Merge from upstream.

This commit is contained in:
Bård Skaflestad 2012-03-07 01:18:55 +01:00
commit 3721e57ecb
4 changed files with 121 additions and 77 deletions

View File

@ -368,7 +368,7 @@ main(int argc, char** argv)
if (use_column_solver) {
Opm::extractColumn(*grid->c_grid(), columns);
}
Opm::GravityColumnSolver<TransportModel> colsolver(model, *grid->c_grid());
Opm::GravityColumnSolver<TransportModel> colsolver(model, *grid->c_grid(), nltol, maxit);
// State-related and source-related variables init.
int num_cells = grid->c_grid()->number_of_cells;
@ -382,69 +382,68 @@ main(int argc, char** argv)
int scenario = param.getDefault("scenario", 0);
switch (scenario) {
case 0:
{
std::cout << "==== Scenario 0: single-cell source and sink.\n";
double flow_per_sec = 0.1*tot_porevol/Opm::unit::day;
src[0] = flow_per_sec;
src[grid->c_grid()->number_of_cells - 1] = -flow_per_sec;
break;
}
{
std::cout << "==== Scenario 0: single-cell source and sink.\n";
double flow_per_sec = 0.1*tot_porevol/Opm::unit::day;
src[0] = flow_per_sec;
src[grid->c_grid()->number_of_cells - 1] = -flow_per_sec;
break;
}
case 1:
{
std::cout << "==== Scenario 1: half source, half sink.\n";
double flow_per_sec = 0.1*porevol[0]/Opm::unit::day;
std::fill(src.begin(), src.begin() + src.size()/2, flow_per_sec);
std::fill(src.begin() + src.size()/2, src.end(), -flow_per_sec);
break;
}
{
std::cout << "==== Scenario 1: half source, half sink.\n";
double flow_per_sec = 0.1*porevol[0]/Opm::unit::day;
std::fill(src.begin(), src.begin() + src.size()/2, flow_per_sec);
std::fill(src.begin() + src.size()/2, src.end(), -flow_per_sec);
break;
}
case 2:
{
std::cout << "==== Scenario 2: gravity convection.\n";
if (!use_gravity) {
std::cout << "**** Warning: running gravity convection scenario, but gravity is zero." << std::endl;
}
if (use_deck) {
std::cout << "**** Warning: running gravity convection scenario, which expects a cartesian grid."
<< std::endl;
}
std::vector<double>& sat = state.saturation();
const int *glob_cell = grid->c_grid()->global_cell;
for (int cell = 0; cell < num_cells; ++cell) {
const int* cd = grid->c_grid()->cartdims;
const int gc = glob_cell == 0 ? cell : glob_cell[cell];
bool left = (gc % cd[0]) < cd[0]/2;
sat[2*cell] = left ? 1.0 : 0.0;
sat[2*cell + 1] = 1.0 - sat[2*cell];
}
break;
}
{
std::cout << "==== Scenario 2: gravity convection.\n";
if (!use_gravity) {
std::cout << "**** Warning: running gravity convection scenario, but gravity is zero." << std::endl;
}
if (use_deck) {
std::cout << "**** Warning: running gravity convection scenario, which expects a cartesian grid."
<< std::endl;
}
std::vector<double>& sat = state.saturation();
const int *glob_cell = grid->c_grid()->global_cell;
for (int cell = 0; cell < num_cells; ++cell) {
const int* cd = grid->c_grid()->cartdims;
const int gc = glob_cell == 0 ? cell : glob_cell[cell];
bool left = (gc % cd[0]) < cd[0]/2;
sat[2*cell] = left ? 1.0 : 0.0;
sat[2*cell + 1] = 1.0 - sat[2*cell];
}
break;
}
case 3:
{
std::cout << "==== Scenario 2: gravity convection.\n";
if (!use_gravity) {
std::cout << "**** Warning: running gravity convection scenario, but gravity is zero." << std::endl;
}
if (use_deck) {
std::cout << "**** Warning: running gravity convection scenario, which expects a cartesian grid."
<< std::endl;
}
std::vector<double>& sat = state.saturation();
const int *glob_cell = grid->c_grid()->global_cell;
// Heavy on top
for (int cell = 0; cell < num_cells; ++cell) {
const int* cd = grid->c_grid()->cartdims;
const int gc = glob_cell == 0 ? cell : glob_cell[cell];
bool top = (gc / cd[0] / cd[1]) < cd[2]/2;
sat[2*cell] = top ? 1.0 : 0.0;
sat[2*cell + 1 ] = 1.0 - sat[2*cell];
}
break;
}
{
std::cout << "==== Scenario 3: gravity segregation.\n";
if (!use_gravity) {
std::cout << "**** Warning: running gravity segregation scenario, but gravity is zero." << std::endl;
}
if (use_deck) {
std::cout << "**** Warning: running gravity segregation scenario, which expects a cartesian grid."
<< std::endl;
}
std::vector<double>& sat = state.saturation();
const int *glob_cell = grid->c_grid()->global_cell;
// Water on top
for (int cell = 0; cell < num_cells; ++cell) {
const int* cd = grid->c_grid()->cartdims;
const int gc = glob_cell == 0 ? cell : glob_cell[cell];
bool top = (gc / cd[0] / cd[1]) < cd[2]/2;
sat[2*cell] = top ? 1.0 : 0.0;
sat[2*cell + 1 ] = 1.0 - sat[2*cell];
}
break;
}
default:
{
THROW("==== Scenario " << scenario << " is unknown.");
}
{
THROW("==== Scenario " << scenario << " is unknown.");
}
}
TransportSource* tsrc = create_transport_source(2, 2);
double ssrc[] = { 1.0, 0.0 };

