Add initial files for implementing compressible flows.

This commit is contained in:
Bård Skaflestad 2010-10-19 23:04:15 +02:00
parent d2fa5f4e10
commit 4388dc68d6
3 changed files with 583 additions and 14 deletions

View File

@ -14,6 +14,7 @@ coarse_conn.h \
coarse_sys.h \ coarse_sys.h \
dfs.h \ dfs.h \
flow_bc.h \ flow_bc.h \
fsh.h \
fsh_common.h \ fsh_common.h \
grid.h \ grid.h \
hash_set.h \ hash_set.h \
@ -29,20 +30,21 @@ GridAdapter.hpp \
HybridPressureSolver.hpp HybridPressureSolver.hpp
libopmpressure_la_SOURCES = \ libopmpressure_la_SOURCES = \
coarse_conn.c \ coarse_conn.c \
coarse_sys.c \ coarse_sys.c \
dfs.c \ dfs.c \
flow_bc.c \ flow_bc.c \
fsh_common.c \ fsh.c \
hash_set.c \ fsh_common.c \
hybsys.c \ hash_set.c \
hybsys_global.c \ hybsys.c \
ifsh.c \ hybsys_global.c \
ifsh_ms.c \ ifsh.c \
mimetic.c \ ifsh_ms.c \
partition.c \ mimetic.c \
sparse_sys.c \ partition.c \
sparse_sys.c \
well.c well.c

