Remove more unused mex-interfaces.

This commit is contained in:
Atgeirr Flø Rasmussen 2013-03-07 16:17:40 +01:00
parent d63d1e7121
commit ac49972082
2 changed files with 0 additions and 531 deletions

View File

@ -1,465 +0,0 @@
/*===========================================================================
//
// File: processgrid.c
//
// Created: Fri Jun 19 08:46:53 2009
//
// Author: Jostein R. Natvig <Jostein.R.Natvig@sintef.no>
//
// $Date$
//
// $Revision$
//
//===========================================================================*/
/*
Copyright 2009, 2010, 2011, 2012 SINTEF ICT, Applied Mathematics.
Copyright 2009, 2010, 2011, 2012 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/* Copyright 2009, 2010 SINTEF ICT, Applied Mathematics. */
/* Mex gateway by Jostein R. Natvig, SINTEF ICT. */
#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <mex.h>
#include "preprocess.h"
#include "mxgrdecl.h"
/* ---------------------------------------------------------------------- */
static mxArray *
allocate_nodes(size_t nnodes)
/* ---------------------------------------------------------------------- */
{
size_t nflds;
const char *fields[] = { "num", "coords" };
mxArray *nodes, *num, *coords;
nflds = sizeof(fields) / sizeof(fields[0]);
nodes = mxCreateStructMatrix(1, 1, nflds, fields);
num = mxCreateDoubleScalar(nnodes);
coords = mxCreateDoubleMatrix(nnodes, 3, mxREAL);
if ((nodes != NULL) && (num != NULL) && (coords != NULL)) {
mxSetField(nodes, 0, "num" , num);
mxSetField(nodes, 0, "coords", coords);
} else {
if (coords != NULL) { mxDestroyArray(coords); }
if (num != NULL) { mxDestroyArray(num); }
if (nodes != NULL) { mxDestroyArray(nodes); }
nodes = NULL;
}
return nodes;
}
/* ---------------------------------------------------------------------- */
static void
fill_nodes(mxArray *nodes, struct processed_grid *grid)
/* ---------------------------------------------------------------------- */
{
size_t i, j, nnodes;
double *coords;
nnodes = grid->number_of_nodes;
coords = mxGetPr(mxGetField(nodes, 0, "coords"));
for (j = 0; j < 3; ++j) {
for (i = 0; i < nnodes; ++i) {
*coords++ = grid->node_coordinates[3*i + j];
}
}
}
/* ---------------------------------------------------------------------- */
static mxArray *
allocate_faces(size_t nf, size_t nfacenodes)
/* ---------------------------------------------------------------------- */
{
size_t nflds;
const char *fields[] = { "num", "neighbors", "nodePos", "nodes", "tag" };
mxArray *faces, *num, *neighbors, *nodePos, *nodes, *tag;
nflds = sizeof(fields) / sizeof(fields[0]);
faces = mxCreateStructMatrix(1, 1, nflds, fields);
num = mxCreateDoubleScalar (nf);
neighbors = mxCreateNumericMatrix(nf , 2, mxINT32_CLASS, mxREAL);
nodePos = mxCreateNumericMatrix(nf + 1 , 1, mxINT32_CLASS, mxREAL);
nodes = mxCreateNumericMatrix(nfacenodes, 1, mxINT32_CLASS, mxREAL);
tag = mxCreateNumericMatrix(nf , 1, mxINT32_CLASS, mxREAL);
if ((faces != NULL) && (num != NULL) && (neighbors != NULL) &&
(nodePos != NULL) && (nodes != NULL) && (tag != NULL)) {
mxSetField(faces, 0, "num" , num);
mxSetField(faces, 0, "neighbors", neighbors);
mxSetField(faces, 0, "nodePos" , nodePos);
mxSetField(faces, 0, "nodes" , nodes);
mxSetField(faces, 0, "tag" , tag);
} else {
if (tag != NULL) { mxDestroyArray(tag); }
if (nodes != NULL) { mxDestroyArray(nodes); }
if (nodePos != NULL) { mxDestroyArray(nodePos); }
if (neighbors != NULL) { mxDestroyArray(neighbors); }
if (num != NULL) { mxDestroyArray(num); }
