Added param initializer on fluids with param to addjust table length.

Moved internal class SatFunc to SatFuncStone2.
This commit is contained in:
Halvor Møll Nilsen 2012-08-28 14:27:14 +02:00
parent a6dcc52cba
commit 48360d23a1
9 changed files with 331 additions and 225 deletions

View File

@ -50,6 +50,7 @@ opm/core/fluid/RockCompressibility.cpp \
opm/core/fluid/RockFromDeck.cpp \
opm/core/fluid/SaturationPropsBasic.cpp \
opm/core/fluid/SaturationPropsFromDeck.cpp \
opm/core/fluid/SatFuncStone2.cpp \
opm/core/fluid/blackoil/BlackoilPvtProperties.cpp \
opm/core/fluid/blackoil/SinglePvtDead.cpp \
opm/core/fluid/blackoil/SinglePvtInterface.cpp \
@ -146,6 +147,7 @@ opm/core/fluid/RockCompressibility.hpp \
opm/core/fluid/RockFromDeck.hpp \
opm/core/fluid/SaturationPropsBasic.hpp \
opm/core/fluid/SaturationPropsFromDeck.hpp \
opm/core/fluid/SatFuncStone2.hpp \
opm/core/fluid/SimpleFluid2p.hpp \
opm/core/fluid/blackoil/BlackoilPhases.hpp \
opm/core/fluid/blackoil/BlackoilPvtProperties.hpp \

View File

@ -18,7 +18,7 @@
*/
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
namespace Opm
{
@ -34,6 +34,20 @@ namespace Opm
}
}
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param)
{
rock_.init(deck, grid);
pvt_.init(deck);
satprops_.init(deck, grid, param);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
}
BlackoilPropertiesFromDeck::~BlackoilPropertiesFromDeck()
{
}

View File

@ -26,6 +26,7 @@
#include <opm/core/fluid/blackoil/BlackoilPvtProperties.hpp>
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
struct UnstructuredGrid;
@ -43,8 +44,10 @@ namespace Opm
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid);
const UnstructuredGrid& grid);
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param);
/// Destructor.
virtual ~BlackoilPropertiesFromDeck();

