
|
||||
dtpv = tm.dt_/tm.porevolume_[cell];
|
||||
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
|
||||
const int f = tm.grid_.cell_faces[i];
|
||||
double flux;
|
||||
int other;
|
||||
// Compute cell flux
|
||||
if (cell == tm.grid_.face_cells[2*f]) {
|
||||
flux = tm.darcyflux_[f];
|
||||
other = tm.grid_.face_cells[2*f+1];
|
||||
} else {
|
||||
flux =-tm.darcyflux_[f];
|
||||
other = tm.grid_.face_cells[2*f];
|
||||
}
|
||||
// Add flux to influx or outflux, if interior.
|
||||
if (other != -1) {
|
||||
if (flux < 0.0) {
|
||||
influx = src_is_inflow ? B_cell*src_flux : 0.0;
|
||||
outflux = !src_is_inflow ? B_cell*src_flux : 0.0;
|
||||
comp_term = (tm.porevolume_[cell] - tm.porevolume0_[cell])/tm.porevolume0_[cell];
|
||||
dtpv = tm.dt_/tm.porevolume0_[cell];
|
||||
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
|
||||
const int f = tm.grid_.cell_faces[i];
|
||||
double flux;
|
||||
int other;
|
||||
// Compute cell flux
|
||||
if (cell == tm.grid_.face_cells[2*f]) {
|
||||
flux = tm.darcyflux_[f];
|
||||
other = tm.grid_.face_cells[2*f+1];
|
||||
} else {
|
||||
flux =-tm.darcyflux_[f];
|
||||
other = tm.grid_.face_cells[2*f];
|
||||
}
|
||||
// Add flux to influx or outflux, if interior.
|
||||
if (other != -1) {
|
||||
if (flux < 0.0) {
|
||||
const double b_face = tm.A_[np*np*other + 0];
|
||||
influx += B_cell*b_face*flux*tm.fractionalflow_[other];
|
||||
} else {
|
||||
outflux += flux;
|
||||
}
|
||||
// comp_term -= flux;
|
||||
}
|
||||
}
|
||||
}
|
||||
double operator()(double s) const
|
||||
{
|
||||
// return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx + s*comp_term);
|
||||
return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx);
|
||||
}
|
||||
influx += B_cell*b_face*flux*tm.fractionalflow_[other];
|
||||
} else {
|
||||
outflux += flux; // Because B_cell*b_face = 1 for outflow faces
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
double operator()(double s) const
|
||||
{
|
||||
// return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx + s*comp_term);
|
||||
return s - B_cell*z0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx) + s*comp_term;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void TransportModelCompressibleTwophase::solveSingleCell(const int cell)
|
||||
{
|
||||
Residual res(*this, cell);
|
||||
int iters_used;
|
||||
saturation_[cell] = RootFinder::solve(res, saturation_[cell], 0.0, 1.0, maxit_, tol_, iters_used);
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
Residual res(*this, cell);
|
||||
int iters_used;
|
||||
saturation_[cell] = RootFinder::solve(res, saturation_[cell], 0.0, 1.0, maxit_, tol_, iters_used);
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
}
|
||||
|
||||
|
||||
void TransportModelCompressibleTwophase::solveMultiCell(const int num_cells, const int* cells)
|
||||
{
|
||||
// Experiment: when a cell changes more than the tolerance,
|
||||
// mark all downwind cells as needing updates. After
|
||||
// computing a single update in each cell, use marks
|
||||
// to guide further updating. Clear mark in cell when
|
||||
// its solution gets updated.
|
||||
// Verdict: this is a good one! Approx. halved total time.
|
||||
std::vector<int> needs_update(num_cells, 1);
|
||||
// This one also needs the mapping from all cells to
|
||||
// the strongly connected subset to filter out connections
|
||||
std::vector<int> pos(grid_.number_of_cells, -1);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
pos[cell] = i;
|
||||
}
|
||||
// Experiment: when a cell changes more than the tolerance,
|
||||
// mark all downwind cells as needing updates. After
|
||||
// computing a single update in each cell, use marks
|
||||
// to guide further updating. Clear mark in cell when
|
||||
// its solution gets updated.
|
||||
// Verdict: this is a good one! Approx. halved total time.
|
||||
std::vector<int> needs_update(num_cells, 1);
|
||||
// This one also needs the mapping from all cells to
|
||||
// the strongly connected subset to filter out connections
|
||||
std::vector<int> pos(grid_.number_of_cells, -1);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
pos[cell] = i;
|
||||
}
|
||||
|
||||
// Note: partially copied from below.
|
||||
const double tol = 1e-9;
|
||||
const int max_iters = 300;
|
||||
// Must store s0 before we start.
|
||||
std::vector<double> s0(num_cells);
|
||||
// Must set initial fractional flows before we start.
|
||||
// Also, we compute the # of upstream neighbours.
|
||||
// std::vector<int> num_upstream(num_cells);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
s0[i] = saturation_[cell];
|
||||
// num_upstream[i] = ia_upw_[cell + 1] - ia_upw_[cell];
|
||||
}
|
||||
// Solve once in each cell.
|
||||
// std::vector<int> fully_marked_stack;
|
||||
// fully_marked_stack.reserve(num_cells);
|
||||
int num_iters = 0;
|
||||
int update_count = 0; // Change name/meaning to cells_updated?
|
||||
do {
|
||||
update_count = 0; // Must reset count for every iteration.
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
// while (!fully_marked_stack.empty()) {
|
||||
// // std::cout << "# fully marked cells = " << fully_marked_stack.size() << std::endl;
|
||||
// const int fully_marked_ci = fully_marked_stack.back();
|
||||
// fully_marked_stack.pop_back();
|
||||
// ++update_count;
|
||||
// const int cell = cells[fully_marked_ci];
|
||||
// const double old_s = saturation_[cell];
|
||||
// saturation_[cell] = s0[fully_marked_ci];
|
||||
// solveSingleCell(cell);
|
||||
// const double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
// if (s_change > tol) {
|
||||
// // Mark downwind cells.
|
||||
// for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
|
||||
// const int downwind_cell = ja_downw_[j];
|
||||
// int ci = pos[downwind_cell];
|
||||
// ++needs_update[ci];
|
||||
// if (needs_update[ci] == num_upstream[ci]) {
|
||||
// fully_marked_stack.push_back(ci);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// // Unmark this cell.
|
||||
// needs_update[fully_marked_ci] = 0;
|
||||
// }
|
||||
if (!needs_update[i]) {
|
||||
continue;
|
||||
}
|
||||
++update_count;
|
||||
const int cell = cells[i];
|
||||
const double old_s = saturation_[cell];
|
||||
saturation_[cell] = s0[i];
|
||||
solveSingleCell(cell);
|
||||
const double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
if (s_change > tol) {
|
||||
// Mark downwind cells.
|
||||
for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
|
||||
const int downwind_cell = ja_downw_[j];
|
||||
int ci = pos[downwind_cell];
|
||||
// Note: partially copied from below.
|
||||
const double tol = 1e-9;
|
||||
const int max_iters = 300;
|
||||
// Must store s0 before we start.
|
||||
std::vector<double> s0(num_cells);
|
||||
// Must set initial fractional flows before we start.
|
||||
// Also, we compute the # of upstream neighbours.
|
||||
// std::vector<int> num_upstream(num_cells);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
s0[i] = saturation_[cell];
|
||||
// num_upstream[i] = ia_upw_[cell + 1] - ia_upw_[cell];
|
||||
}
|
||||
// Solve once in each cell.
|
||||
// std::vector<int> fully_marked_stack;
|
||||
// fully_marked_stack.reserve(num_cells);
|
||||
int num_iters = 0;
|
||||
int update_count = 0; // Change name/meaning to cells_updated?
|
||||
do {
|
||||
update_count = 0; // Must reset count for every iteration.
