Transformed fsh->cfsh when meaning compressible flow solver hybrid.

This commit is contained in:
Atgeirr Flø Rasmussen 2010-10-26 13:54:49 +02:00
parent e073bfa081
commit 474c2ef855
9 changed files with 372 additions and 467 deletions

View File

@ -34,6 +34,7 @@ HybridPressureSolver.hpp
libopmpressure_la_SOURCES = \
cfsh.c \
coarse_conn.c \
coarse_sys.c \
compr_quant.c \

204
cfsh.c Normal file
View File

@ -0,0 +1,204 @@
/*
Copyright 2010 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "fsh.h"
#include "fsh_common_impl.h"
#include "hybsys.h"
#include "hybsys_global.h"
/* ---------------------------------------------------------------------- */
static int
cfsh_assemble_grid(flowbc_t *bc,
const double *Binv,
const double *gpress,
const double *src,
struct fsh_data *h)
/* ---------------------------------------------------------------------- */
{
int c, n, nc, p1, p2;
int npp;
int *pgconn, *gconn;
nc = h->pimpl->nc;
pgconn = h->pimpl->gdof_pos;
gconn = h->pimpl->gdof;
p1 = p2 = npp = 0;
for (c = 0; c < nc; c++) {
n = pgconn[c + 1] - pgconn[c];
hybsys_cellcontrib_unsymm(c, n, p1, p2, gpress, src, Binv,
h->pimpl->sys);
npp += fsh_impose_bc(n, gconn + p1, bc, h->pimpl);
hybsys_global_assemble_cell(n, gconn + p1,
h->pimpl->sys->S,
h->pimpl->sys->r, h->A, h->b);
p1 += n;
p2 += n * n;
}
return npp;
}
/* ======================================================================
* Public routines follow.
* ====================================================================== */
/* ---------------------------------------------------------------------- */
/* Allocate and define supporting structures for assembling the global
* system of linear equations to couple the grid (reservoir)
* connections represented by 'G' and, if present (i.e., non-NULL),
* the well connections represented by 'W'. */
/* ---------------------------------------------------------------------- */
struct fsh_data *
cfsh_construct(grid_t *G, well_t *W)
/* ---------------------------------------------------------------------- */
{
int nc, ngconn_tot;
size_t idata_sz, ddata_sz, nnu;
struct fsh_data *new;
assert (G != NULL);
/* Allocate master structure, define system matrix sparsity */
new = malloc(1 * sizeof *new);
if (new != NULL) {
new->A = hybsys_define_globconn(G, W);
new->pimpl = NULL;
if (new->A == NULL) {
fsh_destroy(new);
new = NULL;
}
}
/* Allocate implementation structure */
if (new != NULL) {
fsh_count_grid_dof(G, &new->max_ngconn, &new->sum_ngconn2);
fsh_compute_table_sz(G, W, new->max_ngconn,
&nnu, &idata_sz, &ddata_sz);
new->pimpl = fsh_impl_allocate_basic(idata_sz, ddata_sz);
if (new->pimpl == NULL) {
fsh_destroy(new);
new = NULL;
}
}
/* Allocate Schur complement contributions. Unsymmetric system. */
if (new != NULL) {
nc = G->number_of_cells;
ngconn_tot = G->cell_facepos[nc];
fsh_define_linsys_arrays(new);
fsh_define_impl_arrays(nc, nnu, ngconn_tot, new->max_ngconn,
W, new->pimpl);
new->pimpl->sys = hybsys_allocate_unsymm(new->max_ngconn,
nc, ngconn_tot);
if (W != NULL) {
fsh_define_cell_wells(nc, W, new->pimpl);
new->pimpl->wsys =
hybsys_well_allocate_unsymm(new->max_ngconn, nc,
new->pimpl->cwell_pos);
}
if ((new->pimpl->sys == NULL) ||
((W != NULL) && (new->pimpl->wsys == NULL))) {
/* Failed to allocate ->sys or ->wsys (if W != NULL) */
fsh_destroy(new);
new = NULL;
}
}
if (new != NULL) {
/* All allocations succeded. Fill metadata and return. */
new->pimpl->nc = nc;
new->pimpl->nf = G->number_of_faces;
new->pimpl->nw = (W != NULL) ? W->number_of_wells : 0;
memcpy(new->pimpl->gdof_pos,
G->cell_facepos ,
(nc + 1) * sizeof *new->pimpl->gdof_pos);
memcpy(new->pimpl->gdof ,
G->cell_faces ,
ngconn_tot * sizeof *new->pimpl->gdof);
hybsys_init(new->max_ngconn, new->pimpl->sys);
}
return new;
}
/* ---------------------------------------------------------------------- */
/* Assemble global system of linear equations
*
* fsh->A * fsh->x = fsh->b
*/
/* ---------------------------------------------------------------------- */
void
cfsh_assemble(flowbc_t *bc,
const double *src,
const double *Binv,
const double *Biv,
const double *P,
const double *gpress,
well_control_t *wctrl,
const double *WI,
const double *BivW,
const double *wdp,
struct fsh_data *h)
/* ---------------------------------------------------------------------- */
{
int npp; /* Number of prescribed pressure values */
hybsys_schur_comp_unsymm(h->pimpl->nc,
h->pimpl->gdof_pos,
Binv, Biv, P, h->pimpl->sys);
npp = cfsh_assemble_grid(bc, Binv, gpress, src, h);
if (npp == 0) {
h->A->sa[0] *= 2; /* Remove zero eigenvalue */
}
}

