Merge pull request #57 from atgeirr/reorder_tof

Initial versions of time-of-flight solvers

A welcome addition to OPM-Core
This commit is contained in:
Bård Skaflestad 2012-10-09 11:02:59 -07:00
commit a62715d36b
8 changed files with 1225 additions and 0 deletions

View File

@ -107,6 +107,8 @@ opm/core/simulator/SimulatorReport.cpp \
opm/core/simulator/SimulatorTimer.cpp \
opm/core/transport/reorder/TransportModelCompressibleTwophase.cpp \
opm/core/transport/reorder/TransportModelInterface.cpp \
opm/core/transport/reorder/TransportModelTracerTof.cpp \
opm/core/transport/reorder/TransportModelTracerTofDiscGal.cpp \
opm/core/transport/reorder/TransportModelTwophase.cpp \
opm/core/transport/reorder/nlsolvers.c \
opm/core/transport/reorder/reordersequence.cpp \
@ -229,6 +231,8 @@ opm/core/transport/SimpleFluid2pWrapper.hpp \
opm/core/transport/SinglePointUpwindTwoPhase.hpp \
opm/core/transport/reorder/TransportModelCompressibleTwophase.hpp \
opm/core/transport/reorder/TransportModelInterface.hpp \
opm/core/transport/reorder/TransportModelTracerTof.hpp \
opm/core/transport/reorder/TransportModelTracerTofDiscGal.hpp \
opm/core/transport/reorder/TransportModelTwophase.hpp \
opm/core/transport/reorder/nlsolvers.h \
opm/core/transport/reorder/reordersequence.h \

View File

@ -29,6 +29,7 @@ $(BOOST_SYSTEM_LIB)
# Please keep the list sorted.
noinst_PROGRAMS = \
compute_tof \
refine_wells \
scaneclipsedeck \
sim_2p_comp_reorder \
@ -43,6 +44,7 @@ wells_example
#
# Please maintain sort order from "noinst_PROGRAMS".
compute_tof_SOURCES = compute_tof.cpp
refine_wells_SOURCES = refine_wells.cpp
sim_2p_comp_reorder_SOURCES = sim_2p_comp_reorder.cpp

254
examples/compute_tof.cpp Normal file
View File

@ -0,0 +1,254 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/GridManager.hpp>
#include <opm/core/newwells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/initState.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
#include <opm/core/fluid/IncompPropertiesFromDeck.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/pressure/IncompTpfa.hpp>
#include <opm/core/transport/reorder/TransportModelTracerTof.hpp>
#include <opm/core/transport/reorder/TransportModelTracerTofDiscGal.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/filesystem.hpp>
#include <algorithm>
#include <iostream>
#include <vector>
#include <numeric>
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
using namespace Opm;
std::cout << "\n================ Test program for incompressible tof computations ===============\n\n";
parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
boost::scoped_ptr<EclipseGridParser> deck;
boost::scoped_ptr<GridManager> grid;
boost::scoped_ptr<IncompPropertiesInterface> props;
boost::scoped_ptr<Opm::WellsManager> wells;
TwophaseState state;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
deck.reset(new EclipseGridParser(deck_filename));
// Grid init
grid.reset(new GridManager(*deck));
// Rock and fluid init
props.reset(new IncompPropertiesFromDeck(*deck, *grid->c_grid()));
// Wells init.
wells.reset(new Opm::WellsManager(*deck, *grid->c_grid(), props->permeability()));
// Gravity.
gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
} else {
initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
}
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
// Rock and fluid init.
props.reset(new IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
// Wells init.
wells.reset(new Opm::WellsManager());
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
// Init state variables (saturation and pressure).
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
}
// Warn if gravity but no density difference.
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
if (use_gravity) {
if (props->density()[0] == props->density()[1]) {
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
}
}
const double *grav = use_gravity ? &gravity[0] : 0;
// Initialising src
std::vector<double> porevol;
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
int num_cells = grid->c_grid()->number_of_cells;
std::vector<double> src(num_cells, 0.0);
if (use_deck) {
// Do nothing, wells will be the driving force, not source terms.
} else {
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
*tot_porevol_init/unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
// Boundary conditions.
FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get<int>("pside");
double pside_pressure = param.get<double>("pside_pressure");
bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
}
// Linear solver.
LinearSolverFactory linsolver(param);
// Pressure solver.
Opm::IncompTpfa psolver(*grid->c_grid(), *props, 0, linsolver,
0.0, 0.0, 0,
grav, wells->c_wells(), src, bcs.c_bcs());
// Choice of tof solver.
bool use_dg = param.getDefault("use_dg", false);
int dg_degree = -1;
if (use_dg) {
dg_degree = param.getDefault("dg_degree", 0);
}
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
std::ofstream epoch_os;
std::string output_dir;
if (output) {
output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
THROW("Creating directories failed: " << fpath);
}
std::string filename = output_dir + "/epoch_timing.param";
epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
// open file to clean it. The file is appended to in SimulatorTwophase
filename = output_dir + "/step_timing.param";
std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
step_os.close();
param.writeParam(output_dir + "/simulation.param");
}
// Init wells.
Opm::WellState well_state;
well_state.init(wells->c_wells(), state);
// Main solvers.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch total_timer;
total_timer.start();
std::cout << "\n\n================ Starting main solvers ===============" << std::endl;
// Solve pressure.
pressure_timer.start();
psolver.solve(1.0, state, well_state);
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
// Process transport sources (to include bdy terms and well flows).
std::vector<double> transport_src;
Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0,
wells->c_wells(), well_state.perfRates(), transport_src);
// Solve time-of-flight.
std::vector<double> tof;
if (use_dg) {
Opm::TransportModelTracerTofDiscGal tofsolver(*grid->c_grid());
transport_timer.start();
tofsolver.solveTof(&state.faceflux()[0], &porevol[0], &transport_src[0], dg_degree, tof);
transport_timer.stop();
} else {
Opm::TransportModelTracerTof tofsolver(*grid->c_grid());
transport_timer.start();
tofsolver.solveTof(&state.faceflux()[0], &porevol[0], &transport_src[0], tof);
transport_timer.stop();
}
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
total_timer.stop();
// Output.
if (output) {
std::string tof_filename = output_dir + "/tof.txt";
std::ofstream tof_stream(tof_filename.c_str());
std::copy(tof.begin(), tof.end(), std::ostream_iterator<double>(tof_stream, "\n"));
}
std::cout << "\n\n================ End of simulation ===============\n"
<< "Total time taken: " << total_timer.secsSinceStart()
<< "\n Pressure time: " << ptime
<< "\n Transport time: " << ttime << std::endl;
}

