Merge remote-tracking branch 'totto82/newfluid2' into combined

This commit is contained in:
Atgeirr Flø Rasmussen 2013-05-27 15:45:18 +02:00
commit 7bad081eb4
16 changed files with 728 additions and 39 deletions

View File

@ -147,6 +147,7 @@ list (APPEND TEST_SOURCE_FILES
tests/test_column_extract.cpp
tests/test_geom2d.cpp
tests/test_param.cpp
tests/not-unit/test_newfluidinterface.cpp
)
# originally generated with the command:

View File

@ -31,8 +31,10 @@ namespace Opm
{
/// Class for constant compressible phases (PVTW or PVCDO).
/// For all the virtual methods, the following apply: p and z
/// are expected to be of size n and n*num_phases, respectively.
/// The PVT properties can either be given as a function of pressure (p) and surface volume (z)
/// or pressure (p) and gas resolution factor (r).
/// For all the virtual methods, the following apply: p, r and z
/// are expected to be of size n, size n and n*num_phases, respectively.
/// Output arrays shall be of size n, and must be valid before
/// calling the method.
class SinglePvtConstCompr : public SinglePvtInterface
@ -83,6 +85,29 @@ namespace Opm
}
}
virtual void mu(const int n,
const double* p,
const double* /*r*/,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
if (visc_comp_) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
// Computing a polynomial approximation to the exponential.
double x = -visc_comp_*(p[i] - ref_press_);
double d = (1.0 + x + 0.5*x*x);
output_mu[i] = viscosity_/d;
output_dmudp[i] = (viscosity_/(d*d))*(1+x) * visc_comp_;
}
} else {
std::fill(output_mu, output_mu + n, viscosity_);
std::fill(output_dmudp, output_dmudp + n, 0.0);
}
std::fill(output_dmudr, output_dmudr + n, 0.0);
}
virtual void B(const int n,
const double* p,
const double* /*z*/,
@ -120,6 +145,43 @@ namespace Opm
}
}
virtual void b(const int n,
const double* p,
const double* /*r*/,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
if (comp_) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
// Computing a polynomial approximation to the exponential.
double x = comp_*(p[i] - ref_press_);
double d = (1.0 + x + 0.5*x*x);
// b = 1/B = d/ref_B_B;
output_b[i] = d/ref_B_;
output_dbdp[i] = (1 + x) * comp_/ref_B_;
}
} else {
std::fill(output_b, output_b + n, 1/ref_B_);
std::fill(output_dbdp, output_dbdp + n, 0.0);
}
std::fill(output_dbdr, output_dbdr + n, 0.0);
}
virtual void rbub(const int n,
const double* /*p*/,
double* output_rbub,
double* output_drbubdp) const
{
std::fill(output_rbub, output_rbub + n, 0.0);
std::fill(output_drbubdp, output_drbubdp + n, 0.0);
}
virtual void R(const int n,
const double* /*p*/,
const double* /*z*/,