View File

@ -0,0 +1,209 @@
#include <opm/core/fluid/SatFuncStone2.hpp>
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
#include <opm/core/grid.h>
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
#include <opm/core/utility/buildUniformMonotoneTable.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <iostream>
namespace Opm
{
// ----------- Methods of SatFuncSet below -----------
void SatFuncStone2::init(const EclipseGridParser& deck,
const int table_num,
const PhaseUsage phase_usg){
init(deck, table_num, phase_usg, 200);
}
void SatFuncStone2::init(const EclipseGridParser& deck,
const int table_num,
const PhaseUsage phase_usg,
const int samples)
{
phase_usage = phase_usg;
double swco = 0.0;
double swmax = 1.0;
if (phase_usage.phase_used[Aqua]) {
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
const std::vector<double>& sw = swof_table[table_num][0];
const std::vector<double>& krw = swof_table[table_num][1];
const std::vector<double>& krow = swof_table[table_num][2];
const std::vector<double>& pcow = swof_table[table_num][3];
buildUniformMonotoneTable(sw, krw, samples, krw_);
buildUniformMonotoneTable(sw, krow, samples, krow_);
buildUniformMonotoneTable(sw, pcow, samples, pcow_);
krocw_ = krow[0]; // At connate water -> ecl. SWOF
swco = sw[0];
smin_[phase_usage.phase_pos[Aqua]] = sw[0];
swmax = sw.back();
smax_[phase_usage.phase_pos[Aqua]] = sw.back();
}
if (phase_usage.phase_used[Vapour]) {
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
const std::vector<double>& sg = sgof_table[table_num][0];
const std::vector<double>& krg = sgof_table[table_num][1];
const std::vector<double>& krog = sgof_table[table_num][2];
const std::vector<double>& pcog = sgof_table[table_num][3];
buildUniformMonotoneTable(sg, krg, samples, krg_);
buildUniformMonotoneTable(sg, krog, samples, krog_);
buildUniformMonotoneTable(sg, pcog, samples, pcog_);
smin_[phase_usage.phase_pos[Vapour]] = sg[0];
if (std::fabs(sg.back() + swco - 1.0) > 1e-3) {
THROW("Gas maximum saturation in SGOF table = " << sg.back() <<
", should equal (1.0 - connate water sat) = " << (1.0 - swco));
}
smax_[phase_usage.phase_pos[Vapour]] = sg.back();
}
// These only consider water min/max sats. Consider gas sats?
smin_[phase_usage.phase_pos[Liquid]] = 1.0 - swmax;
smax_[phase_usage.phase_pos[Liquid]] = 1.0 - swco;
}
void SatFuncStone2::evalKr(const double* s, double* kr) const
{
if (phase_usage.num_phases == 3) {
// Stone-II relative permeability model.
double sw = s[Aqua];
double sg = s[Vapour];
double krw = krw_(sw);
double krg = krg_(sg);
double krow = krow_(sw + sg); // = 1 - so
double krog = krog_(sg); // = 1 - so - sw
double krocw = krocw_;
kr[Aqua] = krw;
kr[Vapour] = krg;
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
if (kr[Liquid] < 0.0) {
kr[Liquid] = 0.0;
}
return;
}
// We have a two-phase situation. We know that oil is active.
if (phase_usage.phase_used[Aqua]) {
int wpos = phase_usage.phase_pos[Aqua];
int opos = phase_usage.phase_pos[Liquid];
double sw = s[wpos];
double krw = krw_(sw);
double krow = krow_(sw);
kr[wpos] = krw;
kr[opos] = krow;
} else {
ASSERT(phase_usage.phase_used[Vapour]);