View File

@ -20,6 +20,7 @@
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
#include <opm/core/transport/reorder/reordersequence.h>
#include <opm/core/grid.h>
#include <opm/core/utility/StopWatch.hpp>
#include <vector>
#include <cassert>
@ -31,7 +32,11 @@ void Opm::TransportModelInterface::reorderAndTransport(const UnstructuredGrid& g
std::vector<int> sequence(grid.number_of_cells);
std::vector<int> components(grid.number_of_cells + 1);
int ncomponents;
time::StopWatch clock;
clock.start();
compute_sequence(&grid, darcyflux, &sequence[0], &components[0], &ncomponents);
clock.stop();
std::cout << "Topological sort took: " << clock.secsSinceStart() << " seconds." << std::endl;
// Invoke appropriate solve method for each interdependent component.
for (int comp = 0; comp < ncomponents; ++comp) {

View File

@ -0,0 +1,122 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/transport/reorder/TransportModelTracerTof.hpp>
#include <opm/core/grid.h>
#include <opm/core/utility/ErrorMacros.hpp>
#include <algorithm>
#include <numeric>
#include <cmath>
namespace Opm
{
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
TransportModelTracerTof::TransportModelTracerTof(const UnstructuredGrid& grid)
: grid_(grid)
{
}
/// Solve for time-of-flight.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Source term. Sign convention is:
/// (+) inflow flux,
/// (-) outflow flux.
/// \param[out] tof Array of time-of-flight values.
void TransportModelTracerTof::solveTof(const double* darcyflux,
const double* porevolume,
const double* source,
std::vector<double>& tof)
{
darcyflux_ = darcyflux;
porevolume_ = porevolume;
source_ = source;
#ifndef NDEBUG
// Sanity check for sources.
const double cum_src = std::accumulate(source, source + grid_.number_of_cells, 0.0);
if (std::fabs(cum_src) > *std::max_element(source, source + grid_.number_of_cells)*1e-2) {
THROW("Sources do not sum to zero: " << cum_src);
}
#endif
tof.resize(grid_.number_of_cells);
std::fill(tof.begin(), tof.end(), 0.0);
tof_ = &tof[0];
reorderAndTransport(grid_, darcyflux);
}
void TransportModelTracerTof::solveSingleCell(const int cell)
{
// Compute flux terms.
// Sources have zero tof, and therefore do not contribute
// to upwind_term. Sinks on the other hand, must be added
// to the downwind_flux (note sign change resulting from
// different sign conventions: pos. source is injection,
// pos. flux is outflow).
double upwind_term = 0.0;
double downwind_flux = std::max(-source_[cell], 0.0);
for (int i = grid_.cell_facepos[cell]; i < grid_.cell_facepos[cell+1]; ++i) {
int f = grid_.cell_faces[i];
double flux;
int other;
// Compute cell flux
if (cell == grid_.face_cells[2*f]) {
flux = darcyflux_[f];
other = grid_.face_cells[2*f+1];
} else {
flux =-darcyflux_[f];
other = grid_.face_cells[2*f];
}
// Add flux to upwind_term or downwind_flux, if interior.
if (other != -1) {
if (flux < 0.0) {
upwind_term += flux*tof_[other];
} else {
downwind_flux += flux;
}
}
}
// Compute tof.
tof_[cell] = (porevolume_[cell] - upwind_term)/downwind_flux;
}
void TransportModelTracerTof::solveMultiCell(const int num_cells, const int* cells)
{
std::cout << "Pretending to solve multi-cell dependent equation with " << num_cells << " cells." << std::endl;
for (int i = 0; i < num_cells; ++i) {
solveSingleCell(cells[i]);
}
}
} // namespace Opm

