Add PinchProcessor for keyword PINCH and MINPV.

This commit is contained in:
Liu Ming 2015-09-28 13:42:22 +08:00
parent 43d1890190
commit 82701040b2

487
opm/core/grid/PinchProcessor.hpp Executable file
View File

@ -0,0 +1,487 @@
/*
Copyright 2015 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_PINCHPROCESSOR_HEADER_INCLUDED
#define OPM_PINCHPROCESSOR_HEADER_INCLUDED
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/grid/GridHelpers.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/NNC.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/FaceDir.hpp>
#include <opm/core/utility/Units.hpp>
#include <array>
#include <iostream>
#include <algorithm>
#include <unordered_map>
namespace Opm
{
using namespace Opm::UgGridHelpers;
template <class Grid>
class PinchProcessor
{
public:
/// \brief Create a processor.
/// \param[in]
PinchProcessor(const double minpvValue,
const double thickness,
const std::string transMode,
const std::string multzMode);
void process(const Grid& grid,
const std::vector<double>& htrans,
const std::vector<int>& actnum,
const std::vector<double>& multz,
const std::vector<double>& pv,
const std::vector<double>& dz);
private:
double minpvValue_;
double thickness_;
std::string transMode_;
std::string multzMode_;
std::vector<int> getMinpvCells_(const Grid& grid,
const std::vector<int>& actnum,
const std::vector<double>& pv,
const std::vector<double>& dz);
int intersectFace_(const Grid& grid,
const int cellIdx1,
const int cellIdx2);
int intersectFace_(const Grid& grid,
const int cellIdx,
const Opm::FaceDir::DirEnum& faceDir);
std::vector<std::vector<int> >
getSegment_(const Grid& grid,
const std::vector<int>& actnum,
std::vector<int>& minpvCells);
int getGlobalIndex_(const int i, const int j, const int k, const int* dims);
std::array<int, 3> getCartIndex_(const int idx,
const int* dims);
std::vector<double> transCompute_(const Grid& grid,
const std::vector<double>& htrans,
const std::vector<int>& pinCells,
const std::vector<int>& pinFaces,
const std::vector<double>& multz);
std::vector<int> getHfIdxMap_(const Grid& grid);
int getValueIndex_(const std::vector<int>& vec,
const int value);
int getActiveCellIdx_(const Grid& grid,
const int cellIdx);
void transTopbot_(const Grid& grid,
const std::vector<double>& htrans,
const std::vector<int>& actnum,
const std::vector<double>& multz,
const std::vector<double>& pv,
const std::vector<double>& dz);
std::unordered_multimap<int, double> multzOptions_(const Grid& grid,
const std::vector<int>& pinCells,
const std::vector<int>& pinFaces,
const std::vector<double>& multz,
const std::vector<std::vector<int> >& seg);
void applyMultz_(std::vector<double>& trans,
const std::unordered_multimap<int, double>& multzmap);
};
template <class Grid>
inline PinchProcessor<Grid>::PinchProcessor(const double minpv,
const double thickness,
std::string transMode,
std::string multzMode)
{
minpvValue_ = minpv;
thickness_ = thickness;
transMode_ = transMode;
multzMode_ = multzMode;
}
template <class Grid>
inline int PinchProcessor<Grid>::getGlobalIndex_(const int i, const int j, const int k, const int* dims)
{
return i + dims[0] * (j + dims[1] * k);
}
template <class Grid>