View File

@ -44,14 +44,14 @@ namespace Opm
// Copy data
const int sz = pvd_table[region_number][0].size();
std::vector<double> press(sz);
std::vector<double> B_inv(sz);
std::vector<double> b(sz);
std::vector<double> visc(sz);
for (int i = 0; i < sz; ++i) {
press[i] = pvd_table[region_number][0][i];
B_inv[i] = 1.0 / pvd_table[region_number][1][i];
b[i] = 1.0 / pvd_table[region_number][1][i];
visc[i] = pvd_table[region_number][2][i];
}
one_over_B_ = NonuniformTableLinear<double>(press, B_inv);
b_ = NonuniformTableLinear<double>(press, b);
viscosity_ = NonuniformTableLinear<double>(press, visc);
// Dumping the created tables.
@ -80,14 +80,31 @@ namespace Opm
}
}
void SinglePvtDead::mu(const int n,
const double* p,
const double* /*r*/,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_mu[i] = viscosity_(p[i]);
output_dmudp[i] = viscosity_.derivative(p[i]);
}
std::fill(output_dmudr, output_dmudr + n, 0.0);
}
void SinglePvtDead::B(const int n,
const double* p,
const double* /*z*/,
double* output_B) const
{
// #pragma omp parallel for
// B = 1/b
for (int i = 0; i < n; ++i) {
output_B[i] = 1.0/one_over_B_(p[i]);
output_B[i] = 1.0/b_(p[i]);
}
}
@ -101,10 +118,36 @@ namespace Opm
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
double Bg = output_B[i];
output_dBdp[i] = -Bg*Bg*one_over_B_.derivative(p[i]);
output_dBdp[i] = -Bg*Bg*b_.derivative(p[i]);
}
}
void SinglePvtDead::b(const int n,
const double* p,
const double* /*r*/,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_b[i] = b_(p[i]);
output_dbdp[i] = b_.derivative(p[i]);
}
std::fill(output_dbdr, output_dbdr + n, 0.0);
}
void SinglePvtDead::rbub(const int n,
const double* /*p*/,
double* output_rbub,
double* output_drbubdp) const
{
std::fill(output_rbub, output_rbub + n, 0.0);
std::fill(output_drbubdp, output_drbubdp + n, 0.0);
}
void SinglePvtDead::R(const int n,
const double* /*p*/,

View File

@ -29,8 +29,10 @@ namespace Opm
{
/// Class for immiscible dead oil and dry gas.
/// For all the virtual methods, the following apply: p and z
/// are expected to be of size n and n*num_phases, respectively.
/// The PVT properties can either be given as a function of pressure (p) and surface volume (z)
/// or pressure (p) and gas resolution factor (r).
/// For all the virtual methods, the following apply: p, r and z
/// are expected to be of size n, size n and n*num_phases, respectively.
/// Output arrays shall be of size n, and must be valid before
/// calling the method.
class SinglePvtDead : public SinglePvtInterface
@ -46,6 +48,14 @@ namespace Opm
const double* z,
double* output_mu) const;
/// Viscosity and its derivatives as a function of p and r.
virtual void mu(const int n,
const double* p,
const double* r,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const;
/// Formation volume factor as a function of p and z.
virtual void B(const int n,
const double* p,
@ -59,6 +69,22 @@ namespace Opm
double* output_B,
double* output_dBdp) const;
/// The inverse of the formation volume factor b = 1 / B, and its derivatives as a function of p and r.
virtual void b(const int n,
const double* p,
const double* r,
double* output_b,
double* output_dbdp,
double* output_dbdr) const;
/// Gas resolution and its derivatives at bublepoint as a function of p.
virtual void rbub(const int n,
const double* p,
double* output_rbub,
double* output_drbubdp) const;
/// Solution factor as a function of p and z.
virtual void R(const int n,
const double* p,
@ -73,7 +99,7 @@ namespace Opm
double* output_dRdp) const;
private:
// PVT properties of dry gas or dead oil
NonuniformTableLinear<double> one_over_B_;
NonuniformTableLinear<double> b_;
NonuniformTableLinear<double> viscosity_;
};