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
// while (!fully_marked_stack.empty()) {
|
||||
// // std::cout << "# fully marked cells = " << fully_marked_stack.size() << std::endl;
|
||||
// const int fully_marked_ci = fully_marked_stack.back();
|
||||
// fully_marked_stack.pop_back();
|
||||
// ++update_count;
|
||||
// const int cell = cells[fully_marked_ci];
|
||||
// const double old_s = saturation_[cell];
|
||||
// saturation_[cell] = s0[fully_marked_ci];
|
||||
// solveSingleCell(cell);
|
||||
// const double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
// if (s_change > tol) {
|
||||
// // Mark downwind cells.
|
||||
// for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
|
||||
// const int downwind_cell = ja_downw_[j];
|
||||
// int ci = pos[downwind_cell];
|
||||
// ++needs_update[ci];
|
||||
// if (needs_update[ci] == num_upstream[ci]) {
|
||||
// fully_marked_stack.push_back(ci);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// // Unmark this cell.
|
||||
// needs_update[fully_marked_ci] = 0;
|
||||
// }
|
||||
if (!needs_update[i]) {
|
||||
continue;
|
||||
}
|
||||
++update_count;
|
||||
const int cell = cells[i];
|
||||
const double old_s = saturation_[cell];
|
||||
// solveSingleCell() requires saturation_[cell]
|
||||
// to be s0.
|
||||
saturation_[cell] = s0[i];
|
||||
solveSingleCell(cell);
|
||||
const double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
if (s_change > tol) {
|
||||
// Mark downwind cells.
|
||||
for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
|
||||
const int downwind_cell = ja_downw_[j];
|
||||
int ci = pos[downwind_cell];
|
||||
if (ci != -1) {
|
||||
needs_update[ci] = 1;
|
||||
}
|
||||
// ++needs_update[ci];
|
||||
// if (needs_update[ci] == num_upstream[ci]) {
|
||||
// fully_marked_stack.push_back(ci);
|
||||
// }
|
||||
}
|
||||
}
|
||||
// Unmark this cell.
|
||||
needs_update[i] = 0;
|
||||
}
|
||||
// std::cout << "Iter = " << num_iters << " update_count = " << update_count
|
||||
// << " # marked cells = "
|
||||
// << std::accumulate(needs_update.begin(), needs_update.end(), 0) << std::endl;
|
||||
} while (update_count > 0 && ++num_iters < max_iters);
|
||||
// ++needs_update[ci];
|
||||
// if (needs_update[ci] == num_upstream[ci]) {
|
||||
// fully_marked_stack.push_back(ci);
|
||||
// }
|
||||
}
|
||||
}
|
||||
// Unmark this cell.
|
||||
needs_update[i] = 0;
|
||||
}
|
||||
// std::cout << "Iter = " << num_iters << " update_count = " << update_count
|
||||
// << " # marked cells = "
|
||||
// << std::accumulate(needs_update.begin(), needs_update.end(), 0) << std::endl;
|
||||
} while (update_count > 0 && ++num_iters < max_iters);
|
||||
|
||||
// Done with iterations, check if we succeeded.
|
||||
if (update_count > 0) {
|
||||
THROW("In solveMultiCell(), we did not converge after "
|
||||
<< num_iters << " iterations. Remaining update count = " << update_count);
|
||||
}
|
||||
std::cout << "Solved " << num_cells << " cell multicell problem in "
|
||||
<< num_iters << " iterations." << std::endl;
|
||||
// Done with iterations, check if we succeeded.
|
||||
if (update_count > 0) {
|
||||
THROW("In solveMultiCell(), we did not converge after "
|
||||
<< num_iters << " iterations. Remaining update count = " << update_count);
|
||||
}
|
||||
std::cout << "Solved " << num_cells << " cell multicell problem in "
|
||||
<< num_iters << " iterations." << std::endl;
|
||||
|
||||
}
|
||||
|
||||
double TransportModelCompressibleTwophase::fracFlow(double s, int cell) const
|
||||
{
|
||||
double sat[2] = { s, 1.0 - s };
|
||||
double mob[2];
|
||||
props_.relperm(1, sat, &cell, mob, 0);
|
||||
mob[0] /= visc_[2*cell + 0];
|
||||
mob[1] /= visc_[2*cell + 1];
|
||||
return mob[0]/(mob[0] + mob[1]);
|
||||
double sat[2] = { s, 1.0 - s };
|
||||
double mob[2];
|
||||
props_.relperm(1, sat, &cell, mob, 0);
|
||||
mob[0] /= visc_[2*cell + 0];
|
||||
mob[1] /= visc_[2*cell + 1];
|
||||
return mob[0]/(mob[0] + mob[1]);
|
||||
}
|
||||
|
||||
|
||||
@ -303,23 +318,24 @@ namespace Opm
|
||||
|
||||
// Residual function r(s) for a single-cell implicit Euler gravity segregation
|
||||
//
|
||||
// r(s) = s - s0 + dt/pv*sum_{j adj i}( gravmod_ij * gf_ij ).
|
||||
// [[ incompressible was: r(s) = s - s0 + dt/pv*sum_{j adj i}( gravmod_ij * gf_ij ) ]]
|
||||
//
|
||||
// r(s) = s - B*z0 + dt/pv*( influx + outflux*f(s) )
|
||||
struct TransportModelCompressibleTwophase::GravityResidual
|
||||
{
|
||||
int cell;
|
||||
int cell;
|
||||
int nbcell[2];
|
||||
double s0;
|
||||
double dtpv; // dt/pv(i)
|
||||
double s0;
|
||||
double dtpv; // dt/pv(i)
|
||||
double gf[2];
|
||||
const TransportModelCompressibleTwophase& tm;
|
||||
explicit GravityResidual(const TransportModelCompressibleTwophase& tmodel,
|
||||
const TransportModelCompressibleTwophase& tm;
|
||||
explicit GravityResidual(const TransportModelCompressibleTwophase& tmodel,
|
||||
const std::vector<int>& cells,
|
||||
const int pos,
|
||||
const double* gravflux) // Always oriented towards next in column. Size = colsize - 1.
|
||||
: tm(tmodel)
|
||||
{
|
||||
cell = cells[pos];
|
||||
: tm(tmodel)
|
||||
{
|
||||
cell = cells[pos];
|
||||
nbcell[0] = -1;
|
||||
gf[0] = 0.0;
|
||||
if (pos > 0) {
|
||||
@ -332,70 +348,94 @@ namespace Opm
|
||||
nbcell[1] = cells[pos + 1];
|
||||
gf[1] = gravflux[pos];
|
||||
}
|
||||
s0 = tm.saturation_[cell];
|
||||
dtpv = tm.dt_/tm.porevolume_[cell];
|
||||
|
||||
}
|
||||
double operator()(double s) const
|
||||
{
|
||||
double res = s - s0;
|
||||
s0 = tm.saturation_[cell];
|
||||
dtpv = tm.dt_/tm.porevolume0_[cell];
|
||||
|
||||
}
|
||||
double operator()(double s) const
|
||||
{
|
||||
double res = s - s0;
|
||||
double mobcell[2];
|
||||
tm.mobility(s, cell, mobcell);
|
||||
for (int nb = 0; nb < 2; ++nb) {
|
||||
if (nbcell[nb] != -1) {
|
||||
if (nbcell[nb] != -1) {
|
||||
double m[2];
|
||||
if (gf[nb] < 0.0) {
|
||||
m[0] = mobcell[0];
|
||||
m[1] = tm.mob_[2*nbcell[nb] + 1];
|
||||
} else {
|
||||
} else {
|
||||
m[0] = tm.mob_[2*nbcell[nb]];
|
||||
m[1] = mobcell[1];
|
||||
}
|
||||
if (m[0] + m[1] > 0.0) {
|
||||
}
|
||||
if (m[0] + m[1] > 0.0) {
|
||||
res += -dtpv*gf[nb]*m[0]*m[1]/(m[0] + m[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void TransportModelCompressibleTwophase::mobility(double s, int cell, double* mob) const
|
||||
{
|
||||
double sat[2] = { s, 1.0 - s };
|
||||
props_.relperm(1, sat, &cell, mob, 0);
|
||||
mob[0] /= visc_[0];
|
||||
mob[1] /= visc_[1];
|
||||
double sat[2] = { s, 1.0 - s };
|
||||
props_.relperm(1, sat, &cell, mob, 0);
|
||||
mob[0] /= visc_[0];
|
||||
mob[1] /= visc_[1];
|
||||
}
|
||||
|
||||
|
||||
|
||||
void TransportModelCompressibleTwophase::initGravity(const double* grav)
|
||||
{
|
||||
// Set up gravflux_ = T_ij g (rho_w - rho_o) (z_i - z_j)
|
||||
// Set up transmissibilities.
|
||||
std::vector<double> htrans(grid_.cell_facepos[grid_.number_of_cells]);
|
||||
const int nf = grid_.number_of_faces;
|
||||
const int dim = grid_.dimensions;
|
||||
trans_.resize(nf);
|
||||
gravflux_.resize(nf);
|
||||
tpfa_htrans_compute(const_cast<UnstructuredGrid*>(&grid_), props_.permeability(), &htrans[0]);
|
||||
tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &htrans[0], &gravflux_[0]);
|
||||
tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &htrans[0], &trans_[0]);
|
||||
|
||||
const double delta_rho = 0.0;// props_.density()[0] - props_.density()[1];
|
||||
THROW("TransportModelCompressibleTwophase gravity solver not done yet."); // See line above...
|
||||
// Remember gravity vector.
|
||||
gravity_ = grav;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void TransportModelCompressibleTwophase::initGravityDynamic()
|
||||
{
|
||||
// Set up gravflux_ = T_ij g [ (b_w,i rho_w,S - b_o,i rho_o,S) (z_i - z_f)
|
||||
// + (b_w,j rho_w,S - b_o,j rho_o,S) (z_f - z_j) ]
|
||||
// But b_w,i * rho_w,S = rho_w,i, which we conmpute with a call to props_.density().
|
||||
// We assume that we already have stored T_ij in trans_.
|
||||
// We also assume that the A_ matrices are updated from an earlier call to solve().