215
fsh.c
View File

@ -24,228 +24,13 @@
#include <stdlib.h>
#include <string.h>
#include "fsh_common.h"
#include "fsh.h"
#include "fsh_common_impl.h"
#include "hybsys.h"
#include "hybsys_global.h"
#if defined MAX
#undef MAX
#endif
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
/* ---------------------------------------------------------------------- */
static void
fsh_compute_table_sz(grid_t *G, well_t *W, int max_ngconn,
size_t *nnu, size_t *idata_sz, size_t *ddata_sz)
/* ---------------------------------------------------------------------- */
{
int nc, ngconn_tot;
*nnu = G->number_of_faces;
nc = G->number_of_cells;
ngconn_tot = G->cell_facepos[nc];
*idata_sz = nc + 1; /* gdof_pos */
*idata_sz += ngconn_tot; /* gdof */
*idata_sz += max_ngconn; /* iwork */
*ddata_sz = 2 * (*nnu); /* rhs + soln */
*ddata_sz += ngconn_tot; /* cflux */
*ddata_sz += max_ngconn; /* work */
if (W != NULL) {
*nnu += W->number_of_wells;
/* cwell_pos */
*idata_sz += nc + 1;
/* cwells */
*idata_sz += 2 * W->well_connpos[ W->number_of_wells ];
/* rhs + soln */
*ddata_sz += 2 * W->number_of_wells;
/* WI, wdp */
*ddata_sz += 2 * W->well_connpos[ W->number_of_wells ];
}
}
/* ---------------------------------------------------------------------- */
static int
fsh_assemble_grid(flowbc_t *bc,
const double *Binv,
const double *gpress,
const double *src,
struct fsh_data *h)
/* ---------------------------------------------------------------------- */
{
int c, n, nc, p1, p2;
int npp;
int *pgconn, *gconn;
nc = h->pimpl->nc;
pgconn = h->pimpl->gdof_pos;
gconn = h->pimpl->gdof;
p1 = p2 = npp = 0;
for (c = 0; c < nc; c++) {
n = pgconn[c + 1] - pgconn[c];
hybsys_cellcontrib_unsymm(c, n, p1, p2, gpress, src, Binv,
h->pimpl->sys);
npp += fsh_impose_bc(n, gconn + p1, bc, h->pimpl);
hybsys_global_assemble_cell(n, gconn + p1,
h->pimpl->sys->S,
h->pimpl->sys->r, h->A, h->b);
p1 += n;
p2 += n * n;
}
return npp;
}
/* ======================================================================
* Public routines follow.
* ====================================================================== */
/* ---------------------------------------------------------------------- */
/* Allocate and define supporting structures for assembling the global
* system of linear equations to couple the grid (reservoir)
* connections represented by 'G' and, if present (i.e., non-NULL),
* the well connections represented by 'W'. */
/* ---------------------------------------------------------------------- */
struct fsh_data *
fsh_construct(grid_t *G, well_t *W)
/* ---------------------------------------------------------------------- */
{
int nc, ngconn_tot;