int gpos = phase_usage.phase_pos[Vapour];
int opos = phase_usage.phase_pos[Liquid];
double sg = s[gpos];
double krg = krg_(sg);
double krog = krog_(sg);
kr[gpos] = krg;
kr[opos] = krog;
}
}
void SatFuncStone2::evalKrDeriv(const double* s, double* kr, double* dkrds) const
{
const int np = phase_usage.num_phases;
std::fill(dkrds, dkrds + np*np, 0.0);
if (np == 3) {
// Stone-II relative permeability model.
double sw = s[Aqua];
double sg = s[Vapour];
double krw = krw_(sw);
double dkrww = krw_.derivative(sw);
double krg = krg_(sg);
double dkrgg = krg_.derivative(sg);
double krow = krow_(sw + sg);
double dkrow = krow_.derivative(sw + sg);
double krog = krog_(sg);
double dkrog = krog_.derivative(sg);
double krocw = krocw_;
kr[Aqua] = krw;
kr[Vapour] = krg;
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
if (kr[Liquid] < 0.0) {
kr[Liquid] = 0.0;
}
dkrds[Aqua + Aqua*np] = dkrww;
dkrds[Vapour + Vapour*np] = dkrgg;
dkrds[Liquid + Aqua*np] = krocw*((dkrow/krocw + dkrww)*(krog/krocw + krg) - dkrww);
dkrds[Liquid + Vapour*np] = krocw*((krow/krocw + krw)*(dkrog/krocw + dkrgg) - dkrgg)
+ krocw*((dkrow/krocw + krw)*(krog/krocw + krg) - dkrgg);
return;
}
// We have a two-phase situation. We know that oil is active.
if (phase_usage.phase_used[Aqua]) {
int wpos = phase_usage.phase_pos[Aqua];
int opos = phase_usage.phase_pos[Liquid];
double sw = s[wpos];
double krw = krw_(sw);
double dkrww = krw_.derivative(sw);
double krow = krow_(sw);
double dkrow = krow_.derivative(sw);
kr[wpos] = krw;
kr[opos] = krow;
dkrds[wpos + wpos*np] = dkrww;
dkrds[opos + wpos*np] = dkrow; // Row opos, column wpos, fortran order.
} else {
ASSERT(phase_usage.phase_used[Vapour]);
int gpos = phase_usage.phase_pos[Vapour];
int opos = phase_usage.phase_pos[Liquid];
double sg = s[gpos];
double krg = krg_(sg);
double dkrgg = krg_.derivative(sg);
double krog = krog_(sg);
double dkrog = krog_.derivative(sg);
kr[gpos] = krg;
kr[opos] = krog;
dkrds[gpos + gpos*np] = dkrgg;
dkrds[opos + gpos*np] = dkrog;
}
}
void SatFuncStone2::evalPc(const double* s, double* pc) const
{
pc[phase_usage.phase_pos[Liquid]] = 0.0;
if (phase_usage.phase_used[Aqua]) {
int pos = phase_usage.phase_pos[Aqua];
pc[pos] = pcow_(s[pos]);
}
if (phase_usage.phase_used[Vapour]) {
int pos = phase_usage.phase_pos[Vapour];
pc[pos] = pcog_(s[pos]);
}
}
void SatFuncStone2::evalPcDeriv(const double* s, double* pc, double* dpcds) const
{
// The problem of determining three-phase capillary pressures
// is very hard experimentally, usually one extends two-phase
// data (as for relative permeability).
// In our approach the derivative matrix is quite sparse, only
// the diagonal elements corresponding to non-oil phases are
// (potentially) nonzero.
const int np = phase_usage.num_phases;
std::fill(dpcds, dpcds + np*np, 0.0);
pc[phase_usage.phase_pos[Liquid]] = 0.0;
if (phase_usage.phase_used[Aqua]) {
int pos = phase_usage.phase_pos[Aqua];
pc[pos] = pcow_(s[pos]);
dpcds[np*pos + pos] = pcow_.derivative(s[pos]);
}
if (phase_usage.phase_used[Vapour]) {
int pos = phase_usage.phase_pos[Vapour];
pc[pos] = pcog_(s[pos]);
dpcds[np*pos + pos] = pcog_.derivative(s[pos]);
}
}
} // namespace Opm