496
fsh.c Normal file
View File

@ -0,0 +1,496 @@
/*
Copyright 2010 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "fsh_common.h"
#include "ifsh.h"
#include "fsh_common_impl.h"
#include "hybsys.h"
#include "hybsys_global.h"
#if defined MAX
#undef MAX
#endif
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
/* ---------------------------------------------------------------------- */
static void
fsh_compute_table_sz(grid_t *G, well_t *W, int max_ngconn,
size_t *nnu, size_t *idata_sz, size_t *ddata_sz)
/* ---------------------------------------------------------------------- */
{
int nc, ngconn_tot;
*nnu = G->number_of_faces;
nc = G->number_of_cells;
ngconn_tot = G->cell_facepos[nc];
*idata_sz = nc + 1; /* gdof_pos */
*idata_sz += ngconn_tot; /* gdof */
*idata_sz += max_ngconn; /* iwork */
*ddata_sz = 2 * (*nnu); /* rhs + soln */
*ddata_sz += ngconn_tot; /* cflux */
*ddata_sz += max_ngconn; /* work */
if (W != NULL) {
*nnu += W->number_of_wells;
/* cwell_pos */
*idata_sz += nc + 1;
/* cwells */
*idata_sz += 2 * W->well_connpos[ W->number_of_wells ];
/* rhs + soln */
*ddata_sz += 2 * W->number_of_wells;
/* WI, wdp */
*ddata_sz += 2 * W->well_connpos[ W->number_of_wells ];
}
}
#if 0
/* ---------------------------------------------------------------------- */
static void
fsh_set_effective_well_params(const double *WI,
const double *wdp,
struct fsh_data *h)
/* ---------------------------------------------------------------------- */
{
int c, nc, i, perf;
int *cwpos, *cwells;
double *wsys_WI, *wsys_wdp;
nc = h->pimpl->nc;
cwpos = h->pimpl->cwell_pos;
cwells = h->pimpl->cwells;
wsys_WI = h->pimpl->WI;
wsys_wdp = h->pimpl->wdp;
for (c = i = 0; c < nc; c++) {
for (; i < cwpos[c + 1]; i++) {
perf = cwells[2*i + 1];
wsys_WI [i] = WI [perf];
wsys_wdp[i] = wdp[perf];
}
}
}
#endif
/* ---------------------------------------------------------------------- */
static int
fsh_assemble_grid(flowbc_t *bc,
const double *Binv,
const double *gpress,
const double *src,
struct fsh_data *h)
/* ---------------------------------------------------------------------- */
{
int c, n, nc, p1, p2;
int npp;
int *pgconn, *gconn;
nc = h->pimpl->nc;
pgconn = h->pimpl->gdof_pos;
gconn = h->pimpl->gdof;
p1 = p2 = npp = 0;
for (c = 0; c < nc; c++) {
n = pgconn[c + 1] - pgconn[c];
hybsys_cellcontrib_unsymm(c, n, p1, p2, gpress, src, Binv,
h->pimpl->sys);
npp += fsh_impose_bc(n, gconn + p1, bc, h->pimpl);
hybsys_global_assemble_cell(n, gconn + p1,
h->pimpl->sys->S,
h->pimpl->sys->r, h->A, h->b);
p1 += n;
p2 += n * n;
}
return npp;
}
#if 0
/* ---------------------------------------------------------------------- */
static void
fsh_impose_well_control(int c,
flowbc_t *bc,
well_control_t *wctrl,
struct fsh_data *ifsh)
/* ---------------------------------------------------------------------- */
{
int ngconn, nwconn, i, w1, w2, wg, f;
int *pgconn, *gconn, *pwconn, *wconn;
double bhp;
double *r, *r2w, *w2w;
/* Enforce symmetric system */
assert (ifsh->pimpl->wsys->r2w == ifsh->pimpl->wsys->w2r);
pgconn = ifsh->pimpl->gdof_pos;
pwconn = ifsh->pimpl->cwell_pos;
gconn = ifsh->pimpl->gdof + pgconn[c];
wconn = ifsh->pimpl->cwells + 2*pwconn[c];
ngconn = pgconn[c + 1] - pgconn[c];
nwconn = pwconn[c + 1] - pwconn[c];
r2w = ifsh->pimpl->wsys->r2w;
w2w = ifsh->pimpl->wsys->w2w;
r = ifsh->pimpl->wsys->r ;
/* Adapt local system to prescribed boundary pressures (r->w) */
for (i = 0; i < ngconn; i++) {
f = gconn[i];
if (bc->type[f] == PRESSURE) {
for (w1 = 0; w1 < nwconn; w1++) {
/* Eliminate prescribed (boundary) pressure value */
r [ngconn + w1] -= r2w[i + w1*ngconn] * bc->bcval[f];
r2w[i + w1*ngconn] = 0.0;
}
r[i] = 0.0; /* RHS value handled in *reservoir* asm */
}
}
/* Adapt local system to prescribed well (bottom-hole) pressures;
* w->r and w->w. */
for (w1 = 0; w1 < nwconn; w1++) {
wg = wconn[2*w1 + 0];
if (wctrl->ctrl[wg] == BHP) {
bhp = wctrl->target[wg];
/* Well->reservoir */
for (i = 0; i < ngconn; i++) {
assert ((bc->type[gconn[i]] != PRESSURE) ||