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int nf = grid_.number_of_faces;
|
||||
const int np = props_.numPhases();
|
||||
ASSERT(np == 2);
|
||||
const int dim = grid_.dimensions;
|
||||
density_.resize(nc*np);
|
||||
props_.density(grid_.number_of_cells, &A_[0], &density_[0]);
|
||||
std::fill(gravflux_.begin(), gravflux_.end(), 0.0);
|
||||
for (int f = 0; f < nf; ++f) {
|
||||
const int* c = &grid_.face_cells[2*f];
|
||||
double gdz = 0.0;
|
||||
const double signs[2] = { 1.0, -1.0 };
|
||||
if (c[0] != -1 && c[1] != -1) {
|
||||
for (int d = 0; d < dim; ++d) {
|
||||
gdz += grav[d]*(grid_.cell_centroids[dim*c[0] + d] - grid_.cell_centroids[dim*c[1] + d]);
|
||||
for (int ci = 0; ci < 2; ++ci) {
|
||||
double gdz = 0.0;
|
||||
for (int d = 0; d < dim; ++d) {
|
||||
gdz += gravity_[d]*(grid_.cell_centroids[dim*c[ci] + d] - grid_.face_centroids[dim*f + d]);
|
||||
}
|
||||
gravflux_[f] += signs[ci]*trans_[f]*gdz*(density_[2*c[ci]] - density_[2*c[ci] + 1]);
|
||||
}
|
||||
}
|
||||
gravflux_[f] *= delta_rho*gdz;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void TransportModelCompressibleTwophase::solveSingleCellGravity(const std::vector<int>& cells,
|
||||
const int pos,
|
||||
const double* gravflux)
|
||||
@ -407,7 +447,7 @@ namespace Opm
|
||||
saturation_[cell] = RootFinder::solve(res, smin_[2*cell], smax_[2*cell], maxit_, tol_, iters_used);
|
||||
}
|
||||
saturation_[cell] = std::min(std::max(saturation_[cell], smin_[2*cell]), smax_[2*cell]);
|
||||
mobility(saturation_[cell], cell, &mob_[2*cell]);
|
||||
mobility(saturation_[cell], cell, &mob_[2*cell]);
|
||||
}
|
||||
|
||||
|
||||
@ -418,17 +458,17 @@ namespace Opm
|
||||
const int nc = cells.size();
|
||||
std::vector<double> col_gravflux(nc - 1);
|
||||
for (int ci = 0; ci < nc - 1; ++ci) {
|
||||
const int cell = cells[ci];
|
||||
const int next_cell = cells[ci + 1];
|
||||
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
|
||||
const int face = grid_.cell_faces[j];
|
||||
const int c1 = grid_.face_cells[2*face + 0];
|
||||
const int cell = cells[ci];
|
||||
const int next_cell = cells[ci + 1];
|
||||
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
|
||||
const int face = grid_.cell_faces[j];
|
||||
const int c1 = grid_.face_cells[2*face + 0];
|
||||
const int c2 = grid_.face_cells[2*face + 1];
|
||||
if (c1 == next_cell || c2 == next_cell) {
|
||||
if (c1 == next_cell || c2 == next_cell) {
|
||||
const double gf = gravflux_[face];
|
||||
col_gravflux[ci] = (c1 == cell) ? gf : -gf;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Store initial saturation s0
|
||||
@ -438,7 +478,7 @@ namespace Opm
|
||||
}
|
||||
|
||||
// Solve single cell problems, repeating if necessary.
|
||||
double max_s_change = 0.0;
|
||||
double max_s_change = 0.0;
|
||||
int num_iters = 0;
|
||||
do {
|
||||
max_s_change = 0.0;
|
||||
@ -454,12 +494,12 @@ namespace Opm
|
||||
std::fabs(saturation_[cells[ci2]] - old_s[1])));
|
||||
}
|
||||
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change << std::endl;
|
||||
} while (max_s_change > tol_ && ++num_iters < maxit_);
|
||||
} while (max_s_change > tol_ && ++num_iters < maxit_);
|
||||
|
||||
if (max_s_change > tol_) {
|
||||
THROW("In solveGravityColumn(), we did not converge after "
|
||||
<< num_iters << " iterations. Delta s = " << max_s_change);
|
||||
}
|
||||
if (max_s_change > tol_) {
|
||||
THROW("In solveGravityColumn(), we did not converge after "
|
||||
<< num_iters << " iterations. Delta s = " << max_s_change);
|
||||
}
|
||||
return num_iters + 1;
|
||||
}
|
||||
|
||||
@ -467,10 +507,14 @@ namespace Opm
|
||||
|
||||
void TransportModelCompressibleTwophase::solveGravity(const std::vector<std::vector<int> >& columns,
|
||||
const double* pressure,
|
||||
const double* porevolume,
|
||||
const double* porevolume0,
|
||||
const double dt,
|
||||
std::vector<double>& saturation)
|
||||
std::vector<double>& saturation,
|
||||
std::vector<double>& surfacevol)
|
||||
{
|
||||
// Assume that solve() has already been called, so that A_ is current.
|
||||
initGravityDynamic();
|
||||
|
||||
// Initialize mobilities.
|
||||
const int nc = grid_.number_of_cells;
|
||||
std::vector<int> cells(nc);
|
||||
@ -489,7 +533,7 @@ namespace Opm
|
||||
}
|
||||
|
||||
// Set up other variables.
|
||||
porevolume_ = porevolume;
|
||||
porevolume0_ = porevolume0;
|
||||
dt_ = dt;
|
||||
toWaterSat(saturation, saturation_);
|
||||
|
||||
@ -502,6 +546,9 @@ namespace Opm
|
||||
std::cout << "Gauss-Seidel column solver average iterations: "
|
||||
<< double(num_iters)/double(columns.size()) << std::endl;
|
||||
toBothSat(saturation_, saturation);
|
||||
|
||||
// Compute surface volume as a postprocessing step from saturation and A_
|
||||
computeSurfacevol(grid_.number_of_cells, props_.numPhases(), &A_[0], &saturation[0], &surfacevol[0]);
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -30,37 +30,42 @@ namespace Opm
|
||||
|
||||
class BlackoilPropertiesInterface;
|
||||
|
||||
/// Implements a reordering transport solver for compressible,
|
||||
/// non-miscible two-phase flow.
|
||||
class TransportModelCompressibleTwophase : public TransportModelInterface
|
||||
{
|
||||
public:
|
||||
/// Construct solver.
|
||||
/// \param[in] grid A 2d or 3d grid.
|
||||
/// \param[in] props Rock and fluid properties.
|
||||
/// \param[in] tol Tolerance used in the solver.
|
||||
/// \param[in] maxit Maximum number of non-linear iterations used.
|
||||
TransportModelCompressibleTwophase(const UnstructuredGrid& grid,
|
||||
/// Construct solver.
|
||||
/// \param[in] grid A 2d or 3d grid.
|
||||
/// \param[in] props Rock and fluid properties.
|
||||
/// \param[in] tol Tolerance used in the solver.
|
||||
/// \param[in] maxit Maximum number of non-linear iterations used.
|
||||
TransportModelCompressibleTwophase(const UnstructuredGrid& grid,
|
||||
const Opm::BlackoilPropertiesInterface& props,
|
||||
const double tol,
|
||||
const int maxit);
|
||||
|
||||
/// Solve for saturation at next timestep.
|
||||
/// \param[in] darcyflux Array of signed face fluxes.
|
||||
/// \param[in] pressure Array of cell pressures
|
||||
/// \param[in] surfacevol0 Array of surface volumes at start of timestep
|
||||
/// \param[in] porevolume Array of pore volumes.
|
||||
/// \param[in] source Transport source term.
|
||||
/// \param[in] dt Time step.
|
||||
/// \param[in, out] saturation Phase saturations.
|
||||
void solve(const double* darcyflux,
|
||||
/// Solve for saturation at next timestep.
|
||||
/// \param[in] darcyflux Array of signed face fluxes.
|
||||
/// \param[in] pressure Array of cell pressures
|
||||
/// \param[in] surfacevol0 Array of surface volumes at start of timestep
|
||||
/// \param[in] porevolume0 Array of pore volumes at start of timestep.
|
||||
/// \param[in] porevolume Array of pore volumes at end of timestep.
|
||||
/// \param[in] source Transport source term.
|
||||
/// \param[in] dt Time step.