inline std::array<int, 3> PinchProcessor<Grid>::getCartIndex_(const int idx,
const int* dims)
{
std::array<int, 3> ijk;
ijk[0] = (idx % dims[0]);
ijk[1] = ((idx / dims[0]) % dims[1]);
ijk[2] = ((idx / dims[0]) / dims[1]);
return ijk;
}
template<class Grid>
inline int PinchProcessor<Grid>::intersectFace_(const Grid& grid,
const int cellIdx1,
const int cellIdx2)
{
auto cell_faces = cell2Faces(grid);
std::vector<int> cellFaces1;
std::vector<int> cellFaces2;
int commonFace = -1;
auto actCellIdx1 = getActiveCellIdx_(grid, cellIdx1);
auto actCellIdx2 = getActiveCellIdx_(grid, cellIdx2);
auto cellFacesRange1 = cell_faces[actCellIdx1];
for (auto cellFaceIter1 = cellFacesRange1.begin(); cellFaceIter1 != cellFacesRange1.end(); ++cellFaceIter1) {
cellFaces1.push_back(*cellFaceIter1);
}
auto cellFacesRange2 = cell_faces[actCellIdx2];
for (auto cellFaceIter2 = cellFacesRange2.begin(); cellFaceIter2 != cellFacesRange2.end(); ++cellFaceIter2) {
cellFaces2.push_back(*cellFaceIter2);
}
for (auto& f1 : cellFaces1) {
for (auto& f2 : cellFaces2) {
if (f1 == f2) {
commonFace = f1;
break;
}
}
}
auto ijk1 = getCartIndex_(cellIdx1, cartDims(grid));
auto ijk2 = getCartIndex_(cellIdx2, cartDims(grid));
if (commonFace == -1) {
OPM_THROW(std::logic_error, "Couldn't find the common face for cell " << cellIdx1<< "("<<ijk1[0]<<","<<ijk1[1]<<","<<ijk1[2]<<")"<< " and " << cellIdx2<<"("<<ijk2[0]<<","<<ijk2[1]<<","<<ijk2[2]<<")");
}
return commonFace;
}
template<class Grid>
inline int PinchProcessor<Grid>::intersectFace_(const Grid& grid,
const int cellIdx,
const Opm::FaceDir::DirEnum& faceDir)
{
auto actCellIdx = getActiveCellIdx_(grid, cellIdx);
auto cell_faces = cell2Faces(grid);
auto cellFacesRange = cell_faces[actCellIdx];
int faceIdx = -1;
for (auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter) {
int tag = faceTag(grid, cellFaceIter);
if ( (faceDir == Opm::FaceDir::ZMinus && tag == 4) || (faceDir == Opm::FaceDir::ZPlus && tag == 5) ) {
faceIdx = *cellFaceIter;
}
}
if (faceIdx == -1) {
OPM_THROW(std::logic_error, "Couldn't find the face for cell ." << cellIdx);
}
return faceIdx;
}
template<class Grid>
inline std::vector<int> PinchProcessor<Grid>::getMinpvCells_(const Grid& grid,
const std::vector<int>& actnum,
const std::vector<double>& pv,
const std::vector<double>& dz)
{
const int nc = numCells(grid);
std::vector<int> minpvCells(pv.size(), 0);
const int* global_cell = globalCell(grid);
for (int cellIdx = 0; cellIdx < nc; ++cellIdx) {
const int idx = global_cell[cellIdx];
if (actnum[idx]) {
if (pv[idx] < minpvValue_ && dz[idx] < thickness_) {
minpvCells[idx] = 1;
}
}
}
return minpvCells;
}
template<class Grid>
inline std::vector<int> PinchProcessor<Grid>::getHfIdxMap_(const Grid& grid)
{
std::vector<int> hf_ix(2*numFaces(grid), -1);
const auto& f2c = faceCells(grid);
const auto& cf = cell2Faces(grid);
for (int c = 0, i = 0; c < numCells(grid); ++c) {
for (const auto& f: cf[c]) {
const auto off = 0 + (f2c(f, 0) != c);
hf_ix[2*f + off] = i++;
}
}
return hf_ix;
}
template<class Grid>
inline int PinchProcessor<Grid>::getValueIndex_(const std::vector<int>& vec,
const int value)
{
int idx = -1;
for (size_t i = 0; i < vec.size(); ++i) {
if (vec[i] == value) {