View File

@ -36,7 +36,9 @@ namespace Opm
/// Note: the model will be changed since it stores computed
/// quantities in itself, such as mobilities.
GravityColumnSolver(Model& model,
const UnstructuredGrid& grid);
const UnstructuredGrid& grid,
const double tol,
const int maxit);
/// \param[in] columns for each column (with logical cartesian indices as key),
/// contains the cells on which to solve the segregation
@ -51,10 +53,11 @@ namespace Opm
const double dt,
std::vector<double>& s,
std::vector<double>& sol_vec);
Model& model_;
const UnstructuredGrid& grid_;
};
const double tol_;
const int maxit_;
};
} // namespace Opm

View File

@ -26,8 +26,10 @@ namespace Opm
template <class Model>
GravityColumnSolver<Model>::GravityColumnSolver(Model& model,
const UnstructuredGrid& grid)
: model_(model), grid_(grid)
const UnstructuredGrid& grid,
const double tol,
const int maxit)
: model_(model), grid_(grid), tol_(tol), maxit_(maxit)
{
}
@ -77,28 +79,30 @@ namespace Opm
// Initialize model. These things are done for the whole grid!
StateWithZeroFlux state(s); // This holds s by reference.
JacSys sys(grid_.number_of_cells);
std::vector<double> increment(grid_.number_of_cells, 0.0);
model_.initStep(state, grid_, sys);
const int max_iter = 40;
const double tol = 1e-4;
int iter = 0;
double max_delta = 1e100;
while (iter < max_iter) {
while (iter < maxit_) {
model_.initIteration(state, grid_, sys);
std::map<int, std::vector<int> >::const_iterator it;
for (it = columns.begin(); it != columns.end(); ++it) {
solveSingleColumn(it->second, dt, s, sys.vector().writableSolution());
solveSingleColumn(it->second, dt, s, increment);
}
const double maxelem = *std::max_element(sys.vector().solution().begin(), sys.vector().solution().end());
const double minelem = *std::min_element(sys.vector().solution().begin(), sys.vector().solution().end());
for (int cell = 0; cell < grid_.number_of_cells; ++cell) {
sys.vector().writableSolution()[cell] += increment[cell];
}
const double maxelem = *std::max_element(increment.begin(), increment.end());
const double minelem = *std::min_element(increment.begin(), increment.end());
max_delta = std::max(maxelem, -minelem);
std::cout << "Iteration " << iter << " max_delta = " << max_delta << std::endl;
if (max_delta < tol) {
if (max_delta < tol_) {
break;
}
++iter;
}
if (max_delta >= tol) {
if (max_delta >= tol_) {
THROW("Failed to converge!");
}
// Finalize.
@ -168,7 +172,7 @@ namespace Opm
THROW("Lapack reported error in dgtsv: " << info);
}
for (int ci = 0; ci < col_size; ++ci) {
sol_vec[column_cells[ci]] = rhs[ci];
sol_vec[column_cells[ci]] = -rhs[ci];
}
}