size_t idata_sz, ddata_sz, nnu;
struct fsh_data *new;
assert (G != NULL);
/* Allocate master structure, define system matrix sparsity */
new = malloc(1 * sizeof *new);
if (new != NULL) {
new->A = hybsys_define_globconn(G, W);
new->pimpl = NULL;
if (new->A == NULL) {
fsh_destroy(new);
new = NULL;
}
}
/* Allocate implementation structure */
if (new != NULL) {
fsh_count_grid_dof(G, &new->max_ngconn, &new->sum_ngconn2);
fsh_compute_table_sz(G, W, new->max_ngconn,
&nnu, &idata_sz, &ddata_sz);
new->pimpl = fsh_impl_allocate_basic(idata_sz, ddata_sz);
if (new->pimpl == NULL) {
fsh_destroy(new);
new = NULL;
}
}
/* Allocate Schur complement contributions. Unsymmetric system. */
if (new != NULL) {
nc = G->number_of_cells;
ngconn_tot = G->cell_facepos[nc];
fsh_define_linsys_arrays(new);
fsh_define_impl_arrays(nc, nnu, ngconn_tot, new->max_ngconn,
W, new->pimpl);
new->pimpl->sys = hybsys_allocate_unsymm(new->max_ngconn,
nc, ngconn_tot);
if (W != NULL) {
fsh_define_cell_wells(nc, W, new->pimpl);
new->pimpl->wsys =
hybsys_well_allocate_unsymm(new->max_ngconn, nc,
new->pimpl->cwell_pos);
}
if ((new->pimpl->sys == NULL) ||
((W != NULL) && (new->pimpl->wsys == NULL))) {
/* Failed to allocate ->sys or ->wsys (if W != NULL) */
fsh_destroy(new);
new = NULL;
}
}
if (new != NULL) {
/* All allocations succeded. Fill metadata and return. */
new->pimpl->nc = nc;
new->pimpl->nf = G->number_of_faces;
new->pimpl->nw = (W != NULL) ? W->number_of_wells : 0;
memcpy(new->pimpl->gdof_pos,
G->cell_facepos ,
(nc + 1) * sizeof *new->pimpl->gdof_pos);
memcpy(new->pimpl->gdof ,
G->cell_faces ,
ngconn_tot * sizeof *new->pimpl->gdof);
hybsys_init(new->max_ngconn, new->pimpl->sys);
}
return new;
}
/* ---------------------------------------------------------------------- */
/* Assemble global system of linear equations
*
* fsh->A * fsh->x = fsh->b
*/
/* ---------------------------------------------------------------------- */
void
fsh_assemble(flowbc_t *bc,
const double *src,
const double *Binv,
const double *Biv,
const double *P,
const double *gpress,
well_control_t *wctrl,
const double *WI,
const double *BivW,
const double *wdp,
struct fsh_data *h)
/* ---------------------------------------------------------------------- */
{
int npp; /* Number of prescribed pressure values */
hybsys_schur_comp_unsymm(h->pimpl->nc,
h->pimpl->gdof_pos,
Binv, Biv, P, h->pimpl->sys);
npp = fsh_assemble_grid(bc, Binv, gpress, src, h);
if (npp == 0) {
h->A->sa[0] *= 2; /* Remove zero eigenvalue */
}
}
/* ---------------------------------------------------------------------- */
/* Compute cell pressures (cpress) and interface fluxes (fflux) from