|
||||
/// \param[in, out] saturation Phase saturations.
|
||||
/// \param[in, out] surfacevol Surface volume densities for each phase.
|
||||
void solve(const double* darcyflux,
|
||||
const double* pressure,
|
||||
const double* surfacevol0,
|
||||
const double* porevolume0,
|
||||
const double* porevolume,
|
||||
const double* source,
|
||||
const double dt,
|
||||
std::vector<double>& saturation);
|
||||
const double* source,
|
||||
const double dt,
|
||||
std::vector<double>& saturation,
|
||||
std::vector<double>& surfacevol);
|
||||
|
||||
/// Initialise quantities needed by gravity solver.
|
||||
/// \param[in] grav gravity vector
|
||||
/// \param[in] grav Gravity vector
|
||||
void initGravity(const double* grav);
|
||||
|
||||
/// Solve for gravity segregation.
|
||||
@ -68,52 +73,62 @@ namespace Opm
|
||||
/// It assumes that the input columns contain cells in a single
|
||||
/// vertical stack, that do not interact with other columns (for
|
||||
/// gravity segregation.
|
||||
/// \TODO: Implement this.
|
||||
/// \param[in] columns Vector of cell-columns.
|
||||
/// \param[in] porevolume0 Array of pore volumes at start of timestep.
|
||||
/// \param[in] dt Time step.
|
||||
/// \param[in, out] saturation Phase saturations.
|
||||
/// \param[in, out] surfacevol Surface volume densities for each phase.
|
||||
void solveGravity(const std::vector<std::vector<int> >& columns,
|
||||
const double* pressure,
|
||||
const double* porevolume,
|
||||
const double* porevolume0,
|
||||
const double dt,
|
||||
std::vector<double>& saturation);
|
||||
std::vector<double>& saturation,
|
||||
std::vector<double>& surfacevol);
|
||||
|
||||
private:
|
||||
virtual void solveSingleCell(const int cell);
|
||||
virtual void solveMultiCell(const int num_cells, const int* cells);
|
||||
virtual void solveSingleCell(const int cell);
|
||||
virtual void solveMultiCell(const int num_cells, const int* cells);
|
||||
void solveSingleCellGravity(const std::vector<int>& cells,
|
||||
const int pos,
|
||||
const double* gravflux);
|
||||
int solveGravityColumn(const std::vector<int>& cells);
|
||||
void initGravityDynamic();
|
||||
|
||||
private:
|
||||
const UnstructuredGrid& grid_;
|
||||
const BlackoilPropertiesInterface& props_;
|
||||
const UnstructuredGrid& grid_;
|
||||
const BlackoilPropertiesInterface& props_;
|
||||
std::vector<int> allcells_;
|
||||
std::vector<double> visc_;
|
||||
std::vector<double> A_;
|
||||
std::vector<double> smin_;
|
||||
std::vector<double> smax_;
|
||||
double tol_;
|
||||
double maxit_;
|
||||
std::vector<double> smin_;
|
||||
std::vector<double> smax_;
|
||||
double tol_;
|
||||
double maxit_;
|
||||
|
||||
const double* darcyflux_; // one flux per grid face
|
||||
const double* surfacevol0_; // one per phase per cell
|
||||
const double* porevolume_; // one volume per cell
|
||||
const double* source_; // one source per cell
|
||||
double dt_;
|
||||
const double* darcyflux_; // one flux per grid face
|
||||
const double* surfacevol0_; // one per phase per cell
|
||||
const double* porevolume0_; // one volume per cell
|
||||
const double* porevolume_; // one volume per cell
|
||||
const double* source_; // one source per cell
|
||||
double dt_;
|
||||
std::vector<double> saturation_; // P (= num. phases) per cell
|
||||
std::vector<double> fractionalflow_; // = m[0]/(m[0] + m[1]) per cell
|
||||
std::vector<double> fractionalflow_; // = m[0]/(m[0] + m[1]) per cell
|
||||
// For gravity segregation.
|
||||
const double* gravity_;
|
||||
std::vector<double> trans_;
|
||||
std::vector<double> density_;
|
||||
std::vector<double> gravflux_;
|
||||
std::vector<double> mob_;
|
||||
std::vector<double> s0_;
|
||||
|
||||
// Storing the upwind and downwind graphs for experiments.
|
||||
std::vector<int> ia_upw_;
|
||||
std::vector<int> ja_upw_;
|
||||
std::vector<int> ia_downw_;
|
||||
std::vector<int> ja_downw_;
|
||||
// Storing the upwind and downwind graphs for experiments.
|
||||
std::vector<int> ia_upw_;
|
||||
std::vector<int> ja_upw_;
|
||||
std::vector<int> ia_downw_;
|
||||
std::vector<int> ja_downw_;
|
||||
|
||||
struct Residual;
|
||||
double fracFlow(double s, int cell) const;
|
||||
struct Residual;
|
||||
double fracFlow(double s, int cell) const;
|
||||
|
||||
struct GravityResidual;
|
||||
void mobility(double s, int cell, double* mob) const;
|
||||
|
@ -41,71 +41,79 @@ namespace Opm
|
||||
|
||||
|
||||
TransportModelTwophase::TransportModelTwophase(const UnstructuredGrid& grid,
|
||||
const Opm::IncompPropertiesInterface& props,
|
||||
const double tol,
|
||||
const int maxit)
|
||||
: grid_(grid),
|
||||
props_(props),
|
||||
tol_(tol),
|
||||
maxit_(maxit),
|
||||
darcyflux_(0),
|
||||
source_(0),
|
||||
dt_(0.0),
|
||||
saturation_(grid.number_of_cells, -1.0),
|
||||
fractionalflow_(grid.number_of_cells, -1.0),
|
||||
mob_(2*grid.number_of_cells, -1.0)
|
||||
const Opm::IncompPropertiesInterface& props,
|
||||
const double tol,
|
||||
const int maxit)
|
||||
: grid_(grid),
|
||||
props_(props),
|
||||
tol_(tol),
|
||||
maxit_(maxit),
|
||||
darcyflux_(0),
|
||||
source_(0),
|
||||
dt_(0.0),
|
||||
saturation_(grid.number_of_cells, -1.0),
|
||||
fractionalflow_(grid.number_of_cells, -1.0),
|
||||
reorder_iterations_(grid.number_of_cells, 0),
|
||||
mob_(2*grid.number_of_cells, -1.0)
|
||||
#ifdef EXPERIMENT_GAUSS_SEIDEL
|
||||
, ia_upw_(grid.number_of_cells + 1, -1),
|
||||
ja_upw_(grid.number_of_faces, -1),
|
||||
ia_downw_(grid.number_of_cells + 1, -1),
|
||||
ja_downw_(grid.number_of_faces, -1)
|
||||
, ia_upw_(grid.number_of_cells + 1, -1),
|
||||
ja_upw_(grid.number_of_faces, -1),
|
||||
ia_downw_(grid.number_of_cells + 1, -1),
|
||||
ja_downw_(grid.number_of_faces, -1)
|
||||
#endif
|
||||
{
|
||||
if (props.numPhases() != 2) {
|
||||
THROW("Property object must have 2 phases");
|
||||
}
|
||||
visc_ = props.viscosity();
|
||||
int num_cells = props.numCells();
|
||||
smin_.resize(props.numPhases()*num_cells);
|
||||
smax_.resize(props.numPhases()*num_cells);
|
||||
std::vector<int> cells(num_cells);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
cells[i] = i;
|
||||
}
|
||||
props.satRange(props.numCells(), &cells[0], &smin_[0], &smax_[0]);
|
||||
if (props.numPhases() != 2) {
|
||||
THROW("Property object must have 2 phases");
|
||||
}
|
||||
visc_ = props.viscosity();
|
||||
int num_cells = props.numCells();
|
||||
smin_.resize(props.numPhases()*num_cells);
|
||||
smax_.resize(props.numPhases()*num_cells);
|
||||
std::vector<int> cells(num_cells);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
cells[i] = i;
|
||||
}
|
||||
props.satRange(props.numCells(), &cells[0], &smin_[0], &smax_[0]);
|
||||
}
|
||||
|
||||
void TransportModelTwophase::solve(const double* darcyflux,
|
||||
const double* porevolume,
|
||||
const double* source,
|
||||
const double dt,
|
||||
std::vector<double>& saturation)
|
||||
const double* source,
|
||||
const double dt,
|
||||
std::vector<double>& saturation)
|
||||
{
|
||||
darcyflux_ = darcyflux;
|
||||
darcyflux_ = darcyflux;
|
||||
porevolume_ = porevolume;
|
||||
source_ = source;
|
||||
dt_ = dt;
|
||||
source_ = source;
|
||||
dt_ = dt;
|
||||
toWaterSat(saturation, saturation_);
|
||||
|
||||
#ifdef EXPERIMENT_GAUSS_SEIDEL
|
||||
std::vector<int> seq(grid_.number_of_cells);
|
||||
std::vector<int> comp(grid_.number_of_cells + 1);
|
||||
int ncomp;
|
||||
compute_sequence_graph(&grid_, darcyflux_,
|
||||
&seq[0], &comp[0], &ncomp,
|
||||
&ia_upw_[0], &ja_upw_[0]);
|
||||
const int nf = grid_.number_of_faces;
|
||||
std::vector<double> neg_darcyflux(nf);
|
||||
std::transform(darcyflux, darcyflux + nf, neg_darcyflux.begin(), std::negate<double>());
|
||||
compute_sequence_graph(&grid_, &neg_darcyflux[0],
|
||||
&seq[0], &comp[0], &ncomp,
|
||||
&ia_downw_[0], &ja_downw_[0]);
|
||||
std::vector<int> seq(grid_.number_of_cells);
|
||||
std::vector<int> comp(grid_.number_of_cells + 1);
|
||||
int ncomp;
|
||||
compute_sequence_graph(&grid_, darcyflux_,
|
||||
&seq[0], &comp[0], &ncomp,
|
||||
&ia_upw_[0], &ja_upw_[0]);
|
||||
const int nf = grid_.number_of_faces;
|
||||
std::vector<double> neg_darcyflux(nf);
|
||||
std::transform(darcyflux, darcyflux + nf, neg_darcyflux.begin(), std::negate<double>());
|
||||
compute_sequence_graph(&grid_, &neg_darcyflux[0],
|
||||
&seq[0], &comp[0], &ncomp,
|
||||
&ia_downw_[0], &ja_downw_[0]);
|
||||
#endif
|
||||
|
||||
reorderAndTransport(grid_, darcyflux);
|
||||
std::fill(reorder_iterations_.begin(),reorder_iterations_.end(),0);
|
||||
reorderAndTransport(grid_, darcyflux);
|
||||
toBothSat(saturation_, saturation);
|
||||
}
|
||||
|
||||
|
||||
const std::vector<int>& TransportModelTwophase::getReorderIterations() const
|
||||
{
|
||||
return reorder_iterations_;
|
||||
}
|
||||
|
||||
|
||||
// Residual function r(s) for a single-cell implicit Euler transport
|
||||
//
|
||||
// r(s) = s - s0 + dt/pv*( influx + outflux*f(s) )
|
||||
@ -114,330 +122,332 @@ namespace Opm
|
||||
// Influxes are negative, outfluxes positive.