View File

@ -28,7 +28,7 @@
#include <numeric>
// #define EXPERIMENT_GAUSS_SEIDEL
#define EXPERIMENT_GAUSS_SEIDEL
namespace Opm
@ -302,17 +302,46 @@ namespace Opm
// Must store s0 before we start.
std::vector<double> s0(num_cells);
// Must set initial fractional flows before we start.
// Also, we compute the # of upstream neighbours.
// std::vector<int> num_upstream(num_cells);
for (int i = 0; i < num_cells; ++i) {
const int cell = cells[i];
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
s0[i] = saturation_[cell];
// num_upstream[i] = ia_upw_[cell + 1] - ia_upw_[cell];
}
// Solve once in each cell.
// std::vector<int> fully_marked_stack;
// fully_marked_stack.reserve(num_cells);
int num_iters = 0;
int update_count = 0; // Change name/meaning to cells_updated?
do {
update_count = 0; // Must reset count for every iteration.
for (int i = 0; i < num_cells; ++i) {
// while (!fully_marked_stack.empty()) {
// // std::cout << "# fully marked cells = " << fully_marked_stack.size() << std::endl;
// const int fully_marked_ci = fully_marked_stack.back();
// fully_marked_stack.pop_back();
// ++update_count;
// const int cell = cells[fully_marked_ci];
// const double old_s = saturation_[cell];
// saturation_[cell] = s0[fully_marked_ci];
// solveSingleCell(cell);
// const double s_change = std::fabs(saturation_[cell] - old_s);
// if (s_change > tol) {
// // Mark downwind cells.
// for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
// const int downwind_cell = ja_downw_[j];
// int ci = pos[downwind_cell];
// ++needs_update[ci];
// if (needs_update[ci] == num_upstream[ci]) {
// fully_marked_stack.push_back(ci);
// }
// }
// }
// // Unmark this cell.
// needs_update[fully_marked_ci] = 0;
// }
if (!needs_update[i]) {
continue;
}
@ -326,14 +355,23 @@ namespace Opm
// Mark downwind cells.
for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
const int downwind_cell = ja_downw_[j];
needs_update[pos[downwind_cell]] = 1;
int ci = pos[downwind_cell];
needs_update[ci] = 1;
// ++needs_update[ci];
// if (needs_update[ci] == num_upstream[ci]) {
// fully_marked_stack.push_back(ci);
// }
}
}
// Unmark this cell.
needs_update[i] = 0;
}
// std::cout << "Iter = " << num_iters << " update_count = " << update_count << std::endl;
// std::cout << "Iter = " << num_iters << " update_count = " << update_count
// << " # marked cells = "
// << std::accumulate(needs_update.begin(), needs_update.end(), 0) << std::endl;
} while (update_count > 0 && ++num_iters < max_iters);
// Done with iterations, check if we succeeded.
if (update_count > 0) {
THROW("In solveMultiCell(), we did not converge after "
<< num_iters << " iterations. Remaining update count = " << update_count);