View File

@ -0,0 +1,74 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TRANSPORTMODELTRACERTOF_HEADER_INCLUDED
#define OPM_TRANSPORTMODELTRACERTOF_HEADER_INCLUDED
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
#include <vector>
#include <map>
#include <ostream>
struct UnstructuredGrid;
namespace Opm
{
class IncompPropertiesInterface;
/// Implements a first-order finite volume solver for
/// (single-phase) time-of-flight using reordering.
/// The equation solved is:
/// v \cdot \grad\tau = \phi
/// where v is the fluid velocity, \tau is time-of-flight and
/// \phi is the porosity. This is a boundary value problem, where
/// \tau is specified to be zero on all inflow boundaries.
class TransportModelTracerTof : public TransportModelInterface
{
public:
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
TransportModelTracerTof(const UnstructuredGrid& grid);
/// Solve for time-of-flight.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Source term. Sign convention is:
/// (+) inflow flux,
/// (-) outflow flux.
/// \param[out] tof Array of time-of-flight values.
void solveTof(const double* darcyflux,
const double* porevolume,
const double* source,
std::vector<double>& tof);
private:
virtual void solveSingleCell(const int cell);
virtual void solveMultiCell(const int num_cells, const int* cells);
private:
const UnstructuredGrid& grid_;
const double* darcyflux_; // one flux per grid face
const double* porevolume_; // one volume per cell
const double* source_; // one volumetric source term per cell
double* tof_;
};
} // namespace Opm
#endif // OPM_TRANSPORTMODELTRACERTOF_HEADER_INCLUDED