View File

@ -52,7 +52,7 @@ namespace Opm
B_inv[i] = 1.0 / pvd_table[region_number][1][i];
visc[i] = pvd_table[region_number][2][i];
}
buildUniformMonotoneTable(press, B_inv, samples, one_over_B_);
buildUniformMonotoneTable(press, B_inv, samples, b_);
buildUniformMonotoneTable(press, visc, samples, viscosity_);
// Dumping the created tables.
@ -81,6 +81,23 @@ namespace Opm
}
}
void SinglePvtDeadSpline::mu(const int n,
const double* p,
const double* /*r*/,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_mu[i] = viscosity_(p[i]);
output_dmudp[i] = viscosity_.derivative(p[i]);
}
std::fill(output_dmudr, output_dmudr + n, 0.0);
}
void SinglePvtDeadSpline::B(const int n,
const double* p,
const double* /*z*/,
@ -88,7 +105,7 @@ namespace Opm
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_B[i] = 1.0/one_over_B_(p[i]);
output_B[i] = 1.0/b_(p[i]);
}
}
@ -102,10 +119,36 @@ namespace Opm
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
double Bg = output_B[i];
output_dBdp[i] = -Bg*Bg*one_over_B_.derivative(p[i]);
output_dBdp[i] = -Bg*Bg*b_.derivative(p[i]);
}
}
void SinglePvtDeadSpline::b(const int n,
const double* p,
const double* /*r*/,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_b[i] = b_(p[i]);
output_dbdp[i] = b_.derivative(p[i]);
}
std::fill(output_dbdr, output_dbdr + n, 0.0);
}
void SinglePvtDeadSpline::rbub(const int n,
const double* /*p*/,
double* output_rbub,
double* output_drbubdp) const
{
std::fill(output_rbub, output_rbub + n, 0.0);
std::fill(output_drbubdp, output_drbubdp + n, 0.0);
}
void SinglePvtDeadSpline::R(const int n,
const double* /*p*/,

View File

@ -29,8 +29,10 @@ namespace Opm
{
/// Class for immiscible dead oil and dry gas.
/// For all the virtual methods, the following apply: p and z
/// are expected to be of size n and n*num_phases, respectively.
/// The PVT properties can either be given as a function of pressure (p) and surface volume (z)
/// or pressure (p) and gas resolution factor (r).
/// For all the virtual methods, the following apply: p, r and z
/// are expected to be of size n, size n and n*num_phases, respectively.
/// Output arrays shall be of size n, and must be valid before
/// calling the method.
class SinglePvtDeadSpline : public SinglePvtInterface
@ -47,6 +49,14 @@ namespace Opm
const double* z,
double* output_mu) const;
/// Viscosity and its derivatives as a function of p and r.
virtual void mu(const int n,
const double* p,
const double* r,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const;
/// Formation volume factor as a function of p and z.
virtual void B(const int n,
const double* p,
@ -60,6 +70,20 @@ namespace Opm
double* output_B,
double* output_dBdp) const;
/// The inverse of the formation volume factor b = 1 / B, and its derivatives as a function of p and r.
virtual void b(const int n,
const double* p,
const double* r,
double* output_b,
double* output_dbdp,
double* output_dbdr) const;
/// Gas resolution and its derivatives at bublepoint as a function of p.
virtual void rbub(const int n,
const double* p,
double* output_rbub,
double* output_drbubdp) const;
/// Solution factor as a function of p and z.
virtual void R(const int n,
const double* p,
@ -74,7 +98,7 @@ namespace Opm
double* output_dRdp) const;
private:
// PVT properties of dry gas or dead oil
UniformTableLinear<double> one_over_B_;
UniformTableLinear<double> b_;
UniformTableLinear<double> viscosity_;
};