!(fabs(r2w[i + w1*ngconn]) > 0.0));
r [i] -= r2w[i + w1*ngconn] * bhp;
r2w[i + w1*ngconn] = 0.0;
}
/* Well->well */
for (w2 = (w1 + 1) % nwconn; w2 != w1; w2 = (w2 + 1) % nwconn) {
r [ngconn + w2] -= w2w[w2 + w1*nwconn] * bhp;
w2w[w2 + w1*ngconn] = 0.0;
w2w[w1 + w2*ngconn] = 0.0;
}
/* Assemble final well equation of the form S*p_bh = S*p_bh^0 */
assert (fabs(w2w[w1 * (nwconn + 1)]) > 0.0);
r[ngconn + w1] = w2w[w1 * (nwconn + 1)] * bhp;
}
}
}
#endif
#if 0
/* ---------------------------------------------------------------------- */
static int
fsh_assemble_well(flowbc_t *bc,
well_control_t *wctrl,
struct fsh_data *ifsh)
/* ---------------------------------------------------------------------- */
{
int npp;
int ngconn, nwconn, c, nc, w;
int *pgconn, *gconn, *pwconn, *wconn;
nc = ifsh->pimpl->nc;
pgconn = ifsh->pimpl->gdof_pos;
gconn = ifsh->pimpl->gdof;
pwconn = ifsh->pimpl->cwell_pos;
wconn = ifsh->pimpl->cwells;
for (c = 0; c < nc; c++) {
ngconn = pgconn[c + 1] - pgconn[c];
nwconn = pwconn[c + 1] - pwconn[c];
if (nwconn > 0) {
hybsys_well_cellcontrib_symm(c, ngconn, pgconn[c],
pwconn,
ifsh->pimpl->WI,
ifsh->pimpl->wdp,
ifsh->pimpl->sys,
ifsh->pimpl->wsys);
ifsh_impose_well_control(c, bc, wctrl, ifsh);
hybsys_global_assemble_well_sym(ifsh->pimpl->nf,
ngconn, gconn + pgconn[c],
nwconn, wconn + 2*pwconn[c] + 0,
ifsh->pimpl->wsys->r2w,
ifsh->pimpl->wsys->w2w,
ifsh->pimpl->wsys->r,
ifsh->A, ifsh->b);
}
}
npp = 0;
for (w = 0; w < ifsh->pimpl->nw; w++) {
if (wctrl->ctrl[w] == BHP) {
npp += 1;
} else if (wctrl->ctrl[w] == RATE) {
/* Impose total rate constraint.
*
* Note sign resulting from ->target[w] denoting
* *injection* flux. */
ifsh->b[ifsh->pimpl->nf + w] -= - wctrl->target[w];
}
}
return npp;
}
#endif
/* ======================================================================
* Public routines follow.
* ====================================================================== */
/* ---------------------------------------------------------------------- */
/* Allocate and define supporting structures for assembling the global
* system of linear equations to couple the grid (reservoir)
* connections represented by 'G' and, if present (i.e., non-NULL),
* the well connections represented by 'W'. */
/* ---------------------------------------------------------------------- */
struct fsh_data *
fsh_construct(grid_t *G, well_t *W)
/* ---------------------------------------------------------------------- */
{
int nc, ngconn_tot;
size_t idata_sz, ddata_sz, nnu;
struct fsh_data *new;
assert (G != NULL);
/* Allocate master structure, define system matrix sparsity */
new = malloc(1 * sizeof *new);
if (new != NULL) {
new->A = hybsys_define_globconn(G, W);
new->pimpl = NULL;
if (new->A == NULL) {
fsh_destroy(new);
new = NULL;
}
}
/* Allocate implementation structure */
if (new != NULL) {
fsh_count_grid_dof(G, &new->max_ngconn, &new->sum_ngconn2);
fsh_compute_table_sz(G, W, new->max_ngconn,
&nnu, &idata_sz, &ddata_sz);
new->pimpl = fsh_impl_allocate_basic(idata_sz, ddata_sz);
if (new->pimpl == NULL) {
fsh_destroy(new);
new = NULL;
}
}
/* Allocate Schur complement contributions. Symmetric system. */
if (new != NULL) {
nc = G->number_of_cells;
ngconn_tot = G->cell_facepos[nc];
fsh_define_linsys_arrays(new);
fsh_define_impl_arrays(nc, nnu, ngconn_tot, new->max_ngconn,
W, new->pimpl);
new->pimpl->sys = hybsys_allocate_unsymm(new->max_ngconn,
nc, ngconn_tot);
if (W != NULL) {
fsh_define_cell_wells(nc, W, new->pimpl);
new->pimpl->wsys = hybsys_well_allocate_symm(new->max_ngconn, nc,
new->pimpl->cwell_pos);
}
if ((new->pimpl->sys == NULL) ||
((W != NULL) && (new->pimpl->wsys == NULL))) {
/* Failed to allocate ->sys or ->wsys (if W != NULL) */
fsh_destroy(new);
new = NULL;
}
}
if (new != NULL) {
/* All allocations succeded. Fill metadata and return. */
new->pimpl->nc = nc;
new->pimpl->nf = G->number_of_faces;
new->pimpl->nw = (W != NULL) ? W->number_of_wells : 0;
memcpy(new->pimpl->gdof_pos,
G->cell_facepos ,
