Removed unneeded code, improved reporting output.

This commit is contained in:
Atgeirr Flø Rasmussen 2012-06-14 11:57:45 +02:00
parent f0aec74997
commit 136a2bf892

View File

@ -22,7 +22,6 @@
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/pressure/IncompTpfa.hpp>
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
@ -32,9 +31,6 @@
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/initState.hpp>
#include <opm/core/utility/SimulatorTimer.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/writeVtkData.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
@ -49,18 +45,9 @@
#include <opm/core/simulator/SimulatorTwophase.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/lexical_cast.hpp>
#include <cassert>
#include <cstddef>
#include <algorithm>
#include <tr1/array>
#include <functional>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <iterator>
#include <vector>
#include <numeric>
@ -74,34 +61,34 @@ main(int argc, char** argv)
using namespace Opm;
std::cout << "\n================ Test program for incompressible two-phase flow ===============\n\n";
Opm::parameter::ParameterGroup param(argc, argv, false);
parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
boost::scoped_ptr<Opm::EclipseGridParser> deck;
boost::scoped_ptr<Opm::GridManager> grid;
boost::scoped_ptr<Opm::IncompPropertiesInterface> props;
boost::scoped_ptr<Opm::RockCompressibility> rock_comp;
Opm::TwophaseState state;
boost::scoped_ptr<EclipseGridParser> deck;
boost::scoped_ptr<GridManager> grid;
boost::scoped_ptr<IncompPropertiesInterface> props;
boost::scoped_ptr<RockCompressibility> rock_comp;
TwophaseState state;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
deck.reset(new Opm::EclipseGridParser(deck_filename));
deck.reset(new EclipseGridParser(deck_filename));
// Grid init
grid.reset(new Opm::GridManager(*deck));
grid.reset(new GridManager(*deck));
// Rock and fluid init
const int* gc = grid->c_grid()->global_cell;
std::vector<int> global_cell(gc, gc + grid->c_grid()->number_of_cells);
props.reset(new Opm::IncompPropertiesFromDeck(*deck, global_cell));
props.reset(new IncompPropertiesFromDeck(*deck, global_cell));
// check_well_controls = param.getDefault("check_well_controls", false);
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
// Rock compressibility.
rock_comp.reset(new Opm::RockCompressibility(*deck));
rock_comp.reset(new RockCompressibility(*deck));
// Gravity.
gravity[2] = deck->hasField("NOGRAV") ? 0.0 : Opm::unit::gravity;
gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
@ -116,11 +103,11 @@ main(int argc, char** argv)
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz));
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
// Rock and fluid init.
props.reset(new Opm::IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
props.reset(new IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
// Rock compressibility.
rock_comp.reset(new Opm::RockCompressibility(param));
rock_comp.reset(new RockCompressibility(param));
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
// Init state variables (saturation and pressure).
@ -134,47 +121,40 @@ main(int argc, char** argv)
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
}
}
// Source-related variables init.
int num_cells = grid->c_grid()->number_of_cells;
std::vector<double> totmob;
std::vector<double> omega; // Will remain empty if no gravity.
std::vector<double> rc; // Will remain empty if no rock compressibility.
// Extra rock init.
std::vector<double> porevol;
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
} else {
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
}
double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
const double *grav = use_gravity ? &gravity[0] : 0;
// Initialising src
int num_cells = grid->c_grid()->number_of_cells;
std::vector<double> src(num_cells, 0.0);
if (use_deck) {
// Do nothing, wells will be the driving force, not source terms.
} else {
// Compute pore volumes, in order to enable specifying injection rate
// terms of total pore volume.
std::vector<double> porevol;
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
} else {
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
*tot_porevol_init/Opm::unit::day;
*tot_porevol_init/unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
// Boundary conditions.
Opm::FlowBCManager bcs;
FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get<int>("pside");
double pside_pressure = param.get<double>("pside_pressure");
bcs.pressureSide(*grid->c_grid(), Opm::FlowBCManager::Side(pside), pside_pressure);
bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
}
// Linear solver.
Opm::LinearSolverFactory linsolver(param);
const double *grav = use_gravity ? &gravity[0] : 0;
LinearSolverFactory linsolver(param);
// Warn if any parameters are unused.
// if (param.anyUnused()) {
@ -189,45 +169,41 @@ main(int argc, char** argv)
// }
std::cout << "\n\n================ Starting main simulation loop ===============\n"
<< " (number of epochs: "
<< (use_deck ? deck->numberOfEpochs() : 1) << ")\n\n" << std::flush;
SimulatorTwophase::SimulatorReport rep;
if (!use_deck) {
// Simple simulation without a deck.
Opm::SimulatorTwophase simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,
0, // wells
src,
bcs.c_bcs(),
linsolver,
grav);
Opm::SimulatorTimer simtimer;
SimulatorTwophase simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,
0, // wells
src,
bcs.c_bcs(),
linsolver,
grav);
SimulatorTimer simtimer;
simtimer.init(param);
WellState well_state;
well_state.init(0, state);
simulator.run(simtimer, state, well_state);
rep = simulator.run(simtimer, state, well_state);
} else {
// With a deck, we may have more epochs etc.
WellState well_state;
int step = 0;
SimulatorTimer simtimer;
// Use timer for last epoch to obtain total time.
deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
simtimer.init(*deck);
const double total_time = simtimer.totalTime();
for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
// Set epoch index.
deck->setCurrentEpoch(epoch);
Opm::WellsManager wells(*deck, *grid->c_grid(), props->permeability());
Opm::SimulatorTwophase simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells.c_wells(),
src,
bcs.c_bcs(),
linsolver,
grav);
// @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every epoch,
// since number of wells may change etc.
if (epoch == 0) {
well_state.init(wells.c_wells(), state);
}
Opm::SimulatorTimer simtimer;
// Update the timer.
if (deck->hasField("TSTEP")) {
simtimer.init(*deck);
} else {
@ -237,8 +213,41 @@ main(int argc, char** argv)
simtimer.init(param);
}
simtimer.setCurrentStepNum(step);
simulator.run(simtimer, state, well_state);
simtimer.setTotalTime(total_time);
// Report on start of epoch.
std::cout << "\n\n-------------- Starting epoch " << epoch << " --------------"
<< "\n (number of steps: "
<< simtimer.numSteps() - step << ")\n\n" << std::flush;
// Create new wells, well_satate
WellsManager wells(*deck, *grid->c_grid(), props->permeability());
// @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every epoch,
// since number of wells may change etc.
if (epoch == 0) {
well_state.init(wells.c_wells(), state);
}
// Create and run simulator.
SimulatorTwophase simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells.c_wells(),
src,
bcs.c_bcs(),
linsolver,
grav);
SimulatorTwophase::SimulatorReport epoch_rep
= simulator.run(simtimer, state, well_state);
// Update total timing report and remember step number.
rep += epoch_rep;
step = simtimer.currentStepNum();
}
}
std::cout << "\n\n================ End of simulation ===============\n\n";
rep.report(std::cout);
}