View File

@ -42,8 +42,10 @@ namespace Opm
/// arbitrary two-phase and three-phase situations.
void setPhaseConfiguration(const int num_phases, const int* phase_pos);
/// For all the virtual methods, the following apply: p and z
/// are expected to be of size n and n*num_phases, respectively.
/// The PVT properties can either be given as a function of pressure (p) and surface volume (z)
/// or pressure (p) and gas resolution factor (r).
/// For all the virtual methods, the following apply: p, r and z
/// are expected to be of size n, size n and n*num_phases, respectively.
/// Output arrays shall be of size n, and must be valid before
/// calling the method.
@ -53,6 +55,14 @@ namespace Opm
const double* z,
double* output_mu) const = 0;
/// Viscosity as a function of p and r.
virtual void mu(const int n,
const double* p,
const double* r,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const = 0;
/// Formation volume factor as a function of p and z.
virtual void B(const int n,
const double* p,
@ -66,6 +76,21 @@ namespace Opm
double* output_B,
double* output_dBdp) const = 0;
/// The inverse of the volume factor b = 1 / B as a function of p and r.
virtual void b(const int n,
const double* p,
const double* r,
double* output_b,
double* output_dbdp,
double* output_dpdr) const = 0;
/// Gas resolution at bublepoint as a function of pressure
virtual void rbub(const int n,
const double* p,
double* output_rbub,
double* output_drbubdp) const = 0;
/// Solution factor as a function of p and z.
virtual void R(const int n,
const double* p,
@ -78,6 +103,8 @@ namespace Opm
const double* z,
double* output_R,
double* output_dRdp) const = 0;
protected:
int num_phases_;
int phase_pos_[MaxNumPhases];

View File

@ -98,6 +98,17 @@ namespace Opm
}
}
/// Viscosity and its derivatives as a function of p and r.
void SinglePvtLiveGas::mu(const int n,
const double* p,
const double* r,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
THROW("The new fluid interface not yet implemented");
}
/// Formation volume factor as a function of p and z.
void SinglePvtLiveGas::B(const int n,
@ -126,6 +137,26 @@ namespace Opm
}
}
/// The inverse of the formation volume factor b = 1 / B, and its derivatives as a function of p and r.
void SinglePvtLiveGas::b(const int n,
const double* p,
const double* r,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
THROW("The new fluid interface not yet implemented");
}
/// Gas resolution and its derivatives at bublepoint as a function of p.
void SinglePvtLiveGas::rbub(const int n,
const double* p,
double* output_rbub,
double* output_drbubdp) const
{
THROW("The new fluid interface not yet implemented");
}
/// Solution factor as a function of p and z.
void SinglePvtLiveGas::R(const int n,

View File

@ -26,8 +26,10 @@
namespace Opm
{
/// Class for miscible wet gas (with vaporized oil in vapour phase).
/// For all the virtual methods, the following apply: p and z
/// are expected to be of size n and n*num_phases, respectively.
/// The PVT properties can either be given as a function of pressure (p) and surface volume (z)
/// or pressure (p) and gas resolution factor (r).
/// For all the virtual methods, the following apply: p, r and z
/// are expected to be of size n, size n and n*num_phases, respectively.
/// Output arrays shall be of size n, and must be valid before
/// calling the method.
class SinglePvtLiveGas : public SinglePvtInterface
@ -44,6 +46,14 @@ namespace Opm
const double* z,
double* output_mu) const;
/// Viscosity and its derivatives as a function of p and r.
virtual void mu(const int n,
const double* p,
const double* r,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const;
/// Formation volume factor as a function of p and z.
virtual void B(const int n,
const double* p,
@ -57,6 +67,22 @@ namespace Opm
double* output_B,
double* output_dBdp) const;
/// The inverse of the formation volume factor b = 1 / B, and its derivatives as a function of p and r.
virtual void b(const int n,
const double* p,
const double* r,
double* output_b,
double* output_dbdp,
double* output_dbdr) const;
/// Gas resolution and its derivatives at bublepoint as a function of p.
virtual void rbub(const int n,
const double* p,
double* output_rbub,
double* output_drbubdp) const;
/// Solution factor as a function of p and z.
virtual void R(const int n,
const double* p,