View File

@ -0,0 +1,671 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/transport/reorder/TransportModelTracerTofDiscGal.hpp>
#include <opm/core/grid.h>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/linalg/blas_lapack.h>
#include <algorithm>
#include <numeric>
#include <cmath>
namespace Opm
{
// --------------- Helpers for TransportModelTracerTofDiscGal ---------------
/// A class providing discontinuous Galerkin basis functions.
struct DGBasis
{
static int numBasisFunc(const int dimensions,
const int degree)
{
switch (dimensions) {
case 1:
return degree + 1;
case 2:
return (degree + 2)*(degree + 1)/2;
case 3:
return (degree + 3)*(degree + 2)*(degree + 1)/6;
default:
THROW("Dimensions must be 1, 2 or 3.");
}
}
/// Evaluate all nonzero basis functions at x,
/// writing to f_x. The array f_x must have
/// size numBasisFunc(grid.dimensions, degree).
///
/// The basis functions are the following
/// Degree 0: 1.
/// Degree 1: x - xc, y - yc, z - zc etc.
/// Further degrees await development.
static void eval(const UnstructuredGrid& grid,
const int cell,
const int degree,
const double* x,
double* f_x)
{
const int dim = grid.dimensions;
const double* cc = grid.cell_centroids + dim*cell;
// Note intentional fallthrough in this switch statement!
switch (degree) {
case 1:
for (int ix = 0; ix < dim; ++ix) {
f_x[1 + ix] = x[ix] - cc[ix];
}
case 0:
f_x[0] = 1;
break;
default:
THROW("Maximum degree is 1 for now.");
}
}
/// Evaluate gradients of all nonzero basis functions at x,
/// writing to grad_f_x. The array grad_f_x must have size
/// numBasisFunc(grid.dimensions, degree) * grid.dimensions.
/// The <grid.dimensions> components of the first basis function
/// gradient come before the components of the second etc.
static void evalGrad(const UnstructuredGrid& grid,
const int /*cell*/,
const int degree,
const double* /*x*/,
double* grad_f_x)
{
const int dim = grid.dimensions;
const int num_basis = numBasisFunc(dim, degree);
std::fill(grad_f_x, grad_f_x + num_basis*dim, 0.0);
if (degree > 1) {
THROW("Maximum degree is 1 for now.");
} else if (degree == 1) {
for (int ix = 0; ix < dim; ++ix) {
grad_f_x[dim*(ix + 1) + ix] = 1.0;
}
}
}
};
static void cross(const double* a, const double* b, double* res)
{
res[0] = a[1]*b[2] - a[2]*b[1];
res[1] = a[2]*b[0] - a[0]*b[2];
res[2] = a[0]*b[1] - a[1]*b[0];
}
static double triangleArea3d(const double* p0,
const double* p1,
const double* p2)
{
double a[3] = { p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2] };
double b[3] = { p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2] };
double cr[3];
cross(a, b, cr);
return 0.5*std::sqrt(cr[0]*cr[0] + cr[1]*cr[1] + cr[2]*cr[2]);
}
/// Calculates the determinant of a 3 x 3 matrix, represented as
/// three three-dimensional arrays.
static double determinantOf(const double* a0,
const double* a1,
const double* a2)
{
return
a0[0] * (a1[1] * a2[2] - a2[1] * a1[2]) -
a0[1] * (a1[0] * a2[2] - a2[0] * a1[2]) +
a0[2] * (a1[0] * a2[1] - a2[0] * a1[1]);
}
/// Computes the volume of a tetrahedron consisting of 4 vertices
/// with 3-dimensional coordinates
static double tetVolume(const double* p0,
const double* p1,
const double* p2,
const double* p3)
{
double a[3] = { p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2] };
double b[3] = { p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2] };
double c[3] = { p3[0] - p0[0], p3[1] - p0[1], p3[2] - p0[2] };
return std::fabs(determinantOf(a, b, c) / 6.0);
}
/// A class providing numerical quadrature for cells.
/// In general: \int_{cell} g(x) dx = \sum_{i=0}^{n-1} w_i g(x_i).
/// Note that this class does multiply weights by cell volume,
/// so weights always sum to cell volume.
/// Degree 1 method:
/// Midpoint (centroid) method.
/// n = 1, w_0 = cell volume, x_0 = cell centroid
/// Degree 2 method:
/// Based on subdivision of each cell face into triangles
/// with the face centroid as a common vertex, and then
/// subdividing the cell into tetrahedra with the cell
/// centroid as a common vertex. Then apply the tetrahedron
/// rule with the following 4 nodes (uniform weights):
/// a = 0.138196601125010515179541316563436
/// x_i has all barycentric coordinates = a, except for
/// the i'th coordinate which is = 1 - 3a.
/// This rule is from http://nines.cs.kuleuven.be/ecf,
/// it is the second degree 2 4-point rule for tets,
/// referenced to Stroud(1971).
/// The tetrahedra are numbered T_{i,j}, and are given by the
/// cell centroid C, the face centroid FC_i, and two nodes
/// of face i: FN_{i,j}, FN_{i,j+1}.
class CellQuadrature
{
public:
CellQuadrature(const UnstructuredGrid& grid,
const int cell,
const int degree)
: grid_(grid), cell_(cell), degree_(degree)