|
||||
struct TransportModelTwophase::Residual
|
||||
{
|
||||
int cell;
|
||||
double s0;
|
||||
double influx; // sum_j min(v_ij, 0)*f(s_j) + q_w
|
||||
double outflux; // sum_j max(v_ij, 0) - q
|
||||
int cell;
|
||||
double s0;
|
||||
double influx; // sum_j min(v_ij, 0)*f(s_j) + q_w
|
||||
double outflux; // sum_j max(v_ij, 0) - q
|
||||
double comp_term; // q - sum_j v_ij
|
||||
double dtpv; // dt/pv(i)
|
||||
const TransportModelTwophase& tm;
|
||||
explicit Residual(const TransportModelTwophase& tmodel, int cell_index)
|
||||
: tm(tmodel)
|
||||
{
|
||||
cell = cell_index;
|
||||
s0 = tm.saturation_[cell];
|
||||
double dtpv; // dt/pv(i)
|
||||
const TransportModelTwophase& tm;
|
||||
explicit Residual(const TransportModelTwophase& tmodel, int cell_index)
|
||||
: tm(tmodel)
|
||||
{
|
||||
cell = cell_index;
|
||||
s0 = tm.saturation_[cell];
|
||||
double src_flux = -tm.source_[cell];
|
||||
bool src_is_inflow = src_flux < 0.0;
|
||||
influx = src_is_inflow ? src_flux : 0.0;
|
||||
outflux = !src_is_inflow ? src_flux : 0.0;
|
||||
influx = src_is_inflow ? src_flux : 0.0;
|
||||
outflux = !src_is_inflow ? src_flux : 0.0;
|
||||
comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water.
|
||||
dtpv = tm.dt_/tm.porevolume_[cell];
|
||||
dtpv = tm.dt_/tm.porevolume_[cell];
|
||||
|
||||
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
|
||||
int f = tm.grid_.cell_faces[i];
|
||||
double flux;
|
||||
int other;
|
||||
// Compute cell flux
|
||||
if (cell == tm.grid_.face_cells[2*f]) {
|
||||
flux = tm.darcyflux_[f];
|
||||
other = tm.grid_.face_cells[2*f+1];
|
||||
} else {
|
||||
flux =-tm.darcyflux_[f];
|
||||
other = tm.grid_.face_cells[2*f];
|
||||
}
|
||||
// Add flux to influx or outflux, if interior.
|
||||
if (other != -1) {
|
||||
if (flux < 0.0) {
|
||||
influx += flux*tm.fractionalflow_[other];
|
||||
} else {
|
||||
outflux += flux;
|
||||
}
|
||||
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
|
||||
int f = tm.grid_.cell_faces[i];
|
||||
double flux;
|
||||
int other;
|
||||
// Compute cell flux
|
||||
if (cell == tm.grid_.face_cells[2*f]) {
|
||||
flux = tm.darcyflux_[f];
|
||||
other = tm.grid_.face_cells[2*f+1];
|
||||
} else {
|
||||
flux =-tm.darcyflux_[f];
|
||||
other = tm.grid_.face_cells[2*f];
|
||||
}
|
||||
// Add flux to influx or outflux, if interior.
|
||||
if (other != -1) {
|
||||
if (flux < 0.0) {
|
||||
influx += flux*tm.fractionalflow_[other];
|
||||
} else {
|
||||
outflux += flux;
|
||||
}
|
||||
comp_term -= flux;
|
||||
}
|
||||
}
|
||||
}
|
||||
double operator()(double s) const
|
||||
{
|
||||
return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx + s*comp_term);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
double operator()(double s) const
|
||||
{
|
||||
return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx + s*comp_term);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void TransportModelTwophase::solveSingleCell(const int cell)
|
||||
{
|
||||
Residual res(*this, cell);
|
||||
// const double r0 = res(saturation_[cell]);
|
||||
// if (std::fabs(r0) < tol_) {
|
||||
// return;
|
||||
// }
|
||||
int iters_used;
|
||||
// saturation_[cell] = modifiedRegulaFalsi(res, smin_[2*cell], smax_[2*cell], maxit_, tol_, iters_used);
|
||||
saturation_[cell] = RootFinder::solve(res, saturation_[cell], 0.0, 1.0, maxit_, tol_, iters_used);
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
Residual res(*this, cell);
|
||||
// const double r0 = res(saturation_[cell]);
|
||||
// if (std::fabs(r0) < tol_) {
|
||||
// return;
|
||||
// }
|
||||
int iters_used = 0;
|
||||
// saturation_[cell] = modifiedRegulaFalsi(res, smin_[2*cell], smax_[2*cell], maxit_, tol_, iters_used);
|
||||
saturation_[cell] = RootFinder::solve(res, saturation_[cell], 0.0, 1.0, maxit_, tol_, iters_used);
|
||||
// add if it is iteration on an out loop
|
||||
reorder_iterations_[cell] = reorder_iterations_[cell] + iters_used;
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
}
|
||||
|
||||
// namespace {
|
||||
// class TofComputer
|
||||
// {
|
||||
// public:
|
||||
// TofComputer(const int num_cells,
|
||||
// const int* ia,
|
||||
// const int* ja,
|
||||
// const int startcell,
|
||||
// std::vector<int>& tof)
|
||||
// : ia_(ia),
|
||||
// ja_(ja)
|
||||
// {
|
||||
// tof.clear();
|
||||
// tof.resize(num_cells, num_cells);
|
||||
// tof[startcell] = 0;
|
||||
// tof_ = &tof[0];
|
||||
// visitTof(startcell);
|
||||
// }
|
||||
// class TofComputer
|
||||
// {
|
||||
// public:
|
||||
// TofComputer(const int num_cells,
|
||||
// const int* ia,
|
||||
// const int* ja,
|
||||
// const int startcell,
|
||||
// std::vector<int>& tof)
|
||||
// : ia_(ia),
|
||||
// ja_(ja)
|
||||
// {
|
||||
// tof.clear();
|
||||
// tof.resize(num_cells, num_cells);
|
||||
// tof[startcell] = 0;
|
||||
// tof_ = &tof[0];
|
||||
// visitTof(startcell);
|
||||
// }
|
||||
|
||||
// private:
|
||||
// const int* ia_;
|
||||
// const int* ja_;
|
||||
// int* tof_;
|
||||
// private:
|
||||
// const int* ia_;
|
||||
// const int* ja_;
|
||||
// int* tof_;
|
||||
|
||||
// void visitTof(const int cell)
|
||||
// {
|
||||
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
|
||||
// const int nb_cell = ja_[j];
|
||||
// if (tof_[nb_cell] > tof_[cell] + 1) {
|
||||
// tof_[nb_cell] = tof_[cell] + 1;
|
||||
// visitTof(nb_cell);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// void visitTof(const int cell)
|
||||
// {
|
||||
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
|
||||
// const int nb_cell = ja_[j];
|
||||
// if (tof_[nb_cell] > tof_[cell] + 1) {
|
||||
// tof_[nb_cell] = tof_[cell] + 1;
|
||||
// visitTof(nb_cell);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// };
|
||||
// };
|
||||
// } // anon namespace
|
||||
|
||||
|
||||
void TransportModelTwophase::solveMultiCell(const int num_cells, const int* cells)
|
||||
{
|
||||
// std::ofstream os("dump");
|
||||
// std::copy(cells, cells + num_cells, std::ostream_iterator<double>(os, "\n"));
|
||||
// std::ofstream os("dump");
|
||||
// std::copy(cells, cells + num_cells, std::ostream_iterator<double>(os, "\n"));
|
||||
|
||||
// Experiment: try a breath-first search to build a more suitable ordering.