idx = static_cast<int>(i);
return idx;
}
}
if (idx < 0) {
OPM_THROW(std::logic_error, "could not find " << value);
}
return idx;
}
template<class Grid>
inline int PinchProcessor<Grid>::getActiveCellIdx_(const Grid& grid,
const int cellIdx)
{
const int nc = numCells(grid);
const int* global_cell = globalCell(grid);
int idx = -1;
for (int i = 0; i < nc; ++i) {
if (global_cell[i] == cellIdx) {
idx = i;
break;
}
}
return idx;
}
template<class Grid>
inline std::vector<double> PinchProcessor<Grid>::transCompute_(const Grid& grid,
const std::vector<double>& htrans,
const std::vector<int>& pinCells,
const std::vector<int>& pinFaces,
const std::vector<double>& multz)
{
const int* dims = cartDims(grid);
const int nc = numCells(grid);
const int nf = numFaces(grid);
std::vector<double> trans(nf, 0);
int cellFaceIdx = 0;
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(grid);
const auto& hfmap = getHfIdxMap_(grid);
const auto& f2c = faceCells(grid);
for (int cellIdx = 0; cellIdx < nc; ++cellIdx) {
auto cellFacesRange = cell2Faces[cellIdx];
for (auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter, ++cellFaceIdx) {
const int faceIdx = *cellFaceIter;
if (std::find(pinFaces.begin(), pinFaces.end(), faceIdx) == pinFaces.end()) {
trans[faceIdx] += 1. / htrans[cellFaceIdx];
} else {
const int idx1 = getValueIndex_(pinFaces, faceIdx);
int idx2;
if (idx1 % 2 == 0) {
idx2 = idx1 + 1;
} else {
idx2 = idx1 - 1;
}
const int f1 = hfmap[2*pinFaces[idx1] + (f2c(pinFaces[idx1], 0) != getActiveCellIdx_(grid, pinCells[idx1]))];
const int f2 = hfmap[2*pinFaces[idx2] + (f2c(pinFaces[idx2], 0) != getActiveCellIdx_(grid, pinCells[idx2]))];
trans[faceIdx] = (1. / htrans[f1] + 1. / htrans[f2]);
trans[pinFaces[idx2]] = trans[faceIdx];
}
}
}
for (auto f = 0; f < nf; ++f) {
trans[f] = 1. / trans[f];
}
return trans;
}
template<class Grid>
inline std::vector<std::vector<int>> PinchProcessor<Grid>::getSegment_(const Grid& grid,
const std::vector<int>& actnum,
std::vector<int>& minpvCells)
{
const int* dims = cartDims(grid);
std::vector<std::vector<int>> segment;
for (int z = 0; z < dims[2]; ++z) {
for (int y = 0; y < dims[1]; ++y) {
for (int x = 0; x < dims[0]; ++x) {
const int c = getGlobalIndex_(x, y, z, dims);
std::vector<int> seg;
if (minpvCells[c]) {
seg.push_back(c);
minpvCells[c] = 0;
for (int zz = z+1; zz < dims[2]; ++zz) {
const int cc = getGlobalIndex_(x, y, zz, dims);
if (minpvCells[cc]) {
seg.push_back(cc);
minpvCells[cc] = 0;
} else {
break;
}
}
segment.push_back(seg);
}
}
}
}
return segment;
}
template<class Grid>
inline void PinchProcessor<Grid>::transTopbot_(const Grid& grid,
const std::vector<double>& htrans,
const std::vector<int>& actnum,
const std::vector<double>& multz,
const std::vector<double>& pv,
const std::vector<double>& dz)
{
const int* dims = cartDims(grid);
std::vector<int> pinFaces;
std::vector<int> pinCells;
std::vector<std::vector<int> > newSeg;
std::vector<int> minpvCells = getMinpvCells_(grid, actnum, pv, dz);
auto minpvSeg = getSegment_(grid, actnum, minpvCells);
for (auto& seg : minpvSeg) {
std::array<int, 3> ijk1 = getCartIndex_(seg.front(), dims);
std::array<int, 3> ijk2 = getCartIndex_(seg.back(), dims);
auto tmp = seg;