View File

@ -175,6 +175,23 @@ namespace Opm
}
}
/// Viscosity and its derivatives as a function of p and r.
void SinglePvtLiveOil::mu(const int n,
const double* p,
const double* r,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_mu[i] = miscible_oil(p[i], r[i], 2, 0);
output_dmudp[i] = miscible_oil(p[i], r[i], 2, 1);
output_dmudr[i] = miscible_oil(p[i], r[i], 2, 2);
}
}
/// Formation volume factor as a function of p and z.
void SinglePvtLiveOil::B(const int n,
@ -203,6 +220,37 @@ namespace Opm
}
}
void SinglePvtLiveOil::b(const int n,
const double* p,
const double* r,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_b[i] = miscible_oil(p[i], r[i], 1, 0);
output_dbdp[i] = miscible_oil(p[i], r[i], 1, 1);
output_dbdr[i] = miscible_oil(p[i], r[i], 1, 2);
}
}
void SinglePvtLiveOil::rbub(const int n,
const double* p,
double* output_rbub,
double* output_drbubdp) const
{
for (int i = 0; i < n; ++i) {
output_rbub[i] = linearInterpolation(saturated_oil_table_[0],
saturated_oil_table_[3],p[i]);
output_drbubdp[i] = linearInterpolationDerivative(saturated_oil_table_[0],
saturated_oil_table_[3],p[i]);
}
}
/// Solution factor as a function of p and z.
void SinglePvtLiveOil::R(const int n,
@ -347,4 +395,84 @@ namespace Opm
}
}
double SinglePvtLiveOil::miscible_oil(const double press,
const double r,
const int item,
const int deriv) const
{
int section;
double Rval = linearInterpolation(saturated_oil_table_[0],
saturated_oil_table_[3],
press, section);
// derivative with respect to frist component (pressure)
if (deriv == 1) {
if (Rval < r ) { // Saturated case
return linearInterpolationDerivative(saturated_oil_table_[0],
saturated_oil_table_[item],
press);
} else { // Undersaturated case
int is = tableIndex(saturated_oil_table_[3], r);
double w = (r - saturated_oil_table_[3][is]) /
(saturated_oil_table_[3][is+1] - saturated_oil_table_[3][is]);
ASSERT(undersat_oil_tables_[is][0].size() >= 2);
ASSERT(undersat_oil_tables_[is+1][0].size() >= 2);
double val1 =
linearInterpolationDerivative(undersat_oil_tables_[is][0],
undersat_oil_tables_[is][item],
press);
double val2 =
linearInterpolationDerivative(undersat_oil_tables_[is+1][0],
undersat_oil_tables_[is+1][item],
press);
double val = val1 + w*(val2 - val1);
return val;
}
// derivative with respect to second component (r)
} else if (deriv == 2) {
if (Rval < r ) { // Saturated case
return 0;
} else { // Undersaturated case
int is = tableIndex(saturated_oil_table_[3], r);
ASSERT(undersat_oil_tables_[is][0].size() >= 2);
ASSERT(undersat_oil_tables_[is+1][0].size() >= 2);
double val1 =
linearInterpolation(undersat_oil_tables_[is][0],
undersat_oil_tables_[is][item],
press);
double val2 =
linearInterpolation(undersat_oil_tables_[is+1][0],
undersat_oil_tables_[is+1][item],
press);
double val = (val2 - val1)/(saturated_oil_table_[3][is+1]-saturated_oil_table_[3][is]);
return val;
}
} else {
if (Rval < r ) { // Saturated case
return linearInterpolation(saturated_oil_table_[0],
saturated_oil_table_[item],
press);
} else { // Undersaturated case
// Interpolate between table sections
int is = tableIndex(saturated_oil_table_[3], r);
double w = (r - saturated_oil_table_[3][is]) /
(saturated_oil_table_[3][is+1] - saturated_oil_table_[3][is]);
ASSERT(undersat_oil_tables_[is][0].size() >= 2);
ASSERT(undersat_oil_tables_[is+1][0].size() >= 2);
double val1 =
linearInterpolation(undersat_oil_tables_[is][0],
undersat_oil_tables_[is][item],
press);
double val2 =
linearInterpolation(undersat_oil_tables_[is+1][0],
undersat_oil_tables_[is+1][item],
press);
double val = val1 + w*(val2 - val1);
return val;
}
}
}
} // namespace Opm

