First compiling version of fixed MDU method.
This commit is contained in:
parent
1080e37fb0
commit
57cb41217f
@ -71,7 +71,8 @@ namespace Opm
|
||||
// Sanity check for sources.
|
||||
const double cum_src = std::accumulate(source, source + grid_.number_of_cells, 0.0);
|
||||
if (std::fabs(cum_src) > *std::max_element(source, source + grid_.number_of_cells)*1e-2) {
|
||||
OPM_THROW(std::runtime_error, "Sources do not sum to zero: " << cum_src);
|
||||
// OPM_THROW(std::runtime_error, "Sources do not sum to zero: " << cum_src);
|
||||
OPM_MESSAGE("Warning: sources do not sum to zero: " << cum_src);
|
||||
}
|
||||
#endif
|
||||
tof.resize(grid_.number_of_cells);
|
||||
@ -307,7 +308,10 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
// Assumes that face_tof_[f] is known for all upstream faces f of upwind_cell.
|
||||
// Assumes that face_part_tof_[node_pos] is known for all inflow
|
||||
// faces to 'upwind_cell' sharing vertices with 'face'. The index
|
||||
// 'node_pos' is the same as the one used for the grid face-node
|
||||
// connectivity.
|
||||
// Assumes that darcyflux_[face] is != 0.0.
|
||||
// This function returns factors to compute the tof for 'face':
|
||||
// tof(face) = face_term + cell_term_factor*tof(upwind_cell).
|
||||
@ -318,6 +322,24 @@ namespace Opm
|
||||
double& face_term,
|
||||
double& cell_term_factor) const
|
||||
{
|
||||
// Combine locally computed (for each adjacent vertex) terms, with uniform weighting.
|
||||
const int* face_nodes_beg = grid_.face_nodes + grid_.face_nodepos[face];
|
||||
const int* face_nodes_end = grid_.face_nodes + grid_.face_nodepos[face + 1];
|
||||
const int num_terms = face_nodes_end - face_nodes_beg;
|
||||
assert(num_terms == 2 || grid_.dimensions != 2);
|
||||
face_term = 0.0;
|
||||
for (const int* fn_iter = face_nodes_beg; fn_iter < face_nodes_end; ++fn_iter) {
|
||||
double loc_face_term = 0.0;
|
||||
double loc_cell_term_factor = 0.0;
|
||||
localMultidimUpwindTerms(face, upwind_cell, fn_iter - grid_.face_nodepos,
|
||||
loc_face_term, loc_cell_term_factor);
|
||||
face_term += loc_face_term;
|
||||
cell_term_factor += loc_cell_term_factor;
|
||||
}
|
||||
face_term /= double(num_terms);
|
||||
cell_term_factor /= double(num_terms);
|
||||
|
||||
#if 0
|
||||
// Implements multidim upwind according to
|
||||
// "Multidimensional upstream weighting for multiphase transport on general grids"
|
||||
// by Keilegavlen, Kozdon, Mallison.
|
||||
@ -377,25 +399,98 @@ namespace Opm
|
||||
assert(influx_f > 0.0);
|
||||
const double omega_star = influx_f/flux_face;
|
||||
// SPU
|
||||
// const double omega = 0.0;
|
||||
const double omega = 0.0;
|
||||
// TMU
|
||||
// const double omega = omega_star > 0.0 ? std::min(omega_star, 1.0) : 0.0;
|
||||
// SMU
|
||||
const double omega = omega_star > 0.0 ? omega_star/(1.0 + omega_star) : 0.0;
|
||||
const int* f_nodes_beg = grid_.face_nodes + grid_.face_nodepos[f];
|
||||
const int* f_nodes_end = grid_.face_nodes + grid_.face_nodepos[f + 1];
|
||||
for (const int* f_iter = f_nodes_beg; f_iter < f_nodes_end; ++f_iter) {
|
||||
if (face_part_tof_[*f_iter] > 0.0) {
|
||||
face_term += omega * face_part_tof_[*f_iter];
|
||||
cell_term_factor += (1.0 - omega);
|
||||
++num_contrib;
|
||||
}
|
||||
}
|
||||
// const double omega = omega_star > 0.0 ? omega_star/(1.0 + omega_star) : 0.0;
|
||||
face_term += omega * face_tof_[f];
|
||||
cell_term_factor += (1.0 - omega);
|
||||
// const int* f_nodes_beg = grid_.face_nodes + grid_.face_nodepos[f];
|
||||
// const int* f_nodes_end = grid_.face_nodes + grid_.face_nodepos[f + 1];
|
||||
// for (const int* f_iter = f_nodes_beg; f_iter < f_nodes_end; ++f_iter) {
|
||||
// if (face_part_tof_[*f_iter] > 0.0) {