133
fsh.h
View File

@ -20,7 +20,6 @@
#ifndef OPM_FSH_HEADER_INCLUDED
#define OPM_FHS_HEADER_INCLUDED
#include "fsh_common.h"
#include "grid.h"
#include "well.h"
#include "flow_bc.h"
@ -29,33 +28,137 @@
extern "C" {
#endif
struct fsh_data;
/** Constructs incompressible hybrid flow-solver data object for a
/***************************************************************/
/* Data type common to compressible and incompressible solver. */
/***************************************************************/
struct CSRMatrix;
struct fsh_impl;
/** Contains the linear system for assembly, as well as internal data
* for the assembly routines.
*/
struct fsh_data {
/* Let \f$n_i\f$ be the number of connections/faces of grid cell
* number \f$i\f$. Then max_ngconn = \f$\max_i n_i\f$
*/
int max_ngconn;
/* With n_i as above, sum_ngconn2 = \f$\sum_i n_i^2\f$ */
size_t sum_ngconn2;
/* Linear system */
struct CSRMatrix *A; /* Coefficient matrix */
double *b; /* System RHS */
double *x; /* Solution */
/* Private implementational details. */
struct fsh_impl *pimpl;
};
/** Destroys the fsh data object */
void
fsh_destroy(struct fsh_data *h);
/*********************************/
/* Compressible solver routines. */
/*********************************/
/** Constructs compressible hybrid flow-solver data object for a
* given grid and well pattern.
*/
struct fsh_data *
fsh_construct(grid_t *G, well_t *W);
cfsh_construct(grid_t *G, well_t *W);
/** Assembles the hybridized linear system for face pressures.
*/
void
fsh_assemble(flowbc_t *bc,
const double *src,
const double *Binv,
const double *Biv,
const double *P,
const double *gpress,
well_control_t *wctrl,
const double *WI,
const double *BivW,
const double *wdp,
struct fsh_data *h);
cfsh_assemble(flowbc_t *bc,
const double *src,
const double *Binv,
const double *Biv,
const double *P,
const double *gpress,
well_control_t *wctrl,
const double *WI,
const double *BivW,
const double *wdp,
struct fsh_data *h);
/***********************************/
/* Incompressible solver routines. */
/***********************************/
/** Constructs incompressible hybrid flow-solver data object for a
* given grid and well pattern.
*
* @param G The grid
* @param W The wells
*/
struct fsh_data *
ifsh_construct(grid_t *G, well_t *W);
/** Assembles the hybridized linear system for face pressures.
*
* This routine produces no output, other than changing the linear
* system embedded in the ifsh_data object.
* @param bc Boundary conditions.
* @param src Per-cell source terms (volume per second). Positive
* values flow are sources, negative values are sinks.
* @param Binv The cell-wise effective inner products to employ in
* assembly. This should be an array of length equal to
* sum_ngconn2 of the ifsh_data object. For each cell i,
* there are \f$n_i^2\f$ entries, giving the inner product for
* that cell. The inner products may for example be
* computed by the functions of mimetic.h.
* @param gpress Effective gravity terms. This should be an array of length
* \f$\sum_i n_i\f$. For each cell, the \f$n_i\f$ elements
* corresponding to cell \f$i\f$ should be given by
* \f$\omega g \cdot (f_c - c_c)\f$ where the symbols
* represent the fractional-flow-weighted densities,
* the gravity vector, face centroid and cell centroid.
* @param wctrl \TODO
* @param WI \TODO
* @param wdp \TODO
* @param h The fsh_data object to use (and whose linear system will
* be modified). Must already be constructed.
*/
void
ifsh_assemble(flowbc_t *bc,
const double *src,
const double *Binv,
const double *gpress,
well_control_t *wctrl,
const double *WI,
const double *wdp,
struct fsh_data *h);
/**********************************/
/* Common postprocessing routine. */
/**********************************/
/** Computes cell pressures, face fluxes, well pressures and well
* fluxes from face pressures.
*
* @param G The grid.
* @param h The fsh_data object. You must have called [ic]fsh_assemble()
* prior to this, and solved the embedded linear system of
* this object before you call fsh_press_flux().
* @param cpress[out] Cell pressures.
* @param fflux[out] Oriented face fluxes.
* @param wpress[out] \TODO
* @param wflux[out] \TODO
*/
void
fsh_press_flux(grid_t *G,

View File

@ -28,7 +28,7 @@
#include "flow_bc.h"
#include "well.h"
#include "fsh_common.h"
#include "fsh.h"
#include "fsh_common_impl.h"
#include "hybsys.h"
@ -235,3 +235,42 @@ fsh_define_linsys_arrays(struct fsh_data *h)
h->b = h->pimpl->ddata;
h->x = h->b + h->A->m;
}
/* ---------------------------------------------------------------------- */
void
fsh_compute_table_sz(grid_t *G, well_t *W, int max_ngconn,
size_t *nnu, size_t *idata_sz, size_t *ddata_sz)
/* ---------------------------------------------------------------------- */
{
int nc, ngconn_tot;
*nnu = G->number_of_faces;
nc = G->number_of_cells;
ngconn_tot = G->cell_facepos[nc];
*idata_sz = nc + 1; /* gdof_pos */
*idata_sz += ngconn_tot; /* gdof */
*idata_sz += max_ngconn; /* iwork */
*ddata_sz = 2 * (*nnu); /* rhs + soln */
*ddata_sz += ngconn_tot; /* cflux */
*ddata_sz += max_ngconn; /* work */
if (W != NULL) {
*nnu += W->number_of_wells;
/* cwell_pos */
*idata_sz += nc + 1;
/* cwells */
*idata_sz += 2 * W->well_connpos[ W->number_of_wells ];
/* rhs + soln */
*ddata_sz += 2 * W->number_of_wells;
/* WI, wdp */
*ddata_sz += 2 * W->well_connpos[ W->number_of_wells ];
}
}