View File

@ -27,8 +27,10 @@
namespace Opm
{
/// Class for miscible live oil (with dissolved gas in liquid phase).
/// For all the virtual methods, the following apply: p and z
/// are expected to be of size n and n*num_phases, respectively.
/// The PVT properties can either be given as a function of pressure (p) and surface volume (z)
/// or pressure (p) and gas resolution factor (r).
/// For all the virtual methods, the following apply: p, r and z
/// are expected to be of size n, size n and n*num_phases, respectively.
/// Output arrays shall be of size n, and must be valid before
/// calling the method.
class SinglePvtLiveOil : public SinglePvtInterface
@ -45,6 +47,14 @@ namespace Opm
const double* z,
double* output_mu) const;
/// Viscosity and its derivatives as a function of p and r.
virtual void mu(const int n,
const double* p,
const double* r,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const;
/// Formation volume factor as a function of p and z.
virtual void B(const int n,
const double* p,
@ -58,6 +68,20 @@ namespace Opm
double* output_B,
double* output_dBdp) const;
/// The inverse of the formation volume factor b = 1 / B, and its derivatives as a function of p and r.
virtual void b(const int n,
const double* p,
const double* r,
double* output_b,
double* output_dbdp,
double* output_dbdr) const;
/// Gas resolution and its derivatives at bublepoint as a function of p.
virtual void rbub(const int n,
const double* p,
double* output_rbub,
double* output_drbubdp) const;
/// Solution factor as a function of p and z.
virtual void R(const int n,
const double* p,
@ -83,6 +107,11 @@ namespace Opm
const int item,
const bool deriv = false) const;
double miscible_oil(const double press,
const double r,
const int item,
const int deriv = 0) const;
// PVT properties of live oil (with dissolved gas)
std::vector<std::vector<double> > saturated_oil_table_;
std::vector<std::vector<std::vector<double> > > undersat_oil_tables_;