View File

@ -0,0 +1,32 @@
#ifndef SATFUNCSTONE2_HPP
#define SATFUNCSTONE2_HPP
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/UniformTableLinear.hpp>
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
#include <vector>
namespace Opm
{
class SatFuncStone2: public BlackoilPhases
{
public:
void init(const EclipseGridParser& deck, const int table_num, PhaseUsage phase_usg);
void init(const EclipseGridParser& deck, const int table_num, PhaseUsage phase_usg,
const int samples);
void evalKr(const double* s, double* kr) const;
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
void evalPc(const double* s, double* pc) const;
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
double smin_[PhaseUsage::MaxNumPhases];
double smax_[PhaseUsage::MaxNumPhases];
private:
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
UniformTableLinear<double> krw_;
UniformTableLinear<double> krow_;
UniformTableLinear<double> pcow_;
UniformTableLinear<double> krg_;
UniformTableLinear<double> krog_;
UniformTableLinear<double> pcog_;
double krocw_; // = krow_(s_wc)
};
} // namespace Opm
#endif // SATFUNCSTONE2_HPP

View File

@ -88,7 +88,62 @@ namespace Opm
satfuncset_[table].init(deck, table, phase_usage_);
}
}
void SaturationPropsFromDeck::init(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param){
phase_usage_ = phaseUsageFromDeck(deck);
// Extract input data.
// Oil phase should be active.
if (!phase_usage_.phase_used[Liquid]) {
THROW("SaturationPropsFromDeck::init() -- oil phase must be active.");
}
// Obtain SATNUM, if it exists, and create cell_to_func_.
// Otherwise, let the cell_to_func_ mapping be just empty.
int satfuncs_expected = 1;
if (deck.hasField("SATNUM")) {
const std::vector<int>& satnum = deck.getIntegerValue("SATNUM");
satfuncs_expected = *std::max_element(satnum.begin(), satnum.end());
const int num_cells = grid.number_of_cells;
cell_to_func_.resize(num_cells);
const int* gc = grid.global_cell;
for (int cell = 0; cell < num_cells; ++cell) {
const int deck_pos = (gc == NULL) ? cell : gc[cell];
cell_to_func_[cell] = satnum[deck_pos] - 1;
}
}
// Find number of tables, check for consistency.
enum { Uninitialized = -1 };
int num_tables = Uninitialized;
if (phase_usage_.phase_used[Aqua]) {
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
num_tables = swof_table.size();
if (num_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SWOF tables, SATNUM specifies at least " << satfuncs_expected);
}
}
if (phase_usage_.phase_used[Vapour]) {
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
int num_sgof_tables = sgof_table.size();
if (num_sgof_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SGOF tables, SATNUM specifies at least " << satfuncs_expected);
}
if (num_tables == Uninitialized) {
num_tables = num_sgof_tables;
} else if (num_tables != num_sgof_tables) {
THROW("Inconsistent number of tables in SWOF and SGOF.");
}
}
// Initialize tables.
int tab_size=param.getDefault("tab_size",200);
satfuncset_.resize(num_tables);
for (int table = 0; table < num_tables; ++table) {
satfuncset_[table].init(deck, table, phase_usage_,tab_size);
}
}
@ -192,206 +247,12 @@ namespace Opm
}
}
// Map the cell number to the correct function set.
const SaturationPropsFromDeck::SatFuncSet&
const SatFuncStone2&
SaturationPropsFromDeck::funcForCell(const int cell) const
{
return cell_to_func_.empty() ? satfuncset_[0] : satfuncset_[cell_to_func_[cell]];
}
// ----------- Methods of SatFuncSet below -----------
void SaturationPropsFromDeck::SatFuncSet::init(const EclipseGridParser& deck,
const int table_num,
const PhaseUsage phase_usg)
{
phase_usage = phase_usg;
const int samples = 200;
double swco = 0.0;
double swmax = 1.0;
if (phase_usage.phase_used[Aqua]) {
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
const std::vector<double>& sw = swof_table[table_num][0];
const std::vector<double>& krw = swof_table[table_num][1];
const std::vector<double>& krow = swof_table[table_num][2];
const std::vector<double>& pcow = swof_table[table_num][3];
buildUniformMonotoneTable(sw, krw, samples, krw_);
buildUniformMonotoneTable(sw, krow, samples, krow_);
buildUniformMonotoneTable(sw, pcow, samples, pcow_);
krocw_ = krow[0]; // At connate water -> ecl. SWOF
swco = sw[0];
smin_[phase_usage.phase_pos[Aqua]] = sw[0];
swmax = sw.back();
smax_[phase_usage.phase_pos[Aqua]] = sw.back();
}
if (phase_usage.phase_used[Vapour]) {
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
const std::vector<double>& sg = sgof_table[table_num][0];
const std::vector<double>& krg = sgof_table[table_num][1];
const std::vector<double>& krog = sgof_table[table_num][2];
const std::vector<double>& pcog = sgof_table[table_num][3];