{
if (degree > 2) {
THROW("CellQuadrature exact for polynomial degrees > 1 not implemented.");
}
if (degree == 2) {
// Prepare subdivision.
}
}
int numQuadPts() const
{
if (degree_ < 2) {
return 1;
}
// Degree 2 case.
int sumnodes = 0;
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
const int face = grid_.cell_faces[hf];
sumnodes += grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
}
return 4*sumnodes;
}
void quadPtCoord(const int index, double* coord) const
{
const int dim = grid_.dimensions;
const double* cc = grid_.cell_centroids + dim*cell_;
if (degree_ < 2) {
std::copy(cc, cc + dim, coord);
return;
}
// Degree 2 case.
int tetindex = index / 4;
const int subindex = index % 4;
const double* nc = grid_.node_coordinates;
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
const int face = grid_.cell_faces[hf];
const int nfn = grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
if (nfn <= tetindex) {
// Our tet is not associated with this face.
tetindex -= nfn;
continue;
}
const double* fc = grid_.face_centroids + dim*face;
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face];
const int node0 = fnodes[tetindex];
const int node1 = fnodes[(tetindex + 1) % nfn];
const double* n0c = nc + dim*node0;
const double* n1c = nc + dim*node1;
const double a = 0.138196601125010515179541316563436;
// Barycentric coordinates of our point in the tet.
double baryc[4] = { a, a, a, a };
baryc[subindex] = 1.0 - 3.0*a;
for (int dd = 0; dd < dim; ++dd) {
coord[dd] = baryc[0]*cc[dd] + baryc[1]*fc[dd] + baryc[2]*n0c[dd] + baryc[3]*n1c[dd];
}
return;
}
THROW("Should never reach this point.");
}
double quadPtWeight(const int index) const
{
if (degree_ < 2) {
return grid_.cell_volumes[cell_];
}
// Degree 2 case.
const int dim = grid_.dimensions;
const double* cc = grid_.cell_centroids + dim*cell_;
int tetindex = index / 4;
const double* nc = grid_.node_coordinates;
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
const int face = grid_.cell_faces[hf];
const int nfn = grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
if (nfn <= tetindex) {
// Our tet is not associated with this face.
tetindex -= nfn;
continue;
}
const double* fc = grid_.face_centroids + dim*face;
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face];
const int node0 = fnodes[tetindex];
const int node1 = fnodes[(tetindex + 1) % nfn];
const double* n0c = nc + dim*node0;
const double* n1c = nc + dim*node1;
return 0.25*tetVolume(cc, fc, n0c, n1c);
}
THROW("Should never reach this point.");
}
private:
const UnstructuredGrid& grid_;
const int cell_;
const int degree_;
};
/// A class providing numerical quadrature for faces.
/// In general: \int_{face} g(x) dx = \sum_{i=0}^{n-1} w_i g(x_i).
/// Note that this class does multiply weights by face area,
/// so weights always sum to face area.
/// Degree 1 method:
/// Midpoint (centroid) method.
/// n = 1, w_0 = face area, x_0 = face centroid
/// Degree 2 method:
/// Based on subdivision of the face into triangles,
/// with the centroid as a common vertex, and the triangle
/// edge midpoint rule.
/// Triangle i consists of the centroid C, nodes N_i and N_{i+1}.
/// Its area is A_i.
/// n = 2 * nn (nn = num nodes in face)
/// For i = 0..(nn-1):
/// w_i = 1/3 A_i.
/// w_{nn+i} = 1/3 A_{i-1} + 1/3 A_i
/// x_i = (N_i + N_{i+1})/2
/// x_{nn+i} = (C + N_i)/2
/// All N and A indices are interpreted cyclic, modulus nn.
class FaceQuadrature
{
public:
FaceQuadrature(const UnstructuredGrid& grid,
const int face,
const int degree)
: grid_(grid), face_(face), degree_(degree)
{
if (grid_.dimensions != 3) {
THROW("FaceQuadrature only implemented for 3D case.");
}
if (degree_ > 2) {
THROW("FaceQuadrature exact for polynomial degrees > 2 not implemented.");
}
}
int numQuadPts() const
{
if (degree_ < 2) {
return 1;
}
// Degree 2 case.
return 2 * (grid_.face_nodepos[face_ + 1] - grid_.face_nodepos[face_]);
}
void quadPtCoord(const int index, double* coord) const
{
const int dim = grid_.dimensions;
const double* fc = grid_.face_centroids + dim*face_;
if (degree_ < 2) {
std::copy(fc, fc + dim, coord);
return;
}
// Degree 2 case.
const int nn = grid_.face_nodepos[face_ + 1] - grid_.face_nodepos[face_];
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face_];
const double* nc = grid_.node_coordinates;
if (index < nn) {
// Boundary edge midpoint.
const int node0 = fnodes[index];
const int node1 = fnodes[(index + 1)%nn];
for (int dd = 0; dd < dim; ++dd) {
coord[dd] = 0.5*(nc[dim*node0 + dd] + nc[dim*node1 + dd]);
}
} else {
// Interiour edge midpoint.
// Recall that index is now in [nn, 2*nn).
const int node = fnodes[index - nn];
for (int dd = 0; dd < dim; ++dd) {