View File

@ -0,0 +1,255 @@
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/props/pvt/SinglePvtConstCompr.hpp>
#include <opm/core/props/pvt/SinglePvtDead.hpp>
#include <opm/core/props/pvt/SinglePvtDeadSpline.hpp>
#include <opm/core/props/pvt/SinglePvtLiveOil.hpp>
#include <opm/core/props/pvt/SinglePvtLiveGas.hpp>
#include <opm/core/props/phaseUsageFromDeck.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <iostream>
#include <iterator>
#include <vector>
#include <string>
using namespace Opm;
using namespace std;
// The function object divides a Factor with an element
template <class Type>
class MultValue
{
private:
Type Factor; // The value to multiply by
public:
// Constructor initializes the value to multiply by
MultValue ( const Type& _Val ) : Factor ( _Val ) {
}
// The function call for the element to be multiplied
int operator ( ) ( Type& elem ) const
{
return Factor / elem;
}
};
int main () {
// read parameters from command-line
const string filename = "../../opm-core/tests/not-unit/blackoil/SPE9small.DATA";
cout << "Reading deck: " << filename << endl;
const EclipseGridParser deck (filename);
std::string mu_output = "mu_output";
std::string b_output = "b_output";
std::string rbub_output = "rbub_output";
PhaseUsage phase_usage_;
std::vector<std::tr1::shared_ptr<SinglePvtInterface> > props_;
phase_usage_ = phaseUsageFromDeck(deck);
enum PhaseIndex { Aqua = 0, Liquid = 1, Vapour = 2 };
int samples = 0;
std::fstream muos(mu_output.c_str(), std::fstream::out | std::fstream::trunc);
if(!(muos.good())){
std::cout << "Could not open"<< mu_output << std::endl;
exit(3);
}
std::fstream bos(b_output.c_str(), std::fstream::out | std::fstream::trunc);
bos << setiosflags(ios::scientific) << setprecision(12);
if(!(bos.good())){
std::cout << "Could not open"<< b_output << std::endl;
exit(3);
}
std::fstream rbubos(rbub_output.c_str(), std::fstream::out | std::fstream::trunc);
rbubos << setiosflags(ios::scientific) << setprecision(12);
if(!(rbubos.good())){
std::cout << "Could not open"<< rbub_output << std::endl;
exit(3);
}
// Set the properties.
props_.resize(phase_usage_.num_phases);
// Water PVT
if (phase_usage_.phase_used[Aqua]) {
if (deck.hasField("PVTW")) {
props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(deck.getPVTW().pvtw_));
} else {
// Eclipse 100 default.
props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(0.5*Opm::prefix::centi*Opm::unit::Poise));
}
}
// Oil PVT
if (phase_usage_.phase_used[Liquid]) {
if (deck.hasField("PVDO")) {
if (samples > 0) {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDeadSpline(deck.getPVDO().pvdo_, samples));
} else {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDead(deck.getPVDO().pvdo_));
}
} else if (deck.hasField("PVTO")) {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtLiveOil(deck.getPVTO().pvto_));
} else if (deck.hasField("PVCDO")) {
props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtConstCompr(deck.getPVCDO().pvcdo_));
} else {
THROW("Input is missing PVDO or PVTO\n");
}
}
// Gas PVT
if (phase_usage_.phase_used[Vapour]) {
if (deck.hasField("PVDG")) {
if (samples > 0) {
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDeadSpline(deck.getPVDG().pvdg_, samples));
} else {
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDead(deck.getPVDG().pvdg_));
}
} else if (deck.hasField("PVTG")) {
props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtLiveGas(deck.getPVTG().pvtg_));
} else {
THROW("Input is missing PVDG or PVTG\n");
}
}
int n = 6;
int np = 3; //phase_usage_.num_phases;
double p[n];
double r[n];
double z[np*n];
double mu[n];
double dmudp[n];
double dmudr[n];
double mu_new[n];
double dmudp_diff;
double dmudr_diff;
double dmudp_diff_u;
double dmudr_diff_u;
//double rf[n];
double h = 1;
double rh = 1;
p[0] = 10000000;
p[1] = p[0] + h;
p[2] = 10000000;
p[3] = 10000000;
p[4] = p[0] + h;
p[5] = 10000000;
// saturated
r[0] = 200;
r[1] = 200;
r[2] = 200 + rh;
// undersaturated
r[3] = 50;
r[4] = 50;
r[5] = 50 +rh;
for (int i = 0; i < n; ++i) {
z[0+i*np] = 0; z[1+i*np] = 1;
z[2+i*np] = r[i];
}
// test mu
for (int phase = 1; phase < 2; ++phase) {
props_[phase]->mu(n, p, r, mu_new,dmudp,dmudr);
props_[phase]->mu(n, p, z, mu);
dmudp_diff = (mu_new[1]-mu_new[0])/h;
dmudr_diff = (mu_new[2]-mu_new[0])/rh;
dmudp_diff_u = (mu_new[4]-mu_new[3])/h;
dmudr_diff_u = (mu_new[5]-mu_new[3])/rh;
std::copy(mu,mu + n, std::ostream_iterator<double>(muos, " "));
muos << "\n";
std::copy(mu_new,mu_new + n, std::ostream_iterator<double>(muos, " "));
muos << "\n";
std::copy(dmudp,dmudp + n, std::ostream_iterator<double>(muos, " "));
muos << "\n";
muos << dmudp_diff << " " << dmudp_diff_u << "\n";
std::copy(dmudr,dmudr + n, std::ostream_iterator<double>(muos, " "));
muos << "\n";
muos << dmudr_diff << " " << dmudr_diff_u << "\n";
}
// test b
double b[n];
double B[n];
double invB[n];
double dinvBdp[n];
double dBdp[n];
double dbdr[n];
double dbdp[n];
double dbdp_diff;
double dbdr_diff;
double dbdp_diff_u;
double dbdr_diff_u;
for (int phase = 1; phase < 2; ++phase) {
props_[phase]->b(n, p, r, b,dbdp,dbdr);
//props_[phase]->B(n, p, z, B);
props_[phase]->dBdp(n, p, z, B, dBdp);
dbdp_diff = (b[1]-b[0])/h;
dbdr_diff = (b[2]-b[0])/rh;
dbdp_diff_u = (b[4]-b[3])/h;
dbdr_diff_u = (b[5]-b[3])/rh;
for (int i = 0; i < n; ++i){
invB[i] = 1/B[i];
dinvBdp[i] = -1/pow(B[i],2) * dBdp[i];
}
std::copy(b,b + n, std::ostream_iterator<double>(bos, " "));
bos << "\n";
std::copy(invB,invB + n, std::ostream_iterator<double>(bos, " "));
bos << "\n";
std::copy(dinvBdp,dinvBdp + n, std::ostream_iterator<double>(bos, " "));
bos << "\n";
std::copy(dbdp,dbdp + n, std::ostream_iterator<double>(bos, " "));
bos << "\n";
bos << dbdp_diff << " " << dbdp_diff_u << "\n";
std::copy(dbdr,dbdr + n, std::ostream_iterator<double>(bos, " "));
bos << "\n";
bos << dbdr_diff << " " << dbdr_diff_u << "\n";
}
// test rbub
double rbub[n];
double drbubdp[n];
double drbubdp_diff;
for (int phase = 1; phase < 2; ++phase) {
props_[phase] ->rbub(n,p,rbub,drbubdp);
drbubdp_diff = (rbub[1]-rbub[0])/h;
std::copy(rbub,rbub + n, std::ostream_iterator<double>(rbubos, " "));
rbubos << "\n";
std::copy(drbubdp,drbubdp + n, std::ostream_iterator<double>(rbubos, " "));
rbubos << drbubdp_diff;
rbubos << "\n";
}
}