|
||||
// Verdict: failed to improve #iterations.
|
||||
// {
|
||||
// std::vector<int> pos(grid_.number_of_cells, -1);
|
||||
// for (int i = 0; i < num_cells; ++i) {
|
||||
// const int cell = cells[i];
|
||||
// pos[cell] = i;
|
||||
// }
|
||||
// std::vector<int> done_pos(num_cells, 0);
|
||||
// std::vector<int> upstream_pos;
|
||||
// std::vector<int> new_pos;
|
||||
// upstream_pos.push_back(0);
|
||||
// done_pos[0] = 1;
|
||||
// int current = 0;
|
||||
// while (int(new_pos.size()) < num_cells) {
|
||||
// const int i = upstream_pos[current++];
|
||||
// new_pos.push_back(i);
|
||||
// const int cell = cells[i];
|
||||
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
|
||||
// const int opos = pos[ja_[j]];
|
||||
// if (!done_pos[opos]) {
|
||||
// upstream_pos.push_back(opos);
|
||||
// done_pos[opos] = 1;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// std::reverse(new_pos.begin(), new_pos.end());
|
||||
// std::copy(new_pos.begin(), new_pos.end(), const_cast<int*>(cells));
|
||||
// }
|
||||
// Experiment: try a breath-first search to build a more suitable ordering.
|
||||
// Verdict: failed to improve #iterations.
|
||||
// {
|
||||
// std::vector<int> pos(grid_.number_of_cells, -1);
|
||||
// for (int i = 0; i < num_cells; ++i) {
|
||||
// const int cell = cells[i];
|
||||
// pos[cell] = i;
|
||||
// }
|
||||
// std::vector<int> done_pos(num_cells, 0);
|
||||
// std::vector<int> upstream_pos;
|
||||
// std::vector<int> new_pos;
|
||||
// upstream_pos.push_back(0);
|
||||
// done_pos[0] = 1;
|
||||
// int current = 0;
|
||||
// while (int(new_pos.size()) < num_cells) {
|
||||
// const int i = upstream_pos[current++];
|
||||
// new_pos.push_back(i);
|
||||
// const int cell = cells[i];
|
||||
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
|
||||
// const int opos = pos[ja_[j]];
|
||||
// if (!done_pos[opos]) {
|
||||
// upstream_pos.push_back(opos);
|
||||
// done_pos[opos] = 1;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// std::reverse(new_pos.begin(), new_pos.end());
|
||||
// std::copy(new_pos.begin(), new_pos.end(), const_cast<int*>(cells));
|
||||
// }
|
||||
|
||||
// Experiment: try a random ordering.
|
||||
// Verdict: amazingly, reduced #iterations by approx. 25%!
|
||||
// int* c = const_cast<int*>(cells);
|
||||
// std::random_shuffle(c, c + num_cells);
|
||||
// Experiment: try a random ordering.
|
||||
// Verdict: amazingly, reduced #iterations by approx. 25%!
|
||||
// int* c = const_cast<int*>(cells);
|
||||
// std::random_shuffle(c, c + num_cells);
|
||||
|
||||
// Experiment: compute topological tof from first cell.
|
||||
// Verdict: maybe useful, not tried to exploit it yet.
|
||||
// std::vector<int> tof;
|
||||
// TofComputer comp(grid_.number_of_cells, &ia_[0], &ja_[0], cells[0], tof);
|
||||
// std::ofstream tofdump("tofdump");
|
||||
// std::copy(tof.begin(), tof.end(), std::ostream_iterator<double>(tofdump, "\n"));
|
||||
// Experiment: compute topological tof from first cell.
|
||||
// Verdict: maybe useful, not tried to exploit it yet.
|
||||
// std::vector<int> tof;
|
||||
// TofComputer comp(grid_.number_of_cells, &ia_[0], &ja_[0], cells[0], tof);
|
||||
// std::ofstream tofdump("tofdump");
|
||||
// std::copy(tof.begin(), tof.end(), std::ostream_iterator<double>(tofdump, "\n"));
|
||||
|
||||
// Experiment: implement a metric measuring badness of ordering
|
||||
// as average distance in (cyclic) ordering from
|
||||
// upstream neighbours.
|
||||
// Verdict: does not seem to predict #iterations very well, if at all.
|
||||
// std::vector<int> pos(grid_.number_of_cells, -1);
|
||||
// for (int i = 0; i < num_cells; ++i) {
|
||||
// const int cell = cells[i];
|
||||
// pos[cell] = i;
|
||||
// }
|
||||
// double diffsum = 0;
|
||||
// for (int i = 0; i < num_cells; ++i) {
|
||||
// const int cell = cells[i];
|
||||
// int num_upstream = 0;
|
||||
// int loc_diffsum = 0;
|
||||
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
|
||||
// const int opos = pos[ja_[j]];
|
||||
// if (opos == -1) {
|
||||
// std::cout << "Hmmm" << std::endl;
|
||||
// continue;
|
||||
// }
|
||||
// ++num_upstream;
|
||||
// const int diff = (i - opos + num_cells) % num_cells;
|
||||
// loc_diffsum += diff;
|
||||
// }
|
||||
// diffsum += double(loc_diffsum)/double(num_upstream);
|
||||
// }
|
||||
// std::cout << "Average distance from upstream neighbours: " << diffsum/double(num_cells)
|
||||
// << std::endl;
|
||||
// Experiment: implement a metric measuring badness of ordering
|
||||
// as average distance in (cyclic) ordering from
|
||||
// upstream neighbours.
|
||||
// Verdict: does not seem to predict #iterations very well, if at all.
|
||||
// std::vector<int> pos(grid_.number_of_cells, -1);
|
||||
// for (int i = 0; i < num_cells; ++i) {
|
||||
// const int cell = cells[i];
|
||||
// pos[cell] = i;
|
||||
// }
|
||||
// double diffsum = 0;
|
||||
// for (int i = 0; i < num_cells; ++i) {
|
||||
// const int cell = cells[i];
|
||||
// int num_upstream = 0;
|
||||
// int loc_diffsum = 0;
|
||||
// for (int j = ia_[cell]; j < ia_[cell+1]; ++j) {
|
||||
// const int opos = pos[ja_[j]];
|
||||
// if (opos == -1) {
|
||||
// std::cout << "Hmmm" << std::endl;
|
||||
// continue;
|
||||
// }
|
||||
// ++num_upstream;
|
||||
// const int diff = (i - opos + num_cells) % num_cells;
|
||||
// loc_diffsum += diff;
|
||||
// }
|
||||
// diffsum += double(loc_diffsum)/double(num_upstream);
|
||||
// }
|
||||
// std::cout << "Average distance from upstream neighbours: " << diffsum/double(num_cells)
|
||||
// << std::endl;
|
||||
|
||||
#ifdef EXPERIMENT_GAUSS_SEIDEL
|
||||
// Experiment: when a cell changes more than the tolerance,
|
||||
// mark all downwind cells as needing updates. After
|
||||
// computing a single update in each cell, use marks
|
||||
// to guide further updating. Clear mark in cell when
|
||||
// its solution gets updated.
|
||||
// Verdict: this is a good one! Approx. halved total time.
|
||||
std::vector<int> needs_update(num_cells, 1);
|
||||
// This one also needs the mapping from all cells to
|
||||
// the strongly connected subset to filter out connections
|
||||
std::vector<int> pos(grid_.number_of_cells, -1);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
pos[cell] = i;
|
||||
}
|
||||
// Experiment: when a cell changes more than the tolerance,
|
||||
// mark all downwind cells as needing updates. After
|
||||
// computing a single update in each cell, use marks
|
||||
// to guide further updating. Clear mark in cell when
|
||||
// its solution gets updated.