coord[dd] = 0.5*(nc[dim*node + dd] + fc[dd]);
}
}
}
double quadPtWeight(const int index) const
{
if (degree_ < 2) {
return grid_.face_areas[face_];
}
// Degree 2 case.
const int dim = grid_.dimensions;
const double* fc = grid_.face_centroids + dim*face_;
const int nn = grid_.face_nodepos[face_ + 1] - grid_.face_nodepos[face_];
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face_];
const double* nc = grid_.node_coordinates;
if (index < nn) {
// Boundary edge midpoint.
const int node0 = fnodes[index];
const int node1 = fnodes[(index + 1)%nn];
const double area = triangleArea3d(nc + dim*node1, nc + dim*node0, fc);
return area / 3.0;
} else {
// Interiour edge midpoint.
// Recall that index is now in [nn, 2*nn).
const int node0 = fnodes[(index - 1) % nn];
const int node1 = fnodes[index - nn];
const int node2 = fnodes[(index + 1) % nn];
const double area0 = triangleArea3d(nc + dim*node1, nc + dim*node0, fc);
const double area1 = triangleArea3d(nc + dim*node2, nc + dim*node1, fc);
return (area0 + area1) / 3.0;
}
}
private:
const UnstructuredGrid& grid_;
const int face_;
const int degree_;
};
// Initial version: only a constant interpolation.
static void interpolateVelocity(const UnstructuredGrid& grid,
const int cell,
const double* darcyflux,
const double* /*x*/,
double* v)
{
const int dim = grid.dimensions;
std::fill(v, v + dim, 0.0);
const double* cc = grid.cell_centroids + cell*dim;
for (int hface = grid.cell_facepos[cell]; hface < grid.cell_facepos[cell+1]; ++hface) {
const int face = grid.cell_faces[hface];
const double* fc = grid.face_centroids + face*dim;
double flux = 0.0;
if (cell == grid.face_cells[2*face]) {
flux = darcyflux[face];
} else {
flux = -darcyflux[face];
}
for (int dd = 0; dd < dim; ++dd) {
v[dd] += flux * (fc[dd] - cc[dd]) / grid.cell_volumes[cell];
}
}
}
// --------------- Methods of TransportModelTracerTofDiscGal ---------------
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
TransportModelTracerTofDiscGal::TransportModelTracerTofDiscGal(const UnstructuredGrid& grid)
: grid_(grid),
coord_(grid.dimensions),
velocity_(grid.dimensions)
{
}
/// Solve for time-of-flight.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Source term. Sign convention is:
/// (+) inflow flux,
/// (-) outflow flux.
/// \param[in] degree Polynomial degree of DG basis functions used.
/// \param[out] tof_coeff Array of time-of-flight solution coefficients.
/// The values are ordered by cell, meaning that
/// the K coefficients corresponding to the first
/// cell comes before the K coefficients corresponding
/// to the second cell etc.
/// K depends on degree and grid dimension.
void TransportModelTracerTofDiscGal::solveTof(const double* darcyflux,
const double* porevolume,
const double* source,
const int degree,
std::vector<double>& tof_coeff)
{
darcyflux_ = darcyflux;
porevolume_ = porevolume;
source_ = source;
#ifndef NDEBUG
// Sanity check for sources.
const double cum_src = std::accumulate(source, source + grid_.number_of_cells, 0.0);
if (std::fabs(cum_src) > *std::max_element(source, source + grid_.number_of_cells)*1e-2) {
THROW("Sources do not sum to zero: " << cum_src);
}
#endif
degree_ = degree;
const int num_basis = DGBasis::numBasisFunc(grid_.dimensions, degree_);
tof_coeff.resize(num_basis*grid_.number_of_cells);
std::fill(tof_coeff.begin(), tof_coeff.end(), 0.0);
tof_coeff_ = &tof_coeff[0];
rhs_.resize(num_basis);
jac_.resize(num_basis*num_basis);
basis_.resize(num_basis);
basis_nb_.resize(num_basis);
grad_basis_.resize(num_basis*grid_.dimensions);
reorderAndTransport(grid_, darcyflux);
}
void TransportModelTracerTofDiscGal::solveSingleCell(const int cell)
{
// Residual:
// For each cell K, basis function b_j (spanning V_h),
// writing the solution u_h|K = \sum_i c_i b_i
// Res = - \int_K \sum_i c_i b_i v(x) \cdot \grad b_j dx
// + \int_{\partial K} F(u_h, u_h^{ext}, v(x) \cdot n) b_j ds
// - \int_K \phi b_j
// This is linear in c_i, so we do not need any nonlinear iterations.
// We assemble the jacobian and the right-hand side. The residual is
// equal to Res = Jac*c - rhs, and we compute rhs directly.
const int dim = grid_.dimensions;
const int num_basis = DGBasis::numBasisFunc(dim, degree_);
std::fill(rhs_.begin(), rhs_.end(), 0.0);
std::fill(jac_.begin(), jac_.end(), 0.0);
// Compute cell residual contribution.
// Note: Assumes that \int_K b_j = 0 for all j > 0
rhs_[0] += porevolume_[cell];
// Compute upstream residual contribution.
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
const int face = grid_.cell_faces[hface];
double flux = 0.0;
int upstream_cell = -1;
if (cell == grid_.face_cells[2*face]) {
flux = darcyflux_[face];
upstream_cell = grid_.face_cells[2*face+1];