if ((ijk1[2]-1) >= 0 && (ijk2[2]+1) < dims[2]) {
int topCell = getGlobalIndex_(ijk1[0], ijk1[1], ijk1[2]-1, dims);
int botCell = getGlobalIndex_(ijk2[0], ijk2[1], ijk2[2]+1, dims);
if (!actnum[topCell]) {
for (auto topk = ijk1[2]-2; topk > 0; --topk) {
topCell = getGlobalIndex_(ijk1[0], ijk1[1], topk, dims);
if (actnum[topCell]) {
break;
} else {
auto it = seg.begin();
seg.insert(it, topCell);
}
}
pinFaces.push_back(intersectFace_(grid, topCell, Opm::FaceDir::ZMinus));
} else {
pinFaces.push_back(intersectFace_(grid, topCell, seg.front()));
}
tmp.insert(tmp.begin(), topCell);
newSeg.push_back(tmp);
pinCells.push_back(topCell);
if (!actnum[botCell]) {
for (auto botk = ijk2[2]+2; botk < dims[2]; ++botk) {
botCell = getGlobalIndex_(ijk2[0], ijk2[1], botk, dims);
if (actnum[botCell]) {
break;
} else {
seg.push_back(botCell);
}
}
pinFaces.push_back(intersectFace_(grid, botCell, Opm::FaceDir::ZPlus));
} else {
pinFaces.push_back(intersectFace_(grid, seg.back(), botCell));
}
pinCells.push_back(botCell);
}
}
auto faceTrans = transCompute_(grid, htrans, pinCells, pinFaces, multz);
auto multzmap = multzOptions_(grid, pinCells, pinFaces, multz, newSeg);
applyMultz_(faceTrans, multzmap);
for (size_t i = 0; i < pinCells.size()/2; ++i) {
std::array<int, 3> nnc1 = getCartIndex_(pinCells[2*i], dims);
std::array<int, 3> nnc2 = getCartIndex_(pinCells[2*i+1], dims);
}
}
template<class Grid>
inline std::unordered_multimap<int, double> PinchProcessor<Grid>::multzOptions_(const Grid& grid,
const std::vector<int>& pinCells,
const std::vector<int>& pinFaces,
const std::vector<double>& multz,
const std::vector<std::vector<int> >& segs)
{
const int nc = numCells(grid);
int cellFaceIdx = 0;
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(grid);
std::unordered_multimap<int, double> multzmap;
if (multzMode_ == "TOP") {
for (int i = 0; i < pinFaces.size()/2; ++i) {
multzmap.insert(std::make_pair(pinFaces[2*i], multz[getActiveCellIdx_(grid, pinCells[2*i])]));
multzmap.insert(std::make_pair(pinFaces[2*i+1],multz[getActiveCellIdx_(grid, pinCells[2*i])]));
}
} else if (multzMode_ == "ALL") {
for (auto& seg : segs) {
//find the right face.
auto faceIdx = std::distance(std::begin(pinCells), std::find(pinCells.begin(), pinCells.end(), seg.front()));
//find the min multz in seg cells.
auto multzValue = 1e20;
for (auto& cellIdx : seg) {
auto activeIdx = getActiveCellIdx_(grid, cellIdx);
if (activeIdx != -1) {
multzValue = std::min(multzValue, multz[activeIdx]);
}
}
multzmap.insert(std::make_pair(pinFaces[faceIdx], multzValue));
multzmap.insert(std::make_pair(pinFaces[faceIdx+1], multzValue));
}
}
return multzmap;
}
template<class Grid>
inline void PinchProcessor<Grid>::applyMultz_(std::vector<double>& trans,
const std::unordered_multimap<int, double>& multzmap)
{
for (auto& x : multzmap) {
trans[x.first] *= x.second;
}
}
template<class Grid>
inline void PinchProcessor<Grid>::process(const Grid& grid,
const std::vector<double>& htrans,
const std::vector<int>& actnum,
const std::vector<double>& multz,
const std::vector<double>& pv,
const std::vector<double>& dz)
{
transTopbot_(grid, htrans, actnum, multz, pv, dz);
}
} // namespace Opm
#endif // OPM_PINCHPROCESSOR_HEADER_INCLUDED