|
||||
// face_term += omega * face_part_tof_[*f_iter];
|
||||
// cell_term_factor += (1.0 - omega);
|
||||
// ++num_contrib;
|
||||
// }
|
||||
// }
|
||||
}
|
||||
face_term /= double(num_adj);
|
||||
cell_term_factor /= double(num_adj);
|
||||
// face_term /= double(num_contrib);
|
||||
// cell_term_factor /= double(num_contrib);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
namespace {
|
||||
double weightFunc(const double w)
|
||||
{
|
||||
// SPU
|
||||
return 0.0;
|
||||
// TMU
|
||||
// return w > 0.0 ? std::min(w, 1.0) : 0.0;
|
||||
// SMU
|
||||
// return w > 0.0 ? w/(1.0 + w) : 0.0;
|
||||
}
|
||||
face_term /= double(num_contrib);
|
||||
cell_term_factor /= double(num_contrib);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void TofReorder::localMultidimUpwindTerms(const int face,
|
||||
const int upwind_cell,
|
||||
const int node_pos,
|
||||
double& face_term,
|
||||
double& cell_term_factor) const
|
||||
{
|
||||
// Loop over all faces adjacent to the given cell and the
|
||||
// vertex in position node_pos.
|
||||
// If that part's influx is positive, we store it, and also its associated
|
||||
// node position.
|
||||
std::vector<double> influx;
|
||||
std::vector<int> node_pos_influx;
|
||||
influx.reserve(5);
|
||||
node_pos_influx.reserve(5);
|
||||
const int node = grid_.face_nodes[node_pos];
|
||||
for (int hf = grid_.cell_facepos[upwind_cell]; hf < grid_.cell_facepos[upwind_cell + 1]; ++hf) {
|
||||
const int f = grid_.cell_faces[hf];
|
||||
if (f != face) {
|
||||
// Find out if the face 'f' is adjacent to vertex 'node'.
|
||||
const int* f_nodes_beg = grid_.face_nodes + grid_.face_nodepos[f];
|
||||
const int* f_nodes_end = grid_.face_nodes + grid_.face_nodepos[f + 1];
|
||||
const int* pos = std::find(f_nodes_beg, f_nodes_end, node);
|
||||
const int node_pos2 = pos - grid_.face_nodes;
|
||||
const bool is_adj = (pos != f_nodes_end);
|
||||
if (is_adj) {
|
||||
const int num_parts = f_nodes_end - f_nodes_beg;
|
||||
const double influx_sign = (grid_.face_cells[2*f] == upwind_cell) ? -1.0 : 1.0;
|
||||
const double part_influx = influx_sign * darcyflux_[f] / double(num_parts);
|
||||
if (part_influx > 0.0) {
|
||||
influx.push_back(part_influx);
|
||||
node_pos_influx.push_back(node_pos2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Now we may compute the weighting of the upwind terms.
|
||||
const int num_parts = grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
|
||||
const double outflux_sign = (grid_.face_cells[2*face] == upwind_cell) ? 1.0 : -1.0;
|
||||
const double part_outflux = outflux_sign * darcyflux_[face] / double(num_parts);
|
||||
const double sum_influx = std::accumulate(influx.begin(), influx.end(), 0.0);
|
||||
const double w_factor = weightFunc(sum_influx / part_outflux);
|
||||
const int num_influx = influx.size();
|
||||
std::vector<double> w(num_influx);
|
||||
face_term = 0.0;
|
||||
for (int ii = 0; ii < num_influx; ++ii) {
|
||||
w[ii] = (influx[ii] / sum_influx) * w_factor;
|
||||
face_term += w[ii] * face_part_tof_[node_pos_influx[ii]];
|
||||
}
|
||||
const double sum_w = std::accumulate(w.begin(), w.end(), 0.0);
|
||||
cell_term_factor = 1.0 - sum_w;
|
||||
assert(cell_term_factor >= 0.0);
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -90,6 +90,8 @@ namespace Opm
|
||||
|
||||
void multidimUpwindTerms(const int face, const int upwind_cell,
|
||||
double& face_term, double& cell_term_factor) const;
|
||||
void localMultidimUpwindTerms(const int face, const int upwind_cell, const int node_pos,
|
||||
double& face_term, double& cell_term_factor) const;
|
||||
|
||||
private:
|
||||
const UnstructuredGrid& grid_;
|
||||
|
Loading…
Reference in New Issue
Block a user