if (faces != NULL) { mxDestroyArray(faces); }
faces = NULL;
}
return faces;
}
/* ---------------------------------------------------------------------- */
static void
fill_faces(mxArray *faces, struct processed_grid *grid)
/* ---------------------------------------------------------------------- */
{
size_t i, f, nf, nfn;
int *pi;
nf = grid->number_of_faces;
/* Fill faces.neighbors */
pi = mxGetData(mxGetField(faces, 0, "neighbors"));
for (i = 0; i < 2; i++) {
for (f = 0; f < nf; f++) {
/* Add one for one-based indexing in M */
*pi++ = grid->face_neighbors[2*f + i] + 1;
}
}
/* Fill faces.nodePos */
pi = mxGetData(mxGetField(faces, 0, "nodePos"));
for (i = 0; i <= nf; i++) { pi[i] = grid->face_ptr[i] + 1; }
/* Fill faces.nodes */
pi = mxGetData(mxGetField(faces, 0, "nodes"));
nfn = grid->face_ptr[nf]; /* Total number of face nodes */
for (i = 0; i < nfn; i++) { pi[i] = grid->face_nodes[i] + 1; }
/* Fill faces.tag */
pi = mxGetData(mxGetField(faces, 0, "tag"));
for (f = 0; f < nf; f++) { pi[f] = grid->face_tag[f] + 1; }
}
/* ---------------------------------------------------------------------- */
static size_t
count_halffaces(size_t nf, const int *neighbors)
/* ---------------------------------------------------------------------- */
{
int c1, c2;
size_t nhf, f;
for (f = nhf = 0; f < nf; f++) {
c1 = neighbors[2*f + 0];
c2 = neighbors[2*f + 1];
nhf += c1 >= 0;
nhf += c2 >= 0;
}
return nhf;
}
/* ---------------------------------------------------------------------- */
static mxArray *
allocate_cells(size_t nc, size_t ncf)
/* ---------------------------------------------------------------------- */
{
size_t nflds;
const char *fields[] = { "num", "facePos", "faces", "indexMap" };
mxArray *cells, *num, *facePos, *faces, *indexMap;
nflds = sizeof(fields) / sizeof(fields[0]);
cells = mxCreateStructMatrix(1, 1, nflds, fields);
num = mxCreateDoubleScalar (nc);
facePos = mxCreateNumericMatrix(nc + 1, 1, mxINT32_CLASS, mxREAL);
faces = mxCreateNumericMatrix(ncf , 2, mxINT32_CLASS, mxREAL);
indexMap = mxCreateNumericMatrix(nc , 1, mxINT32_CLASS, mxREAL);
if ((cells != NULL) && (num != NULL) && (facePos != NULL) &&
(faces != NULL) && (indexMap != NULL)) {
mxSetField(cells, 0, "num" , num );
mxSetField(cells, 0, "facePos" , facePos );
mxSetField(cells, 0, "faces" , faces );
mxSetField(cells, 0, "indexMap", indexMap);
} else {
if (indexMap != NULL) { mxDestroyArray(indexMap); }
if (faces != NULL) { mxDestroyArray(faces); }
if (facePos != NULL) { mxDestroyArray(facePos); }
if (num != NULL) { mxDestroyArray(num); }
if (cells != NULL) { mxDestroyArray(cells); }
cells = NULL;
}
return cells;
}
/* ---------------------------------------------------------------------- */
static void
fill_cells(mxArray *cells, struct processed_grid *grid)
/* ---------------------------------------------------------------------- */
{
size_t c, nc, f, nf, i;
int c1, c2, cf_tag, nhf;
int *pi1, *pi2;
nc = grid->number_of_cells;
nf = grid->number_of_faces;
/* Simultaneously fill cells.facePos and cells.faces by transposing the
* neighbours mapping. */
pi1 = mxGetData(mxGetField(cells, 0, "facePos"));
pi2 = mxGetData(mxGetField(cells, 0, "faces" ));
for (i = 0; i < nc + 1; i++) { pi1[i] = 0; }
/* 1) Count connections (i.e., faces per cell). */
for (f = 0; f < nf; f++) {
c1 = grid->face_neighbors[2*f + 0];
c2 = grid->face_neighbors[2*f + 1];
if (c1 >= 0) { pi1[c1 + 1] += 1; }
if (c2 >= 0) { pi1[c2 + 1] += 1; }
}
/* 2) Define start pointers (really, position *end* pointers at start). */