buildUniformMonotoneTable(sg, krg, samples, krg_);
buildUniformMonotoneTable(sg, krog, samples, krog_);
buildUniformMonotoneTable(sg, pcog, samples, pcog_);
smin_[phase_usage.phase_pos[Vapour]] = sg[0];
if (std::fabs(sg.back() + swco - 1.0) > 1e-3) {
THROW("Gas maximum saturation in SGOF table = " << sg.back() <<
", should equal (1.0 - connate water sat) = " << (1.0 - swco));
}
smax_[phase_usage.phase_pos[Vapour]] = sg.back();
}
// These only consider water min/max sats. Consider gas sats?
smin_[phase_usage.phase_pos[Liquid]] = 1.0 - swmax;
smax_[phase_usage.phase_pos[Liquid]] = 1.0 - swco;
}
void SaturationPropsFromDeck::SatFuncSet::evalKr(const double* s, double* kr) const
{
if (phase_usage.num_phases == 3) {
// Stone-II relative permeability model.
double sw = s[Aqua];
double sg = s[Vapour];
double krw = krw_(sw);
double krg = krg_(sg);
double krow = krow_(sw + sg); // = 1 - so
double krog = krog_(sg); // = 1 - so - sw
double krocw = krocw_;
kr[Aqua] = krw;
kr[Vapour] = krg;
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
if (kr[Liquid] < 0.0) {
kr[Liquid] = 0.0;
}
return;
}
// We have a two-phase situation. We know that oil is active.
if (phase_usage.phase_used[Aqua]) {
int wpos = phase_usage.phase_pos[Aqua];
int opos = phase_usage.phase_pos[Liquid];
double sw = s[wpos];
double krw = krw_(sw);
double krow = krow_(sw);
kr[wpos] = krw;
kr[opos] = krow;
} else {
ASSERT(phase_usage.phase_used[Vapour]);
int gpos = phase_usage.phase_pos[Vapour];
int opos = phase_usage.phase_pos[Liquid];
double sg = s[gpos];
double krg = krg_(sg);
double krog = krog_(sg);
kr[gpos] = krg;
kr[opos] = krog;
}
}
void SaturationPropsFromDeck::SatFuncSet::evalKrDeriv(const double* s, double* kr, double* dkrds) const
{
const int np = phase_usage.num_phases;
std::fill(dkrds, dkrds + np*np, 0.0);
if (np == 3) {
// Stone-II relative permeability model.
double sw = s[Aqua];
double sg = s[Vapour];
double krw = krw_(sw);
double dkrww = krw_.derivative(sw);
double krg = krg_(sg);
double dkrgg = krg_.derivative(sg);
double krow = krow_(sw + sg);
double dkrow = krow_.derivative(sw + sg);
double krog = krog_(sg);
double dkrog = krog_.derivative(sg);
double krocw = krocw_;
kr[Aqua] = krw;
kr[Vapour] = krg;
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
if (kr[Liquid] < 0.0) {
kr[Liquid] = 0.0;
}
dkrds[Aqua + Aqua*np] = dkrww;
dkrds[Vapour + Vapour*np] = dkrgg;
dkrds[Liquid + Aqua*np] = krocw*((dkrow/krocw + dkrww)*(krog/krocw + krg) - dkrww);
dkrds[Liquid + Vapour*np] = krocw*((krow/krocw + krw)*(dkrog/krocw + dkrgg) - dkrgg)
+ krocw*((dkrow/krocw + krw)*(krog/krocw + krg) - dkrgg);
return;
}
// We have a two-phase situation. We know that oil is active.
if (phase_usage.phase_used[Aqua]) {
int wpos = phase_usage.phase_pos[Aqua];
int opos = phase_usage.phase_pos[Liquid];
double sw = s[wpos];
double krw = krw_(sw);
double dkrww = krw_.derivative(sw);
double krow = krow_(sw);
double dkrow = krow_.derivative(sw);
kr[wpos] = krw;
kr[opos] = krow;
dkrds[wpos + wpos*np] = dkrww;
dkrds[opos + wpos*np] = dkrow; // Row opos, column wpos, fortran order.
} else {
ASSERT(phase_usage.phase_used[Vapour]);
int gpos = phase_usage.phase_pos[Vapour];
int opos = phase_usage.phase_pos[Liquid];
double sg = s[gpos];
double krg = krg_(sg);
double dkrgg = krg_.derivative(sg);
double krog = krog_(sg);
double dkrog = krog_.derivative(sg);
kr[gpos] = krg;
kr[opos] = krog;
dkrds[gpos + gpos*np] = dkrgg;
dkrds[opos + gpos*np] = dkrog;
}
}
void SaturationPropsFromDeck::SatFuncSet::evalPc(const double* s, double* pc) const
{
pc[phase_usage.phase_pos[Liquid]] = 0.0;
if (phase_usage.phase_used[Aqua]) {
int pos = phase_usage.phase_pos[Aqua];
pc[pos] = pcow_(s[pos]);
}
if (phase_usage.phase_used[Vapour]) {
int pos = phase_usage.phase_pos[Vapour];
pc[pos] = pcog_(s[pos]);
}
}
void SaturationPropsFromDeck::SatFuncSet::evalPcDeriv(const double* s, double* pc, double* dpcds) const
{
// The problem of determining three-phase capillary pressures
// is very hard experimentally, usually one extends two-phase
// data (as for relative permeability).
// In our approach the derivative matrix is quite sparse, only
// the diagonal elements corresponding to non-oil phases are
// (potentially) nonzero.
const int np = phase_usage.num_phases;
std::fill(dpcds, dpcds + np*np, 0.0);
pc[phase_usage.phase_pos[Liquid]] = 0.0;
if (phase_usage.phase_used[Aqua]) {
int pos = phase_usage.phase_pos[Aqua];
pc[pos] = pcow_(s[pos]);
dpcds[np*pos + pos] = pcow_.derivative(s[pos]);
}
if (phase_usage.phase_used[Vapour]) {
int pos = phase_usage.phase_pos[Vapour];
pc[pos] = pcog_(s[pos]);
dpcds[np*pos + pos] = pcog_.derivative(s[pos]);
}
}
} // namespace Opm

