Initial attempt at C++ interface for compressible TPFA solver.

This commit is contained in:
Atgeirr Flø Rasmussen 2010-11-18 16:02:48 +01:00
parent 80597ffda4
commit 6ee73daad8

View File

@ -0,0 +1,301 @@
/*
Copyright 2010 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TPFACOMPRESSIBLEPRESSURESOLVER_HEADER_INCLUDED
#define OPM_TPFACOMPRESSIBLEPRESSURESOLVER_HEADER_INCLUDED
#include "cfs_tpfa.h"
#include "trans_tpfa.h"
#include "sparse_sys.h"
#include "flow_bc.h"
#include "compr_quant.h"
#include "GridAdapter.hpp"
#include <stdexcept>
/// @brief
/// Encapsulates the cfs_tpfa (= compressible flow solver
/// two-point flux approximation) solver modules.
class TPFACompressiblePressureSolver
{
public:
/// @brief
/// Default constructor, does nothing.
TPFACompressiblePressureSolver()
: state_(Uninitialized), data_(0)
{
}
/// @brief
/// Destructor.
~TPFACompressiblePressureSolver()
{
cfs_tpfa_destroy(data_);
}
/// @brief
/// Initialize the solver's structures for a given grid (at some point also well pattern).
/// @tparam Grid This must conform to the SimpleGrid concept.
/// @param grid The grid object.
/// @param perm Permeability. It should contain dim*dim entries (a full tensor) for each cell.
/// @param gravity Array containing gravity acceleration vector. It should contain dim entries.
template <class Grid>
void init(const Grid& grid, const double* perm, const double* porosity)
{
// Build C grid structure.
grid_.init(grid);
// Build (empty for now) C well structure.
// well_t* w = 0;
// Initialize data.
int num_phases = 3;
data_ = cfs_tpfa_construct(grid_.c_grid(), num_phases);
if (!data_) {
throw std::runtime_error("Failed to initialize cfs_tpfa solver.");
}
// Compute half-transmissibilities
int num_cells = grid.numCells();
int ngconn = grid_.c_grid()->cell_facepos[num_cells];
ncf_.resize(num_cells);
int count = 0;
for (int cell = 0; cell < num_cells; ++cell) {
int num_local_faces = grid.numCellFaces(cell);
ncf_[cell] = num_local_faces;
}
assert(count == ngconn);
htrans_.resize(ngconn);
tpfa_htrans_compute(grid_.c_grid(), perm, &htrans_[0]);
// Compute transmissibilities.
trans_.resize(grid_.numFaces());
tpfa_trans_compute(grid_.c_grid(), &htrans_[0], &trans_[0]);
// Compute pore volumes.
porevol_.resize(num_cells);
for (int i = 0; i < num_cells; ++i) {
porevol_[i] = porosity[i]*grid.cellVolume(i);
}
state_ = Initialized;
}
enum FlowBCTypes { FBC_UNSET, FBC_PRESSURE, FBC_FLUX };
/// @brief
/// Assemble the sparse system.
/// You must call init() prior to calling assemble().
/// @param sources Source terms, one per cell. Positive numbers
/// are sources, negative are sinks.
/// @param total_mobilities Scalar total mobilities, one per cell.
/// @param omegas Gravity term, one per cell. In a multi-phase
/// flow setting this is equal to
/// \f[ \omega = \sum_{p} \frac{\lambda_p}{\lambda_t} \rho_p \f]
/// where \f$\lambda_p\f$ is a phase mobility, \f$\rho_p\f$ is a
/// phase density and \f$\lambda_t\f$ is the total mobility.
void assemble(const std::vector<double>& sources,
const std::vector<FlowBCTypes>& bctypes,
const std::vector<double>& bcvalues,
const double dt,
const std::vector<double>& totcompr,
const std::vector<double>& voldiscr,
const std::vector<double>& cellA, // num phases^2 * num cells, fortran ordering!
const std::vector<double>& faceA, // num phases^2 * num faces, fortran ordering!
const std::vector<double>& phasemobf,
const std::vector<double>& cell_pressure)
{
if (state_ == Uninitialized) {
throw std::runtime_error("Error in TPFACompressiblePressureSolver::assemble(): You must call init() prior to calling assemble().");
}
grid_t* g = grid_.c_grid();
// Boundary conditions.
int num_faces = g->number_of_faces;
assert(num_faces == int(bctypes.size()));
bctypes_.clear();
bctypes_.resize(num_faces, UNSET);
for (int face = 0; face < num_faces; ++face) {
if (bctypes[face] != FBC_FLUX || bcvalues[face] != 0.0) {
throw std::logic_error("TPFACompressiblePressureSolver currently only supports noflow bcs.");
}
if (bctypes[face] == FBC_PRESSURE) {
bctypes_[face] = PRESSURE;
} else if (bctypes[face] == FBC_FLUX) {
bctypes_[face] = FLUX;
}
}
bcvalues_ = bcvalues;
flowbc_t bc = { &bctypes_[0], const_cast<double*>(&bcvalues_[0]) };
// Source terms from user.
double* src = const_cast<double*>(&sources[0]); // Ugly? Yes. Safe? I think so.
// All well related things are zero.
// well_control_t* wctrl = 0;
// double* WI = 0;
// double* wdp = 0;
// Assemble the embedded linear system.
