Gravity segregation column solver for compressible case implemented.

This commit is contained in:
Atgeirr Flø Rasmussen 2012-08-14 11:25:59 +02:00
parent 3d45ca3512
commit a81df458e3
3 changed files with 53 additions and 28 deletions

View File

@ -68,8 +68,6 @@
#include <vector>
#include <numeric>
#define TRANSPORT_SOLVER_FIXED 1
template <class State>
static void outputState(const UnstructuredGrid& grid,
@ -299,14 +297,13 @@ main(int argc, char** argv)
nl_press_res_tol, nl_press_change_tol, nl_press_maxiter,
grav, wells->c_wells());
// Reordering solver.
#if TRANSPORT_SOLVER_FIXED
const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9);
const int nl_maxiter = param.getDefault("nl_maxiter", 30);
Opm::TransportModelCompressibleTwophase reorder_model(*grid->c_grid(), *props, nl_tolerance, nl_maxiter);
if (use_gauss_seidel_gravity) {
reorder_model.initGravity(grav);
reorder_model.initGravity();
}
#endif // TRANSPORT_SOLVER_FIXED
// Column-based gravity segregation solver.
std::vector<std::vector<int> > columns;
if (use_column_solver) {
@ -414,7 +411,6 @@ main(int argc, char** argv)
// Solve transport.
transport_timer.start();
#if TRANSPORT_SOLVER_FIXED
double stepsize = simtimer.currentStepLength();
if (num_transport_substeps != 1) {
stepsize /= double(num_transport_substeps);
@ -427,11 +423,9 @@ main(int argc, char** argv)
&porevol[0], &porevol[0], &reorder_src[0], stepsize, state.saturation());
// Opm::computeInjectedProduced(*props, state.saturation(), reorder_src, stepsize, injected, produced);
if (use_segregation_split) {
THROW("Segregation not implemented yet.");
// reorder_model.solveGravity(columns, &porevol[0], stepsize, state.saturation());
reorder_model.solveGravity(columns, &state.pressure()[0], &porevol[0], stepsize, grav, state.saturation());
}
}
#endif // TRANSPORT_SOLVER_FIXED
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;