View File

@ -1,5 +1,5 @@
/// \cond SKIP
/*!
\cond SKIP
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
@ -16,11 +16,8 @@
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
\endcond
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
///\endcond
/// \page tutorial1 A simple cartesian grid
/// This tutorial explains how to construct a simple Cartesian grid,
@ -34,6 +31,8 @@
/// \snippet tutorial1.cpp including headers
/// \internal [including headers]
#include "config.h"
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/io/vtk/writeVtkData.hpp>

View File

@ -1,5 +1,5 @@
/// \cond SKIP
/*!
\cond SKIP
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
@ -16,8 +16,9 @@
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
\endcond
*/
/// \endcond
/// \page tutorial2 Flow Solver for a single phase
/// \details The flow equations consist of the mass conservation equation
/// \f[\nabla\cdot {\bf u}=q\f] and the Darcy law \f[{\bf u} =- \frac{1}{\mu}K\nabla p.\f] Here,
@ -27,9 +28,7 @@
/// We solve the flow equations for a Cartesian grid and we set the source term
/// \f$q\f$ be zero except at the left-lower and right-upper corner, where it is equal
/// with opposite sign (inflow equal to outflow).
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>

View File

@ -1,5 +1,5 @@
/// \cond SKIP
/*!
\cond SKIP
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
@ -16,11 +16,9 @@
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
\endcond
*/
#if HAVE_CONFIG_H
/// \endcond
#include "config.h"
#endif // HAVE_CONFIG_H
#include <iostream>
#include <iomanip>

View File

@ -1,5 +1,5 @@
/// \cond SKIP
/*!
\cond SKIP
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
@ -16,11 +16,9 @@
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
\endcond
*/
#if HAVE_CONFIG_H
/// \endcond
#include "config.h"
#endif // HAVE_CONFIG_H
#include <iostream>
#include <iomanip>