View File

@ -20,42 +20,6 @@
#ifndef OPM_FSH_COMMON_HEADER_INCLUDED
#define OPM_FSH_COMMON_HEADER_INCLUDED
#ifdef __cplusplus
extern "C" {
#endif
struct CSRMatrix;
struct fsh_impl;
/** Contains the linear system for assembly, as well as internal data
* for the assembly routines.
*/
struct fsh_data {
/* Let \f$n_i\f$ be the number of connections/faces of grid cell
* number \f$i\f$. Then max_ngconn = \f$\max_i n_i\f$
*/
int max_ngconn;
/* With n_i as above, sum_ngconn2 = \f$\sum_i n_i^2\f$ */
size_t sum_ngconn2;
/* Linear system */
struct CSRMatrix *A; /* Coefficient matrix */
double *b; /* System RHS */
double *x; /* Solution */
/* Private implementational details. */
struct fsh_impl *pimpl;
};
/** Destroys the fsh data object */
void
fsh_destroy(struct fsh_data *h);
#ifdef __cplusplus
}
#endif
#error Do not include me.
#endif /* OPM_FSH_COMMON_HEADER_INCLUDED */

View File

@ -76,4 +76,8 @@ fsh_define_cell_wells(size_t nc, well_t *W, struct fsh_impl *pimpl);
void
fsh_define_linsys_arrays(struct fsh_data *h);
void
fsh_compute_table_sz(grid_t *G, well_t *W, int max_ngconn,
size_t *nnu, size_t *idata_sz, size_t *ddata_sz);
#endif /* OPM_FSH_COMMON_IMPL_HEADER_INCLUDED */

107
ifsh.c
View File

@ -24,56 +24,11 @@
#include <stdlib.h>
#include <string.h>
#include "fsh_common.h"
#include "ifsh.h"
#include "fsh.h"
#include "fsh_common_impl.h"
#include "hybsys.h"
#include "hybsys_global.h"
#if defined MAX
#undef MAX
#endif
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
/* ---------------------------------------------------------------------- */
static void
ifsh_compute_table_sz(grid_t *G, well_t *W, int max_ngconn,
size_t *nnu, size_t *idata_sz, size_t *ddata_sz)
/* ---------------------------------------------------------------------- */
{
int nc, ngconn_tot;
*nnu = G->number_of_faces;
nc = G->number_of_cells;
ngconn_tot = G->cell_facepos[nc];
*idata_sz = nc + 1; /* gdof_pos */
*idata_sz += ngconn_tot; /* gdof */
*idata_sz += max_ngconn; /* iwork */
*ddata_sz = 2 * (*nnu); /* rhs + soln */
*ddata_sz += ngconn_tot; /* cflux */
*ddata_sz += max_ngconn; /* work */
if (W != NULL) {
*nnu += W->number_of_wells;
/* cwell_pos */
*idata_sz += nc + 1;
/* cwells */
*idata_sz += 2 * W->well_connpos[ W->number_of_wells ];
/* rhs + soln */
*ddata_sz += 2 * W->number_of_wells;
/* WI, wdp */
*ddata_sz += 2 * W->well_connpos[ W->number_of_wells ];
}
}
/* ---------------------------------------------------------------------- */
static void
@ -318,8 +273,8 @@ ifsh_construct(grid_t *G, well_t *W)
if (new != NULL) {
fsh_count_grid_dof(G, &new->max_ngconn, &new->sum_ngconn2);
ifsh_compute_table_sz(G, W, new->max_ngconn,
&nnu, &idata_sz, &ddata_sz);
fsh_compute_table_sz(G, W, new->max_ngconn,
&nnu, &idata_sz, &ddata_sz);
new->pimpl = fsh_impl_allocate_basic(idata_sz, ddata_sz);
@ -426,59 +381,3 @@ ifsh_assemble(flowbc_t *bc,
}
}
/* ---------------------------------------------------------------------- */
/* Compute cell pressures (cpress) and interface fluxes (fflux) from
* current solution of system of linear equations, h->x. Back
* substitution process, projected half-contact fluxes. */
/* ---------------------------------------------------------------------- */
void
ifsh_press_flux(grid_t *G,
const double *Binv, const double *gpress,
struct fsh_data *h,
double *cpress, double *fflux,
double *wpress, double *wflux)
/* ---------------------------------------------------------------------- */
{
int c, f, i;
double s;
hybsys_compute_press_flux(G->number_of_cells,
G->cell_facepos,
G->cell_faces,
gpress, Binv,
h->pimpl->sys,
h->x, cpress, h->pimpl->cflux,
h->pimpl->work);
if (h->pimpl->nw > 0) {
assert ((wpress != NULL) && (wflux != NULL));
hybsys_compute_press_flux_well(G->number_of_cells, G->cell_facepos,
G->number_of_faces, h->pimpl->nw,
h->pimpl->cwell_pos, h->pimpl->cwells,
Binv, h->pimpl->WI,
h->pimpl->wdp, h->pimpl->sys,
h->pimpl->wsys, h->x, cpress,
h->pimpl->cflux, wpress, wflux,
h->pimpl->work);
}
for (f = 0; f < G->number_of_faces; f++) { fflux[f] = 0.0; }
i = 0;
for (c = 0; c < G->number_of_cells; c++) {
for (; i < G->cell_facepos[c + 1]; i++) {
f = G->cell_faces[i];
s = 2.0*(G->face_cells[2*f + 0] == c) - 1.0;
fflux[f] += s * h->pimpl->cflux[i];
}
}
for (f = 0; f < G->number_of_faces; f++) {
i = (G->face_cells[2*f + 0] >= 0) +
(G->face_cells[2*f + 1] >= 0);
fflux[f] /= i;
}
}