for (c = 1; c <= nc; c++) {
pi1[0] += pi1[c];
pi1[c] = pi1[0] - pi1[c];
}
/* 3) Fill connection structure whilst advancing end pointers. */
nhf = pi1[0];
pi1[0] = 0;
mxAssert (((size_t) nhf) == mxGetM(mxGetField(cells, 0, "faces")),
"Number of half faces (SIZE(cells.faces,1)) incorrectly "
"determined earlier.");
for (f = 0; f < nf; f++) {
cf_tag = 2*grid->face_tag[f] + 1; /* [1, 3, 5] */
c1 = grid->face_neighbors[2*f + 0];
c2 = grid->face_neighbors[2*f + 1];
if (c1 >= 0) {
pi2[ pi1[ c1 + 1 ] + 0*nhf ] = f + 1;
pi2[ pi1[ c1 + 1 ] + 1*nhf ] = cf_tag + 1; /* out */
pi1[ c1 + 1 ] += 1;
}
if (c2 >= 0) {
pi2[ pi1[ c2 + 1 ] + 0*nhf ] = f + 1;
pi2[ pi1[ c2 + 1 ] + 1*nhf ] = cf_tag + 0; /* in */
pi1[ c2 + 1 ] += 1;
}
}
/* Finally, adjust pointer array for one-based indexing in M. */
for (i = 0; i < nc + 1; i++) { pi1[i] += 1; }
/* Fill cells.indexMap. Note that despite the name, 'local_cell_index'
* really *is* the (zero-based) indexMap of the 'processed_grid'. */
pi1 = mxGetData(mxGetField(cells, 0, "indexMap"));
for (c = 0; c < nc; c++) { pi1[c] = grid->local_cell_index[c] + 1; }
}
/* ---------------------------------------------------------------------- */
static mxArray *
allocate_grid(struct processed_grid *grid, const char *func)
/* ---------------------------------------------------------------------- */
{
size_t nflds, nhf;
const char *fields[] = { "nodes", "faces", "cells",
"type", "cartDims", "griddim" };
mxArray *G, *nodes, *faces, *cells;
mxArray *type, *typestr, *cartDims, *griddim;
nflds = sizeof(fields) / sizeof(fields[0]);
nhf = count_halffaces(grid->number_of_faces, grid->face_neighbors);
G = mxCreateStructMatrix(1, 1, nflds, fields);
nodes = allocate_nodes(grid->number_of_nodes);
faces = allocate_faces(grid->number_of_faces,
grid->face_ptr[ grid->number_of_faces ]);
cells = allocate_cells(grid->number_of_cells, nhf);
type = mxCreateCellMatrix(1, 1);
typestr = mxCreateString(func);
cartDims = mxCreateDoubleMatrix(1, 3, mxREAL);
griddim = mxCreateDoubleScalar(3);
if ((G != NULL) && (nodes != NULL) && (faces != NULL) &&
(cells != NULL) && (type != NULL) && (typestr != NULL) &&
(cartDims != NULL) && (griddim != NULL)) {
mxSetCell(type, 0, typestr);
mxSetField(G, 0, "nodes" , nodes );
mxSetField(G, 0, "faces" , faces );
mxSetField(G, 0, "cells" , cells );
mxSetField(G, 0, "type" , type );
mxSetField(G, 0, "cartDims", cartDims);
mxSetField(G, 0, "griddim" , griddim );
} else {
if (griddim != NULL) { mxDestroyArray(griddim); }
if (cartDims != NULL) { mxDestroyArray(cartDims); }
if (typestr != NULL) { mxDestroyArray(typestr); }
if (type != NULL) { mxDestroyArray(type); }
if (cells != NULL) { mxDestroyArray(cells); }
if (faces != NULL) { mxDestroyArray(faces); }
if (nodes != NULL) { mxDestroyArray(nodes); }
if (G != NULL) { mxDestroyArray(G); }
G = NULL;
}
return G;
}
/* ---------------------------------------------------------------------- */
static void
fill_grid(mxArray *G, struct processed_grid *grid)
/* ---------------------------------------------------------------------- */
{
double *pr;
pr = mxGetPr(mxGetField(G, 0, "cartDims"));
pr[0] = grid->dimensions[0];
pr[1] = grid->dimensions[1];
pr[2] = grid->dimensions[2];
fill_nodes(mxGetField(G, 0, "nodes"), grid);
fill_faces(mxGetField(G, 0, "faces"), grid);
fill_cells(mxGetField(G, 0, "cells"), grid);
}
/* ---------------------------------------------------------------------- */
static int
args_ok(int nlhs, int nrhs, const mxArray *prhs[])