} else {
flux = -darcyflux_[face];
upstream_cell = grid_.face_cells[2*face];
}
if (upstream_cell < 0) {
// This is an outer boundary. Assumed tof = 0 on inflow, so no contribution.
continue;
}
if (flux >= 0.0) {
// This is an outflow boundary.
continue;
}
// Do quadrature over the face to compute
// \int_{\partial K} u_h^{ext} (v(x) \cdot n) b_j ds
// (where u_h^{ext} is the upstream unknown (tof)).
const double normal_velocity = flux / grid_.face_areas[face];
FaceQuadrature quad(grid_, face, degree_);
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
quad.quadPtCoord(quad_pt, &coord_[0]);
DGBasis::eval(grid_, cell, degree_, &coord_[0], &basis_[0]);
DGBasis::eval(grid_, upstream_cell, degree_, &coord_[0], &basis_nb_[0]);
const double tof_upstream = std::inner_product(basis_nb_.begin(), basis_nb_.end(),
tof_coeff_ + num_basis*upstream_cell, 0.0);
const double w = quad.quadPtWeight(quad_pt);
for (int j = 0; j < num_basis; ++j) {
rhs_[j] -= w * tof_upstream * normal_velocity * basis_[j];
}
}
}
// Compute cell jacobian contribution. We use Fortran ordering
// for jac_, i.e. rows cycling fastest.
{
CellQuadrature quad(grid_, cell, 2*degree_ - 1);
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
// b_i (v \cdot \grad b_j)
quad.quadPtCoord(quad_pt, &coord_[0]);
DGBasis::eval(grid_, cell, degree_, &coord_[0], &basis_[0]);
DGBasis::evalGrad(grid_, cell, degree_, &coord_[0], &grad_basis_[0]);
interpolateVelocity(grid_, cell, darcyflux_, &coord_[0], &velocity_[0]);
const double w = quad.quadPtWeight(quad_pt);
for (int j = 0; j < num_basis; ++j) {
for (int i = 0; i < num_basis; ++i) {
for (int dd = 0; dd < dim; ++dd) {
jac_[j*num_basis + i] -= w * basis_[j] * grad_basis_[dim*i + dd] * velocity_[dd];
}
}
}
}
}
// Compute downstream jacobian contribution from faces.
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
const int face = grid_.cell_faces[hface];
double flux = 0.0;
if (cell == grid_.face_cells[2*face]) {
flux = darcyflux_[face];
} else {
flux = -darcyflux_[face];
}
if (flux <= 0.0) {
// This is an inflow boundary.
continue;
}
// Do quadrature over the face to compute
// \int_{\partial K} b_i (v(x) \cdot n) b_j ds
const double normal_velocity = flux / grid_.face_areas[face];
FaceQuadrature quad(grid_, face, 2*degree_);
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
// u^ext flux B (B = {b_j})
quad.quadPtCoord(quad_pt, &coord_[0]);
DGBasis::eval(grid_, cell, degree_, &coord_[0], &basis_[0]);
const double w = quad.quadPtWeight(quad_pt);
for (int j = 0; j < num_basis; ++j) {
for (int i = 0; i < num_basis; ++i) {
jac_[j*num_basis + i] += w * basis_[i] * normal_velocity * basis_[j];
}
}
}
}
// Compute downstream jacobian contribution from sink terms.
// Contribution from inflow sources would be
// similar to the contribution from upstream faces, but
// it is zero since we let all external inflow be associated
// with a zero tof.
if (source_[cell] < 0.0) {
// A sink.
const double flux = -source_[cell]; // Sign convention for flux: outflux > 0.
const double flux_density = flux / grid_.cell_volumes[cell];
// Do quadrature over the cell to compute
// \int_{K} b_i flux b_j dx
CellQuadrature quad(grid_, cell, 2*degree_);
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
quad.quadPtCoord(quad_pt, &coord_[0]);
DGBasis::eval(grid_, cell, degree_, &coord_[0], &basis_[0]);
const double w = quad.quadPtWeight(quad_pt);
for (int j = 0; j < num_basis; ++j) {
for (int i = 0; i < num_basis; ++i) {
jac_[j*num_basis + i] += w * basis_[i] * flux_density * basis_[j];
}
}
}
}
// Solve linear equation.
MAT_SIZE_T n = num_basis;
MAT_SIZE_T nrhs = 1;
MAT_SIZE_T lda = num_basis;
std::vector<MAT_SIZE_T> piv(num_basis);
MAT_SIZE_T ldb = num_basis;
MAT_SIZE_T info = 0;
dgesv_(&n, &nrhs, &jac_[0], &lda, &piv[0], &rhs_[0], &ldb, &info);
if (info != 0) {
// Print the local matrix and rhs.
std::cerr << "Failed solving single-cell system Ax = b in cell " << cell
<< " with A = \n";
for (int row = 0; row < n; ++row) {
for (int col = 0; col < n; ++col) {
std::cerr << " " << jac_[row + n*col];
}
std::cerr << '\n';
}
std::cerr << "and b = \n";
for (int row = 0; row < n; ++row) {
std::cerr << " " << rhs_[row] << '\n';
}
THROW("Lapack error: " << info << " encountered in cell " << cell);
}
// The solution ends up in rhs_, so we must copy it.
std::copy(rhs_.begin(), rhs_.end(), tof_coeff_ + num_basis*cell);
}
void TransportModelTracerTofDiscGal::solveMultiCell(const int num_cells, const int* cells)
{
std::cout << "Pretending to solve multi-cell dependent equation with " << num_cells << " cells." << std::endl;
for (int i = 0; i < num_cells; ++i) {
solveSingleCell(cells[i]);
}
}
} // namespace Opm