|
||||
// Verdict: this is a good one! Approx. halved total time.
|
||||
std::vector<int> needs_update(num_cells, 1);
|
||||
// This one also needs the mapping from all cells to
|
||||
// the strongly connected subset to filter out connections
|
||||
std::vector<int> pos(grid_.number_of_cells, -1);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
pos[cell] = i;
|
||||
}
|
||||
|
||||
// Note: partially copied from below.
|
||||
const double tol = 1e-9;
|
||||
const int max_iters = 300;
|
||||
// Must store s0 before we start.
|
||||
std::vector<double> s0(num_cells);
|
||||
// Must set initial fractional flows before we start.
|
||||
// Also, we compute the # of upstream neighbours.
|
||||
// std::vector<int> num_upstream(num_cells);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
s0[i] = saturation_[cell];
|
||||
// num_upstream[i] = ia_upw_[cell + 1] - ia_upw_[cell];
|
||||
}
|
||||
// Solve once in each cell.
|
||||
// std::vector<int> fully_marked_stack;
|
||||
// fully_marked_stack.reserve(num_cells);
|
||||
int num_iters = 0;
|
||||
int update_count = 0; // Change name/meaning to cells_updated?
|
||||
do {
|
||||
update_count = 0; // Must reset count for every iteration.
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
// while (!fully_marked_stack.empty()) {
|
||||
// // std::cout << "# fully marked cells = " << fully_marked_stack.size() << std::endl;
|
||||
// const int fully_marked_ci = fully_marked_stack.back();
|
||||
// fully_marked_stack.pop_back();
|
||||
// ++update_count;
|
||||
// const int cell = cells[fully_marked_ci];
|
||||
// const double old_s = saturation_[cell];
|
||||
// saturation_[cell] = s0[fully_marked_ci];
|
||||
// solveSingleCell(cell);
|
||||
// const double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
// if (s_change > tol) {
|
||||
// // Mark downwind cells.
|
||||
// for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
|
||||
// const int downwind_cell = ja_downw_[j];
|
||||
// int ci = pos[downwind_cell];
|
||||
// ++needs_update[ci];
|
||||
// if (needs_update[ci] == num_upstream[ci]) {
|
||||
// fully_marked_stack.push_back(ci);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// // Unmark this cell.
|
||||
// needs_update[fully_marked_ci] = 0;
|
||||
// }
|
||||
if (!needs_update[i]) {
|
||||
continue;
|
||||
}
|
||||
++update_count;
|
||||
const int cell = cells[i];
|
||||
const double old_s = saturation_[cell];
|
||||
saturation_[cell] = s0[i];
|
||||
solveSingleCell(cell);
|
||||
const double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
if (s_change > tol) {
|
||||
// Mark downwind cells.
|
||||
for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
|
||||
const int downwind_cell = ja_downw_[j];
|
||||
int ci = pos[downwind_cell];
|
||||
// Note: partially copied from below.
|
||||
const double tol = 1e-9;
|
||||
const int max_iters = 300;
|
||||
// Must store s0 before we start.
|
||||
std::vector<double> s0(num_cells);
|
||||
// Must set initial fractional flows before we start.
|
||||
// Also, we compute the # of upstream neighbours.
|
||||
// std::vector<int> num_upstream(num_cells);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
s0[i] = saturation_[cell];
|
||||
// num_upstream[i] = ia_upw_[cell + 1] - ia_upw_[cell];
|
||||
}
|
||||
// Solve once in each cell.
|
||||
// std::vector<int> fully_marked_stack;
|
||||
// fully_marked_stack.reserve(num_cells);
|
||||
int num_iters = 0;
|
||||
int update_count = 0; // Change name/meaning to cells_updated?
|
||||
do {
|
||||
update_count = 0; // Must reset count for every iteration.
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
// while (!fully_marked_stack.empty()) {
|
||||
// // std::cout << "# fully marked cells = " << fully_marked_stack.size() << std::endl;
|
||||
// const int fully_marked_ci = fully_marked_stack.back();
|
||||
// fully_marked_stack.pop_back();
|
||||
// ++update_count;
|
||||
// const int cell = cells[fully_marked_ci];
|
||||
// const double old_s = saturation_[cell];
|
||||
// saturation_[cell] = s0[fully_marked_ci];
|
||||
// solveSingleCell(cell);
|
||||
// const double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
// if (s_change > tol) {
|
||||
// // Mark downwind cells.
|
||||
// for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
|
||||
// const int downwind_cell = ja_downw_[j];
|
||||
// int ci = pos[downwind_cell];
|
||||
// ++needs_update[ci];
|
||||
// if (needs_update[ci] == num_upstream[ci]) {
|
||||
// fully_marked_stack.push_back(ci);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// // Unmark this cell.
|
||||
// needs_update[fully_marked_ci] = 0;
|
||||
// }
|
||||
if (!needs_update[i]) {
|
||||
continue;
|
||||
}
|
||||
++update_count;
|
||||
const int cell = cells[i];
|
||||
const double old_s = saturation_[cell];
|
||||
saturation_[cell] = s0[i];
|
||||
solveSingleCell(cell);
|
||||
const double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
if (s_change > tol) {
|
||||
// Mark downwind cells.
|
||||
for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
|
||||
const int downwind_cell = ja_downw_[j];
|
||||
int ci = pos[downwind_cell];
|
||||
if (ci != -1) {
|
||||
needs_update[ci] = 1;
|
||||
}
|
||||
// ++needs_update[ci];
|
||||
// if (needs_update[ci] == num_upstream[ci]) {
|
||||
// fully_marked_stack.push_back(ci);
|
||||
// }
|
||||
}
|
||||
}
|
||||
// Unmark this cell.
|
||||
needs_update[i] = 0;
|
||||
}
|
||||
// std::cout << "Iter = " << num_iters << " update_count = " << update_count
|
||||
// << " # marked cells = "
|
||||
// << std::accumulate(needs_update.begin(), needs_update.end(), 0) << std::endl;
|
||||
} while (update_count > 0 && ++num_iters < max_iters);
|
||||
// ++needs_update[ci];
|
||||
// if (needs_update[ci] == num_upstream[ci]) {
|
||||
// fully_marked_stack.push_back(ci);
|
||||
// }
|
||||
}
|
||||
}
|
||||
// Unmark this cell.
|
||||
needs_update[i] = 0;
|
||||
}
|
||||
// std::cout << "Iter = " << num_iters << " update_count = " << update_count
|
||||
// << " # marked cells = "
|
||||
// << std::accumulate(needs_update.begin(), needs_update.end(), 0) << std::endl;
|
||||
} while (update_count > 0 && ++num_iters < max_iters);
|
||||
|
||||
// Done with iterations, check if we succeeded.
|
||||
if (update_count > 0) {
|
||||
THROW("In solveMultiCell(), we did not converge after "
|
||||
<< num_iters << " iterations. Remaining update count = " << update_count);
|
||||
}
|
||||
std::cout << "Solved " << num_cells << " cell multicell problem in "
|
||||
<< num_iters << " iterations." << std::endl;
|
||||
// Done with iterations, check if we succeeded.
|
||||
if (update_count > 0) {
|
||||
THROW("In solveMultiCell(), we did not converge after "
|
||||
<< num_iters << " iterations. Remaining update count = " << update_count);
|
||||
}
|
||||
std::cout << "Solved " << num_cells << " cell multicell problem in "
|
||||
<< num_iters << " iterations." << std::endl;
|
||||
|
||||
#else
|
||||
double max_s_change = 0.0;
|
||||
const double tol = 1e-9;
|
||||
const int max_iters = 300;
|
||||
int num_iters = 0;
|
||||
// Must store s0 before we start.
|
||||
std::vector<double> s0(num_cells);
|
||||
// Must set initial fractional flows before we start.
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
s0[i] = saturation_[cell];
|
||||
}
|
||||
do {
|
||||
max_s_change = 0.0;
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
const double old_s = saturation_[cell];
|
||||
saturation_[cell] = s0[i];
|
||||
solveSingleCell(cell);
|
||||
double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
// std::cout << "cell = " << cell << " delta s = " << s_change << std::endl;
|
||||
if (max_s_change < s_change) {
|
||||
max_s_change = s_change;
|
||||
}
|
||||
}
|
||||
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change
|
||||
// << " in cell " << max_change_cell << std::endl;
|
||||
} while (max_s_change > tol && ++num_iters < max_iters);
|
||||
if (max_s_change > tol) {
|
||||
THROW("In solveMultiCell(), we did not converge after "
|
||||
<< num_iters << " iterations. Delta s = " << max_s_change);
|
||||
}
|
||||
std::cout << "Solved " << num_cells << " cell multicell problem in "
|
||||
<< num_iters << " iterations." << std::endl;
|
||||
double max_s_change = 0.0;
|
||||
const double tol = 1e-9;
|
||||
const int max_iters = 300;
|
||||
int num_iters = 0;
|
||||
// Must store s0 before we start.
|
||||
std::vector<double> s0(num_cells);
|
||||
// Must set initial fractional flows before we start.