View File

@ -19,10 +19,11 @@
#ifndef OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
#define OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/UniformTableLinear.hpp>
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
#include <opm/core/fluid/SatFuncStone2.hpp>
#include <vector>
struct UnstructuredGrid;
@ -44,6 +45,10 @@ namespace Opm
void init(const EclipseGridParser& deck,
const UnstructuredGrid& grid);
void init(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param);
/// \return P, the number of phases.
int numPhases() const;
@ -87,31 +92,11 @@ namespace Opm
double* smax) const;
private:
PhaseUsage phase_usage_;
class SatFuncSet
{
public:
void init(const EclipseGridParser& deck, const int table_num, PhaseUsage phase_usg);
void evalKr(const double* s, double* kr) const;
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
void evalPc(const double* s, double* pc) const;
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
double smin_[PhaseUsage::MaxNumPhases];
double smax_[PhaseUsage::MaxNumPhases];
private:
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
UniformTableLinear<double> krw_;
UniformTableLinear<double> krow_;
UniformTableLinear<double> pcow_;
UniformTableLinear<double> krg_;
UniformTableLinear<double> krog_;
UniformTableLinear<double> pcog_;
double krocw_; // = krow_(s_wc)
};
std::vector<SatFuncSet> satfuncset_;
PhaseUsage phase_usage_;
std::vector<SatFuncStone2> satfuncset_;
std::vector<int> cell_to_func_; // = SATNUM - 1
const SatFuncSet& funcForCell(const int cell) const;
const SatFuncStone2& funcForCell(const int cell) const;
};

View File

@ -18,7 +18,7 @@
*/
#include "config.h"
//#include "config.h"
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>

View File

@ -18,7 +18,7 @@
*/
#include "config.h"
//#include "config.h"
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
@ -47,7 +47,7 @@ int main(int argc, char** argv)
UnstructuredGrid grid;
grid.number_of_cells = 1;
grid.global_cell = NULL;
Opm::BlackoilPropertiesFromDeck props(deck, grid);
Opm::BlackoilPropertiesFromDeck props(deck, grid, param);
std::fstream inos(input_file.c_str());//, std::fstream::in);
if(!inos.good()){