View File

@ -254,6 +254,8 @@ namespace Opm
++update_count;
const int cell = cells[i];
const double old_s = saturation_[cell];
// solveSingleCell() requires saturation_[cell]
// to be s0.
saturation_[cell] = s0[i];
solveSingleCell(cell);
const double s_change = std::fabs(saturation_[cell] - old_s);
@ -305,8 +307,9 @@ namespace Opm
// Residual function r(s) for a single-cell implicit Euler gravity segregation
//
// r(s) = s - s0 + dt/pv*sum_{j adj i}( gravmod_ij * gf_ij ).
// [[ incompressible was: r(s) = s - s0 + dt/pv*sum_{j adj i}( gravmod_ij * gf_ij ) ]]
//
// r(s) = s - B*z0 + dt/pv*( influx + outflux*f(s) )
struct TransportModelCompressibleTwophase::GravityResidual
{
int cell;
@ -372,32 +375,52 @@ namespace Opm
void TransportModelCompressibleTwophase::initGravity(const double* grav)
void TransportModelCompressibleTwophase::initGravity()
{
// Set up gravflux_ = T_ij g (rho_w - rho_o) (z_i - z_j)
// Set up transmissibilities.
std::vector<double> htrans(grid_.cell_facepos[grid_.number_of_cells]);
const int nf = grid_.number_of_faces;
const int dim = grid_.dimensions;
gravflux_.resize(nf);
trans_.resize(nf);
tpfa_htrans_compute(const_cast<UnstructuredGrid*>(&grid_), props_.permeability(), &htrans[0]);
tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &htrans[0], &gravflux_[0]);
tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &htrans[0], &trans_[0]);
}
const double delta_rho = 0.0;// props_.density()[0] - props_.density()[1];
THROW("TransportModelCompressibleTwophase gravity solver not done yet."); // See line above...
void TransportModelCompressibleTwophase::initGravityDynamic(const double* grav)
{
// Set up gravflux_ = T_ij g [ (b_w,i rho_w,S - b_o,i rho_o,S) (z_i - z_f)
// + (b_w,j rho_w,S - b_o,j rho_o,S) (z_f - z_j) ]
// But b_w,i * rho_w,S = rho_w,i, which we conmpute with a call to props_.density().
// We assume that we already have stored T_ij in trans_.
// We also assume that the A_ matrices are updated from an earlier call to solve().
const int nc = grid_.number_of_cells;
const int nf = grid_.number_of_faces;
const int np = props_.numPhases();
ASSERT(np == 2);
const int dim = grid_.dimensions;
density_.resize(nc*np);
props_.density(grid_.number_of_cells, &A_[0], &density_[0]);
std::fill(gravflux_.begin(), gravflux_.end(), 0.0);
for (int f = 0; f < nf; ++f) {
const int* c = &grid_.face_cells[2*f];
double gdz = 0.0;
const double signs[2] = { 1.0, -1.0 };
if (c[0] != -1 && c[1] != -1) {
for (int d = 0; d < dim; ++d) {
gdz += grav[d]*(grid_.cell_centroids[dim*c[0] + d] - grid_.cell_centroids[dim*c[1] + d]);
for (int ci = 0; ci < 2; ++ci) {
double gdz = 0.0;
for (int d = 0; d < dim; ++d) {
gdz += grav[d]*(grid_.cell_centroids[dim*c[ci] + d] - grid_.face_centroids[dim*f + d]);
}
gravflux_[f] += signs[ci]*trans_[f]*gdz*(density_[2*c[ci]] - density_[2*c[ci] + 1]);
}
}
gravflux_[f] *= delta_rho*gdz;
}
}
void TransportModelCompressibleTwophase::solveSingleCellGravity(const std::vector<int>& cells,
const int pos,
const double* gravflux)
@ -470,10 +493,13 @@ namespace Opm
void TransportModelCompressibleTwophase::solveGravity(const std::vector<std::vector<int> >& columns,
const double* pressure,
const double* porevolume0,
const double* porevolume,
const double dt,
const double* grav,
std::vector<double>& saturation)
{
// Assume that solve() has already been called, so that A_ is current.
initGravityDynamic(grav);
// Initialize mobilities.
const int nc = grid_.number_of_cells;
std::vector<int> cells(nc);
@ -493,7 +519,6 @@ namespace Opm
// Set up other variables.
porevolume0_ = porevolume0;
porevolume_ = porevolume;
dt_ = dt;
toWaterSat(saturation, saturation_);

View File

@ -48,7 +48,7 @@ namespace Opm
/// \param[in] pressure Array of cell pressures
/// \param[in] surfacevol0 Array of surface volumes at start of timestep
/// \param[in] porevolume0 Array of pore volumes at start of timestep.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] porevolume Array of pore volumes at end of timestep.
/// \param[in] source Transport source term.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
@ -62,20 +62,23 @@ namespace Opm
std::vector<double>& saturation);
/// Initialise quantities needed by gravity solver.
/// \param[in] grav gravity vector
void initGravity(const double* grav);
void initGravity();
/// Solve for gravity segregation.
/// This uses a column-wise nonlinear Gauss-Seidel approach.
/// It assumes that the input columns contain cells in a single
/// vertical stack, that do not interact with other columns (for
/// gravity segregation.
/// \TODO: Implement this.
/// \param[in] columns Vector of cell-columns.
/// \param[in] porevolume0 Array of pore volumes at start of timestep.
/// \param[in] dt Time step.
/// \param[in] grav Gravity vector.
/// \param[in, out] saturation Phase saturations.
void solveGravity(const std::vector<std::vector<int> >& columns,
const double* pressure,
const double* porevolume0,
const double* porevolume,
const double dt,
const double* grav,
std::vector<double>& saturation);
private:
@ -85,6 +88,7 @@ namespace Opm
const int pos,
const double* gravflux);
int solveGravityColumn(const std::vector<int>& cells);
void initGravityDynamic(const double* grav);
private:
const UnstructuredGrid& grid_;
@ -106,6 +110,8 @@ namespace Opm
std::vector<double> saturation_; // P (= num. phases) per cell
std::vector<double> fractionalflow_; // = m[0]/(m[0] + m[1]) per cell
// For gravity segregation.
std::vector<double> trans_;
std::vector<double> density_;
std::vector<double> gravflux_;
std::vector<double> mob_;
std::vector<double> s0_;