96
ifsh.h
View File

@ -17,98 +17,4 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_IFSH_HEADER_INCLUDED
#define OPM_IFHS_HEADER_INCLUDED
#include "grid.h"
#include "well.h"
#include "flow_bc.h"
#include "fsh_common.h"
#ifdef __cplusplus
extern "C" {
#endif
/** @file Incompressible flow solver, using hybridization.
*
* These functions implements assembly of a hybridized linear
* system for face-pressures in incompressible two-phase flow.
* A routine for back-substitution that computes cell pressures
* and face fluxes is also included.
*/
struct fsh_data;
/** Constructs incompressible hybrid flow-solver data object for a
* given grid and well pattern.
*
* @param G The grid
* @param W The wells
*/
struct fsh_data *
ifsh_construct(grid_t *G, well_t *W);
/** Assembles the hybridized linear system for face pressures.
*
* This routine produces no output, other than changing the linear
* system embedded in the ifsh_data object.
* @param bc Boundary conditions.
* @param src Per-cell source terms (volume per second). Positive
* values flow are sources, negative values are sinks.
* @param Binv The cell-wise inner products to employ in
* assembly. This should be an array of length equal to
* sum_ngconn2 of the ifsh_data object. For each cell i,
* there are \f$n_i^2\f$ entries, giving the inner product for
* that cell. The inner products may for example be
* computed by the functions of mimetic.h.
* @param gpress Gravity terms. This should be an array of length
* \f$\sum_i n_i\f$. For each cell, the \f$n_i\f$ elements
* corresponding to cell \f$i\f$ should be given by
* \f$g \cdot (f_c - c_c)\f$ where the symbols represent
* the gravity vector, face centroid and cell centroid.
* @param wctrl \TODO
* @param WI \TODO
* @param wdp \TODO
* @param totmob Cell-wise total mobilities to use for this assembly.
* @param omega Cell-wise phase densities weighted by fractional flow.
* @param h The fsh_data object to use (and whose linear system will
* be modified). Must already be constructed.
*/
void
ifsh_assemble(flowbc_t *bc,
const double *src,
const double *Binv,
const double *gpress,
well_control_t *wctrl,
const double *WI,
const double *wdp,
struct fsh_data *h);
/** Computes cell pressures, face fluxes, well pressures and well
* fluxes from face pressures.
*
* @param G The grid.
* @param h The fsh_data object. You must have called ifsh_assemble()
* prior to this, and solved the embedded linear system of
* this object before you call ifsh_press_flux().
* @param cpress[out] Cell pressures.
* @param fflux[out] Oriented face fluxes.
* @param wpress[out] \TODO
* @param wflux[out] \TODO
*/
void
ifsh_press_flux(grid_t *G,
const double *Binv, const double *gpress,
struct fsh_data *h,
double *cpress, double *fflux,
double *wpress, double *wflux);
#ifdef __cplusplus
}
#endif
#endif /* OPM_IFSH_HEADER_INCLUDED */
#error Do not include me.