Examples and tutorials follow change to IncompTpfa interface.
This commit is contained in:
@@ -39,11 +39,14 @@
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
|
||||
#include <opm/core/linalg/LinearSolverUmfpack.hpp>
|
||||
#include <opm/core/pressure/IncompTpfa.hpp>
|
||||
#include <opm/core/pressure/FlowBCManager.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
#include <opm/core/simulator/TwophaseState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
|
||||
/// \page tutorial2
|
||||
/// \section commentedcode2 Program walkthrough.
|
||||
@@ -68,16 +71,21 @@ int main()
|
||||
int num_cells = grid.c_grid()->number_of_cells;
|
||||
int num_faces = grid.c_grid()->number_of_faces;
|
||||
/// \endcode
|
||||
|
||||
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
/// We define a fluid viscosity equal to 1 cP.
|
||||
/// We define a fluid viscosity equal to 1 cP and density equal
|
||||
/// to 1000 kg/m^3.
|
||||
/// The <opm/core/utility/Units.hpp> header contains support
|
||||
/// for common units and prefixes, in the namespaces Opm::unit
|
||||
/// and Opm::prefix.
|
||||
/// \code
|
||||
using namespace Opm::unit;
|
||||
using namespace Opm::prefix;
|
||||
double mu = 1.0*centi*Poise;
|
||||
int num_phases = 1;
|
||||
std::vector<double> mu(num_phases, 1.0*centi*Poise);
|
||||
std::vector<double> rho(num_phases, 1000.0*kilogram/cubic(meter));
|
||||
/// \endcode
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
@@ -87,17 +95,13 @@ int main()
|
||||
/// \endcode
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
/// We set up a diagonal permeability tensor and compute the mobility for each cell.
|
||||
/// The resulting permeability matrix is flattened in a vector.
|
||||
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
/// We set up a simple property object for a single-phase situation.
|
||||
/// \code
|
||||
std::vector<double> permeability(num_cells*dim*dim, 0.);
|
||||
std::vector<double> mob(num_cells);
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
permeability[9*cell + 0] = k;
|
||||
permeability[9*cell + 4] = k;
|
||||
permeability[9*cell + 8] = k;
|
||||
mob[cell] = 1/mu;
|
||||
}
|
||||
Opm::IncompPropertiesBasic props(1, Opm::SaturationPropsBasic::Constant, rho,
|
||||
mu, 1.0, k, dim, num_cells);
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial2
|
||||
@@ -109,14 +113,6 @@ int main()
|
||||
/// \endcode
|
||||
/// \page tutorial2
|
||||
|
||||
/// We set up a pressure solver for the incompressible problem,
|
||||
/// using the two-point flux approximation discretization. The
|
||||
/// third argument which corresponds to gravity is set to a null
|
||||
/// pointer (no gravity). The final argument would be a pointer to
|
||||
/// a Wells data structure, again we use a null pointer to
|
||||
/// indicate that we have no wells.
|
||||
/// \code
|
||||
Opm::IncompTpfa psolver(*grid.c_grid(), &permeability[0], 0, linsolver, 0);
|
||||
/// \endcode
|
||||
/// \page tutorial2
|
||||
/// We define the source term.
|
||||
@@ -132,39 +128,33 @@ int main()
|
||||
Opm::FlowBCManager bcs;
|
||||
/// \endcode
|
||||
|
||||
/// We set up a pressure solver for the incompressible problem,
|
||||
/// using the two-point flux approximation discretization. The
|
||||
/// null pointers correspond to arguments for gravity, wells and
|
||||
/// boundary conditions, which are all defaulted (to zero gravity,
|
||||
/// no wells, and no-flow boundaries).
|
||||
/// \code
|
||||
Opm::IncompTpfa psolver(*grid.c_grid(), props, linsolver, NULL, NULL, src, NULL);
|
||||
|
||||
/// \page tutorial2
|
||||
/// We declare the solution vectors, i.e., the pressure and face
|
||||
/// flux vectors we are going to compute. The well solution
|
||||
/// vectors are needed for interface compatibility with the
|
||||
/// We declare the state object, that will contain the pressure and face
|
||||
/// flux vectors we are going to compute. The well state
|
||||
/// object is needed for interface compatibility with the
|
||||
/// <CODE>solve()</CODE> method of class
|
||||
/// <CODE>Opm::IncompTPFA</CODE>.
|
||||
/// \code
|
||||
std::vector<double> pressure(num_cells);
|
||||
std::vector<double> faceflux(num_faces);
|
||||
std::vector<double> well_bhp;
|
||||
std::vector<double> well_flux;
|
||||
/// \endcode
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
/// We declare the gravity term which is required by the pressure solver (see
|
||||
/// Opm::IncompTpfa.solve()). In the absence of gravity, an empty vector is required.
|
||||
/// \code
|
||||
std::vector<double> omega;
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
/// We declare the wdp term which is required by the pressure solver (see
|
||||
/// Opm::IncompTpfa.solve()). In the absence of wells, an empty vector is required.
|
||||
/// \code
|
||||
std::vector<double> wdp;
|
||||
Opm::TwophaseState state;
|
||||
state.pressure().resize(num_cells);
|
||||
state.faceflux().resize(num_faces);
|
||||
Opm::WellState well_state;
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial2
|
||||
/// We call the pressure solver.
|
||||
/// The first (timestep) argument does not matter for this
|
||||
/// incompressible case.
|
||||
/// \code
|
||||
psolver.solve(mob, omega, src, wdp, bcs.c_bcs(),
|
||||
pressure, faceflux, well_bhp, well_flux);
|
||||
psolver.solve(1.0*day, state, well_state);
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial2
|
||||
@@ -175,9 +165,9 @@ int main()
|
||||
/// \code
|
||||
std::ofstream vtkfile("tutorial2.vtu");
|
||||
Opm::DataMap dm;
|
||||
dm["pressure"] = &pressure;
|
||||
dm["pressure"] = &state.pressure();
|
||||
std::vector<double> cell_velocity;
|
||||
Opm::estimateCellVelocity(*grid.c_grid(), faceflux, cell_velocity);
|
||||
Opm::estimateCellVelocity(*grid.c_grid(), state.faceflux(), cell_velocity);
|
||||
dm["velocity"] = &cell_velocity;
|
||||
Opm::writeVtkData(*grid.c_grid(), dm, vtkfile);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user