(nc + 1) * sizeof *new->pimpl->gdof_pos);
memcpy(new->pimpl->gdof ,
G->cell_faces ,
ngconn_tot * sizeof *new->pimpl->gdof);
hybsys_init(new->max_ngconn, new->pimpl->sys);
}
return new;
}
/* ---------------------------------------------------------------------- */
/* Assemble global system of linear equations
*
* ifsh->A * ifsh->x = ifsh->b
*
* from local inner product matrices Binv, gravity pressure gpress,
* boundary conditions bc, source terms src and fluid properties
* totmob and omega. */
/* ---------------------------------------------------------------------- */
void
fsh_assemble(flowbc_t *bc,
const double *src,
const double *Binv,
const double *Biv,
const double *P,
const double *gpress,
well_control_t *wctrl,
const double *WI,
const double *BivW,
const double *wdp,
struct fsh_data *h)
/* ---------------------------------------------------------------------- */
{
int npp; /* Number of prescribed pressure values */
hybsys_schur_comp_unsymm(h->pimpl->nc,
h->pimpl->gdof_pos,
Binv, Biv, P, h->pimpl->sys);
#if 0
if (ifsh->pimpl->nw > 0) {
ifsh_set_effective_well_params(WI, wdp, ifsh);
hybsys_well_schur_comp_symm(ifsh->pimpl->nc,
ifsh->pimpl->cwell_pos,
ifsh->pimpl->WI,
ifsh->pimpl->sys,
ifsh->pimpl->wsys);
}
#endif
npp = fsh_assemble_grid(bc, Binv, gpress, src, h);
#if 0
if (ifsh->pimpl->nw > 0) {
npp += ifsh_assemble_well(bc, wctrl, ifsh);
}
#endif
if (npp == 0) {
h->A->sa[0] *= 2; /* Remove zero eigenvalue */
}
}
/* ---------------------------------------------------------------------- */
/* Compute cell pressures (cpress) and interface fluxes (fflux) from
* current solution of system of linear equations, h->x. Back
* substitution process, projected half-contact fluxes. */
/* ---------------------------------------------------------------------- */
void
ifsh_press_flux(grid_t *G,
const double *Binv, const double *gpress,
struct fsh_data *h,
double *cpress, double *fflux,
double *wpress, double *wflux)
/* ---------------------------------------------------------------------- */
{
int c, f, i;
double s;
hybsys_compute_press_flux(G->number_of_cells,
G->cell_facepos,
G->cell_faces,
gpress, Binv,
h->pimpl->sys,
h->x, cpress, h->pimpl->cflux,
h->pimpl->work);
if (h->pimpl->nw > 0) {
assert ((wpress != NULL) && (wflux != NULL));
hybsys_compute_press_flux_well(G->number_of_cells, G->cell_facepos,
G->number_of_faces, h->pimpl->nw,
h->pimpl->cwell_pos, h->pimpl->cwells,
Binv, h->pimpl->WI,
h->pimpl->wdp, h->pimpl->sys,
h->pimpl->wsys, h->x, cpress,
h->pimpl->cflux, wpress, wflux,
h->pimpl->work);
}
for (f = 0; f < G->number_of_faces; f++) { fflux[f] = 0.0; }
i = 0;
for (c = 0; c < G->number_of_cells; c++) {
for (; i < G->cell_facepos[c + 1]; i++) {
f = G->cell_faces[i];
s = 2.0*(G->face_cells[2*f + 0] == c) - 1.0;
fflux[f] += s * h->pimpl->cflux[i];
}
}
for (f = 0; f < G->number_of_faces; f++) {
i = (G->face_cells[2*f + 0] >= 0) +
(G->face_cells[2*f + 1] >= 0);
fflux[f] /= i;
}
}

71
fsh.h Normal file
View File

@ -0,0 +1,71 @@
/*
Copyright 2010 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FSH_HEADER_INCLUDED
#define OPM_FHS_HEADER_INCLUDED
#include "grid.h"
#include "well.h"
#include "flow_bc.h"
#ifdef __cplusplus
extern "C" {
#endif
struct fsh_data;
/** Constructs incompressible hybrid flow-solver data object for a
* given grid and well pattern.
*/
struct fsh_data *
fsh_construct(grid_t *G, well_t *W);
/** Assembles the hybridized linear system for face pressures.
*/
void
fsh_assemble(flowbc_t *bc,
const double *src,
const double *Binv,
const double *Biv,
const double *P,
const double *gpress,
well_control_t *wctrl,
const double *WI,
const double *BivW,
const double *wdp,
struct fsh_data *h);
/** Computes cell pressures, face fluxes, well pressures and well
* fluxes from face pressures.
*/
void
fsh_press_flux(grid_t *G,
const double *Binv, const double *gpress,
struct fsh_data *h,
double *cpress, double *fflux,
double *wpress, double *wflux);
#ifdef __cplusplus
}
#endif
#endif /* OPM_IFSH_HEADER_INCLUDED */