View File

@ -0,0 +1,93 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TRANSPORTMODELTRACERTOFDISCGAL_HEADER_INCLUDED
#define OPM_TRANSPORTMODELTRACERTOFDISCGAL_HEADER_INCLUDED
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
#include <vector>
#include <map>
#include <ostream>
struct UnstructuredGrid;
namespace Opm
{
class IncompPropertiesInterface;
/// Implements a discontinuous Galerkin solver for
/// (single-phase) time-of-flight using reordering.
/// The equation solved is:
/// v \cdot \grad\tau = \phi
/// where v is the fluid velocity, \tau is time-of-flight and
/// \phi is the porosity. This is a boundary value problem, where
/// \tau is specified to be zero on all inflow boundaries.
/// The user may specify the polynomial degree of the basis function space
/// used, but only degrees 0 and 1 are supported so far.
class TransportModelTracerTofDiscGal : public TransportModelInterface
{
public:
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
TransportModelTracerTofDiscGal(const UnstructuredGrid& grid);
/// Solve for time-of-flight.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Source term. Sign convention is:
/// (+) inflow flux,
/// (-) outflow flux.
/// \param[in] degree Polynomial degree of DG basis functions used.
/// \param[out] tof_coeff Array of time-of-flight solution coefficients.
/// The values are ordered by cell, meaning that
/// the K coefficients corresponding to the first
/// cell comes before the K coefficients corresponding
/// to the second cell etc.
/// K depends on degree and grid dimension.
void solveTof(const double* darcyflux,
const double* porevolume,
const double* source,
const int degree,
std::vector<double>& tof_coeff);
private:
virtual void solveSingleCell(const int cell);
virtual void solveMultiCell(const int num_cells, const int* cells);
private:
const UnstructuredGrid& grid_;
const double* darcyflux_; // one flux per grid face
const double* porevolume_; // one volume per cell
const double* source_; // one volumetric source term per cell
int degree_;
double* tof_coeff_;
std::vector<double> rhs_; // single-cell right-hand-side
std::vector<double> jac_; // single-cell jacobian
// Below: storage for quantities needed by solveSingleCell().
std::vector<double> coord_;
std::vector<double> basis_;
std::vector<double> basis_nb_;
std::vector<double> grad_basis_;
std::vector<double> velocity_;
};
} // namespace Opm
#endif // OPM_TRANSPORTMODELTRACERTOFDISCGAL_HEADER_INCLUDED