/* ---------------------------------------------------------------------- */
{
int ok;
ok = (nlhs == 1) && ((nrhs == 1) || (nrhs == 2));
ok = ok && !mxIsEmpty(prhs[0]);
ok = ok && mxIsStruct(prhs[0]);
ok = ok && (mxGetFieldNumber(prhs[0], "cartDims") >= 0);
ok = ok && (mxGetFieldNumber(prhs[0], "COORD" ) >= 0);
ok = ok && (mxGetFieldNumber(prhs[0], "ZCORN" ) >= 0);
if (ok && (nrhs == 2)) {
ok = mxIsDouble(prhs[1]) && (mxGetNumberOfElements(prhs[1]) == 1);
}
return ok;
}
/* ---------------------------------------------------------------------- */
static double
define_tolerance(int nrhs, const mxArray *prhs[])
/* ---------------------------------------------------------------------- */
{
double tol;
tol = 0.0;
if (nrhs == 2) {
tol = mxGetScalar(prhs[1]);
}
return tol;
}
/* G = processgrid(grdecl)
G = processgrid(grdecl, tolerance)
*/
/* ---------------------------------------------------------------------- */
void
mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
/* ---------------------------------------------------------------------- */
{
double tolerance;
char errmsg[1023 + 1];
struct grdecl grdecl;
struct processed_grid g;
if (args_ok(nlhs, nrhs, prhs)) {
mx_init_grdecl(&grdecl, prhs[0]);
tolerance = define_tolerance(nrhs, prhs);
process_grdecl(&grdecl, tolerance, &g);
plhs[0] = allocate_grid(&g, mexFunctionName());
if (plhs[0] != NULL) {
fill_grid(plhs[0], &g);
} else {
/* Failed to create grid structure. Return empty. */
plhs[0] = mxCreateDoubleMatrix(0, 0, mxREAL);
}
free_processed_grid(&g);
} else {
sprintf(errmsg,
"Calling sequence is\n\t"
"G = %s(grdecl)\t%%or\n\t"
"G = %s(grdecl, tolerance)\n"
"The 'grdecl' must be a valid structure with fields\n"
"\t'cartDims', 'COORD', 'ZCORN'",
mexFunctionName(), mexFunctionName());
mexErrMsgTxt(errmsg);
}
}
/* Local Variables: */
/* c-basic-offset:4 */
/* End: */

View File

@ -1,66 +0,0 @@
function G = processgrid(varargin)
%Compute grid topology and geometry from pillar grid description.
%
% SYNOPSIS:
% G = processgrid(grdecl)
% G = processgrid(grdecl,ztol)
%
% PARAMETERS:
% grdecl - Raw pillar grid structure, as defined by function
% 'readGRDECL', with fields COORDS, ZCORN and, possibly, ACTNUM.
% ztol - tolerance for unique points
%
% RETURNS:
% G - Valid grid definition containing connectivity, cell
% geometry, face geometry and unique nodes.
%
% EXAMPLE:
% G = processgrid(readGRDECL('small.grdecl'));
% plotGrid(G); view(10,45);
%
% SEE ALSO:
% processGRDECL, readGRDECL, deactivateZeroPoro, removeCells.
%{
#COPYRIGHT#
%}
% $Date$
% $Revision$
% Copyright 2009 SINTEF ICT, Applied Mathematics.
% Mex gateway by Jostein R. Natvig, SINTEF ICT.
% $Date$
% $Revision$
G = processgrid_mex(varargin{:});
G.griddim = 3;
G = splitDisconnectedGrid(G, false);
end
function G = splitDisconnectedGrid(G, verbose)
% Check if grid is connected
ix = all(G.faces.neighbors~=0, 2);
I = [G.faces.neighbors(ix,1);G.faces.neighbors(ix,2)];
J = [G.faces.neighbors(ix,2);G.faces.neighbors(ix,1)];
N = double(max(G.faces.neighbors(:)));
A = sparse(double(I),double(J),1,N,N)+speye(N);
clear ix I J
[a,b,c,d]=dmperm(A); %#ok
clear A b d
if numel(c) > 2,
dispif(verbose, '\nGrid has %d disconnected components\n', ...
numel(c)- 1);
% Partition grid into connected subgrids
for i = 1:numel(c) - 1,
g(i) = extractSubgrid(G, a(c(i):c(i+1)-1)); %#ok
sz(i) = g(i).cells.num; %#ok
g(i).cartDims = G.cartDims; %#ok
end
% Return largest (in number of cells) grid first
[i,i] = sort(-sz); %#ok
G = g(i);
end
end