Examples and tutorials follow change to IncompTpfa interface.

This commit is contained in:
Atgeirr Flø Rasmussen
2012-06-12 15:28:53 +02:00
parent e1d5e55f1b
commit 92f1ce9b83
5 changed files with 118 additions and 281 deletions

View File

@@ -38,6 +38,7 @@
#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/Units.hpp>
@@ -120,20 +121,6 @@ int main ()
std::vector<double> omega;
/// \endcode
/// \page tutorial4
/// \details We set up necessary information for the wells
/// \code
std::vector<double> wdp;
std::vector<double> well_bhp;
std::vector<double> well_flux;
std::vector<double> well_resflowrates_phase;
std::vector<double> well_surflowrates_phase;
std::vector<double> fractional_flows;
/// \endcode
/// \page tutorial4
/// \details We set up the source term. Positive numbers indicate that the cell is a source,
/// while negative numbers indicate a sink.
@@ -192,13 +179,6 @@ int main ()
state.setFirstSat(allcells, props, TwophaseState::MinSat);
/// \endcode
/// \page tutorial4
/// \details We introduce a vector which contains the total mobility
/// on all cells.
/// \code
std::vector<double> totmob;
/// \endcode
/// \page tutorial4
/// \details This string will contain the name of a VTK output vector.
/// \code
@@ -299,11 +279,21 @@ int main ()
///\endcode
/// \page tutorial4
/// \details We set up the pressure solver. We need to pass the wells pointer as the
/// last argument.
/// \details We set up necessary information for the wells
/// \code
WellState well_state;
well_state.init(wells, state);
std::vector<double> well_resflowrates_phase;
std::vector<double> well_surflowrates_phase;
std::vector<double> fractional_flows;
/// \endcode
/// \page tutorial4
/// \details We set up the pressure solver.
/// \code
LinearSolverUmfpack linsolver;
IncompTpfa psolver(grid, props.permeability(), grav, linsolver, wells);
IncompTpfa psolver(grid, props, linsolver,
grav, wells, src, bcs.c_bcs());
/// \endcode
@@ -312,18 +302,6 @@ int main ()
/// \code
for (int i = 0; i < num_time_steps; ++i) {
/// \endcode
/// \page tutorial4
/// \details Compute the total mobility. It is needed by the pressure solver
/// \code
computeTotalMobility(props, allcells, state.saturation(), totmob);
/// \endcode
/// \endcode
/// \page tutorial4
/// \details In order to use the well controls, we need to generate the WDP for each well.
/// \code
Opm::computeWDP(*wells, grid, state.saturation(), props.density(), gravity, true, wdp);
/// \endcode
/// \page tutorial4
/// \details We're solving the pressure until the well conditions are met
@@ -338,31 +316,29 @@ int main ()
/// \page tutorial4
/// \details Solve the pressure equation
/// \code
psolver.solve(totmob, omega, src, wdp, bcs.c_bcs(),
state.pressure(), state.faceflux(), well_bhp,
well_flux);
psolver.solve(dt, state, well_state);
/// \endcode
/// \page tutorial4
/// \details We compute the new well rates. Notice that we approximate (wrongly) surfflowsrates := resflowsrate
Opm::computeFractionalFlow(props, allcells, state.saturation(), fractional_flows);
Opm::computePhaseFlowRatesPerWell(*wells, well_flux, fractional_flows, well_resflowrates_phase);
Opm::computePhaseFlowRatesPerWell(*wells, well_flux, fractional_flows, well_surflowrates_phase);
Opm::computePhaseFlowRatesPerWell(*wells, well_state.perfRates(), fractional_flows, well_resflowrates_phase);
Opm::computePhaseFlowRatesPerWell(*wells, well_state.perfRates(), fractional_flows, well_surflowrates_phase);
/// \endcode
/// \page tutorial4
/// \details We check if the well conditions are met.
well_conditions_met = well_collection.conditionsMet(well_bhp, well_resflowrates_phase, well_surflowrates_phase);
well_conditions_met = well_collection.conditionsMet(well_state.bhp(), well_resflowrates_phase, well_surflowrates_phase);
++well_iter;
if (!well_conditions_met && well_iter == max_well_iterations) {
THROW("Conditions not met within " << max_well_iterations<< " iterations.");
}
}
/// \endcode
/// \page tutorial4
/// \details Transport solver
/// \TODO We must call computeTransportSource() here, since we have wells.
/// \code
transport_solver.solve(&state.faceflux()[0], &porevol[0], &src[0], dt, state.saturation());
/// \endcode