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
s0[i] = saturation_[cell];
|
||||
}
|
||||
do {
|
||||
max_s_change = 0.0;
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
const double old_s = saturation_[cell];
|
||||
saturation_[cell] = s0[i];
|
||||
solveSingleCell(cell);
|
||||
double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
// std::cout << "cell = " << cell << " delta s = " << s_change << std::endl;
|
||||
if (max_s_change < s_change) {
|
||||
max_s_change = s_change;
|
||||
}
|
||||
}
|
||||
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change
|
||||
// << " in cell " << max_change_cell << std::endl;
|
||||
} while (max_s_change > tol && ++num_iters < max_iters);
|
||||
if (max_s_change > tol) {
|
||||
THROW("In solveMultiCell(), we did not converge after "
|
||||
<< num_iters << " iterations. Delta s = " << max_s_change);
|
||||
}
|
||||
std::cout << "Solved " << num_cells << " cell multicell problem in "
|
||||
<< num_iters << " iterations." << std::endl;
|
||||
#endif // EXPERIMENT_GAUSS_SEIDEL
|
||||
}
|
||||
|
||||
double TransportModelTwophase::fracFlow(double s, int cell) const
|
||||
{
|
||||
double sat[2] = { s, 1.0 - s };
|
||||
double mob[2];
|
||||
props_.relperm(1, sat, &cell, mob, 0);
|
||||
mob[0] /= visc_[0];
|
||||
mob[1] /= visc_[1];
|
||||
return mob[0]/(mob[0] + mob[1]);
|
||||
double sat[2] = { s, 1.0 - s };
|
||||
double mob[2];
|
||||
props_.relperm(1, sat, &cell, mob, 0);
|
||||
mob[0] /= visc_[0];
|
||||
mob[1] /= visc_[1];
|
||||
return mob[0]/(mob[0] + mob[1]);
|
||||
}
|
||||
|
||||
|
||||
@ -450,19 +460,19 @@ namespace Opm
|
||||
//
|
||||
struct TransportModelTwophase::GravityResidual
|
||||
{
|
||||
int cell;
|
||||
int cell;
|
||||
int nbcell[2];
|
||||
double s0;
|
||||
double dtpv; // dt/pv(i)
|
||||
double s0;
|
||||
double dtpv; // dt/pv(i)
|
||||
double gf[2];
|
||||
const TransportModelTwophase& tm;
|
||||
explicit GravityResidual(const TransportModelTwophase& tmodel,
|
||||
const TransportModelTwophase& tm;
|
||||
explicit GravityResidual(const TransportModelTwophase& tmodel,
|
||||
const std::vector<int>& cells,
|
||||
const int pos,
|
||||
const double* gravflux) // Always oriented towards next in column. Size = colsize - 1.
|
||||
: tm(tmodel)
|
||||
{
|
||||
cell = cells[pos];
|
||||
: tm(tmodel)
|
||||
{
|
||||
cell = cells[pos];
|
||||
nbcell[0] = -1;
|
||||
gf[0] = 0.0;
|
||||
if (pos > 0) {
|
||||
@ -475,40 +485,40 @@ namespace Opm
|
||||
nbcell[1] = cells[pos + 1];
|
||||
gf[1] = gravflux[pos];
|
||||
}
|
||||
s0 = tm.saturation_[cell];
|
||||
dtpv = tm.dt_/tm.porevolume_[cell];
|
||||
|
||||
}
|
||||
double operator()(double s) const
|
||||
{
|
||||
double res = s - s0;
|
||||
s0 = tm.saturation_[cell];
|
||||
dtpv = tm.dt_/tm.porevolume_[cell];
|
||||
|
||||
}
|
||||
double operator()(double s) const
|
||||
{
|
||||
double res = s - s0;
|
||||
double mobcell[2];
|
||||
tm.mobility(s, cell, mobcell);
|
||||
for (int nb = 0; nb < 2; ++nb) {
|
||||
if (nbcell[nb] != -1) {
|
||||
if (nbcell[nb] != -1) {
|
||||
double m[2];
|
||||
if (gf[nb] < 0.0) {
|
||||
m[0] = mobcell[0];
|
||||
m[1] = tm.mob_[2*nbcell[nb] + 1];
|
||||
} else {
|
||||
} else {
|
||||
m[0] = tm.mob_[2*nbcell[nb]];
|
||||
m[1] = mobcell[1];
|
||||
}
|
||||
if (m[0] + m[1] > 0.0) {
|
||||
}
|
||||
if (m[0] + m[1] > 0.0) {
|
||||
res += -dtpv*gf[nb]*m[0]*m[1]/(m[0] + m[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void TransportModelTwophase::mobility(double s, int cell, double* mob) const
|
||||
{
|
||||
double sat[2] = { s, 1.0 - s };
|
||||
props_.relperm(1, sat, &cell, mob, 0);
|
||||
mob[0] /= visc_[0];
|
||||
mob[1] /= visc_[1];
|
||||
double sat[2] = { s, 1.0 - s };
|
||||
props_.relperm(1, sat, &cell, mob, 0);
|
||||
mob[0] /= visc_[0];
|
||||
mob[1] /= visc_[1];
|
||||
}
|
||||
|
||||
|
||||
@ -544,11 +554,12 @@ namespace Opm
|
||||
const int cell = cells[pos];
|
||||
GravityResidual res(*this, cells, pos, gravflux);
|
||||
if (std::fabs(res(saturation_[cell])) > tol_) {
|
||||
int iters_used;
|
||||
int iters_used = 0;
|
||||
saturation_[cell] = RootFinder::solve(res, smin_[2*cell], smax_[2*cell], maxit_, tol_, iters_used);
|
||||
reorder_iterations_[cell] = reorder_iterations_[cell] + iters_used;
|
||||
}
|
||||
saturation_[cell] = std::min(std::max(saturation_[cell], smin_[2*cell]), smax_[2*cell]);
|
||||
mobility(saturation_[cell], cell, &mob_[2*cell]);
|
||||
mobility(saturation_[cell], cell, &mob_[2*cell]);
|
||||
}
|
||||
|
||||
|
||||
@ -559,17 +570,17 @@ namespace Opm
|
||||
const int nc = cells.size();
|
||||
std::vector<double> col_gravflux(nc - 1);
|
||||
for (int ci = 0; ci < nc - 1; ++ci) {
|
||||
const int cell = cells[ci];
|
||||
const int next_cell = cells[ci + 1];
|
||||
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
|
||||
const int face = grid_.cell_faces[j];
|
||||
const int c1 = grid_.face_cells[2*face + 0];
|
||||
const int cell = cells[ci];
|
||||
const int next_cell = cells[ci + 1];
|
||||
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
|
||||
const int face = grid_.cell_faces[j];
|
||||
const int c1 = grid_.face_cells[2*face + 0];
|
||||
const int c2 = grid_.face_cells[2*face + 1];
|
||||
if (c1 == next_cell || c2 == next_cell) {
|
||||
if (c1 == next_cell || c2 == next_cell) {
|
||||
const double gf = gravflux_[face];
|
||||
col_gravflux[ci] = (c1 == cell) ? gf : -gf;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Store initial saturation s0
|
||||
@ -579,7 +590,7 @@ namespace Opm
|
||||
}
|
||||
|
||||
// Solve single cell problems, repeating if necessary.
|
||||
double max_s_change = 0.0;
|
||||
double max_s_change = 0.0;
|
||||
int num_iters = 0;
|
||||
do {
|
||||
max_s_change = 0.0;
|
||||
@ -595,12 +606,12 @@ namespace Opm
|
||||
std::fabs(saturation_[cells[ci2]] - old_s[1])));
|
||||
}
|
||||
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change << std::endl;
|
||||
} while (max_s_change > tol_ && ++num_iters < maxit_);
|
||||
} while (max_s_change > tol_ && ++num_iters < maxit_);
|
||||
|
||||
if (max_s_change > tol_) {
|
||||
THROW("In solveGravityColumn(), we did not converge after "
|
||||
<< num_iters << " iterations. Delta s = " << max_s_change);
|
||||
}
|
||||
if (max_s_change > tol_) {
|
||||
THROW("In solveGravityColumn(), we did not converge after "
|
||||
<< num_iters << " iterations. Delta s = " << max_s_change);
|
||||
}
|
||||
return num_iters + 1;
|
||||
}
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user