compr_quantities cq = { 3, &totcompr[0], &voldiscr[0], &cellA[0], &faceA[0], &phasemobf[0] };
std::vector<double> gravcap_f(3*num_faces, 0.0);
cfs_tpfa_assemble(g, dt, &bc, src,
&cq, &trans_[0], &gravcap_f[0], &cell_pressure[0], &porevol_[0],
data_);
phasemobf_ = phasemobf;
state_ = Assembled;
}
/// Encapsulate a sparse linear system in CSR format.
struct LinearSystem
{
int n;
int nnz;
int* ia;
int* ja;
double* sa;
double* b;
double* x;
};
/// @brief
/// Access the linear system assembled.
/// You must call assemble() prior to calling linearSystem().
/// @param[out] s The linear system encapsulation to modify.
/// After this call, s will point to linear system structures
/// that are owned and allocated internally.
void linearSystem(LinearSystem& s)
{
if (state_ != Assembled) {
throw std::runtime_error("Error in TPFACompressiblePressureSolver::linearSystem(): "
"You must call assemble() prior to calling linearSystem().");
}
s.n = data_->A->n;
s.nnz = data_->A->nnz;
s.ia = data_->A->ia;
s.ja = data_->A->ja;
s.sa = data_->A->sa;
s.b = data_->b;
s.x = data_->x;
}
/// @brief
/// Compute cell pressures and face fluxes.
/// You must call assemble() (and solve the linear system accessed
/// by calling linearSystem()) prior to calling
/// computePressuresAndFluxes().
/// @param[out] cell_pressures Cell pressure values.
/// @param[out] face_areas Face flux values.
void computePressuresAndFluxes(std::vector<double>& cell_pressures,
std::vector<double>& face_fluxes)
{
if (state_ != Assembled) {
throw std::runtime_error("Error in TPFACompressiblePressureSolver::computePressuresAndFluxes(): "
"You must call assemble() (and solve the linear system) "
"prior to calling computePressuresAndFluxes().");
}
int num_cells = grid_.c_grid()->number_of_cells;
int num_faces = grid_.c_grid()->number_of_faces;
cell_pressures.clear();
cell_pressures.resize(num_cells, 0.0);
face_fluxes.clear();
face_fluxes.resize(num_faces, 0.0);
// ifs_tpfa_press_flux(grid_.c_grid(), &eff_trans_[0],
// data_, &cell_pressures[0], &face_fluxes[0]);
flowbc_t bc = { &bctypes_[0], const_cast<double*>(&bcvalues_[0]) };
int np = 3; // Number of phases.
cfs_tpfa_press_flux(grid_.c_grid(),
&bc, np, &trans_[0], &htrans_[0], &phasemobf_[0],
data_, &cell_pressures[0], &face_fluxes[0]);
}
/// @brief
/// Compute cell fluxes from face fluxes.
/// You must call assemble() (and solve the linear system accessed
/// by calling linearSystem()) prior to calling
/// faceFluxToCellFlux().
/// @param face_fluxes
/// @param face_areas Face flux values (usually output from computePressuresAndFluxes()).
/// @param[out] cell_fluxes Cell-wise flux values.
/// They are given in cell order, and for each cell there is
/// one value for each adjacent face (in the same order as the
/// cell-face topology of the grid). Positive values represent
/// fluxes out of the cell.
void faceFluxToCellFlux(const std::vector<double>& face_fluxes,
std::vector<double>& cell_fluxes)
{
if (state_ != Assembled) {
throw std::runtime_error("Error in TPFACompressiblePressureSolver::faceFluxToCellFlux(): "
"You must call assemble() (and solve the linear system) "
"prior to calling faceFluxToCellFlux().");
}
const grid_t& g = *(grid_.c_grid());
int num_cells = g.number_of_cells;
cell_fluxes.resize(g.cell_facepos[num_cells]);
for (int cell = 0; cell < num_cells; ++cell) {
for (int hface = g.cell_facepos[cell]; hface < g.cell_facepos[cell + 1]; ++hface) {
int face = g.cell_faces[hface];
bool pos = (g.face_cells[2*face] == cell);
cell_fluxes[hface] = pos ? face_fluxes[face] : -face_fluxes[face];
}
}
}
/// @brief
/// Access the number of connections (faces) per cell. Deprecated, will be removed.
const std::vector<int>& numCellFaces()
{
return ncf_;
}
private:
// Disabling copy and assigment for now.
TPFACompressiblePressureSolver(const TPFACompressiblePressureSolver&);
TPFACompressiblePressureSolver& operator=(const TPFACompressiblePressureSolver&);
enum State { Uninitialized, Initialized, Assembled };
State state_;
// Solver data.
cfs_tpfa_data* data_;
// Grid.
GridAdapter grid_;
// Number of faces per cell.
std::vector<int> ncf_;
// Transmissibility storage.
std::vector<double> htrans_;
std::vector<double> trans_;
// Pore volumes.
std::vector<double> porevol_;
// Phase mobilities per face.
std::vector<double> phasemobf_;
// Boundary conditions.
std::vector<flowbc_type> bctypes_;
std::vector<double> bcvalues_;
};
#endif // OPM_TPFACOMPRESSIBLEPRESSURESOLVER_HEADER_INCLUDED