Now computes faceA in the same way as is done in Matlab, I think.

This commit is contained in:
Atgeirr Flø Rasmussen 2010-12-06 16:58:04 +01:00
parent c7b180de7b
commit b8d5e6c845

View File

@ -93,10 +93,10 @@ namespace Opm
const BlackoilFluid& fluid,
const std::vector<PhaseVec>& cell_pressure,
const std::vector<PhaseVec>& face_pressure,
const std::vector<CompVec>& z,
const std::vector<CompVec>& cell_z,
const CompVec& bdy_z)
{
int num_cells = z.size();
int num_cells = cell_z.size();
ASSERT(num_cells == grid.numCells());
int num_faces = face_pressure.size();
ASSERT(num_faces == grid.numFaces());
@ -113,10 +113,9 @@ namespace Opm
faceA.resize(num_faces*nc*np);
phasemobf.resize(np*num_faces);
phasemobc.resize(num_cells);
PhaseVec mob;
BOOST_STATIC_ASSERT(np == 3);
for (int cell = 0; cell < num_cells; ++cell) {
FluidStateBlackoil state = fluid.computeState(cell_pressure[cell], z[cell]);
FluidStateBlackoil state = fluid.computeState(cell_pressure[cell], cell_z[cell]);
totcompr[cell] = state.total_compressibility_;
totphasevol[cell] = state.total_phase_volume_;
saturation[cell] = state.saturation_;
@ -132,39 +131,53 @@ namespace Opm
frac_flow[cell] = state.mobility_;
frac_flow[cell] /= total_mobility;
}
// Set phasemobf to average of cells' phase mobs, if pressures are equal, else use upwinding.
// Set faceA by using average of cells' z and face pressures.
for (int face = 0; face < num_faces; ++face) {
int c[2] = { grid.faceCell(face, 0), grid.faceCell(face, 1) };
PhaseVec phase_p[2];
CompVec z_face(0.0);
int num = 0;
PhaseVec phase_mob[2];
CompVec face_z(0.0);
bool bdy = false;
bool inflow_bdy = false;
for (int j = 0; j < 2; ++j) {
if (c[j] >= 0) {
phase_p[j] = cell_pressure[c[j]];
z_face += z[c[j]];
++num;
phase_mob[j] = phasemobc[c[j]];
face_z += cell_z[c[j]];
} else {
// Boundaries get essentially -inf pressure for upwinding purpose. \TODO handle BCs.
phase_p[j] = PhaseVec(-1e100);
// \TODO The two lines below are wrong for outflow faces.
z_face += bdy_z;
++num;
bdy = true;
phase_p[j] = face_pressure[face];
/// \TODO with capillary pressures etc., what is an inflow bdy.
/// Using Liquid phase pressure here.
inflow_bdy = face_pressure[face][Liquid]
> cell_pressure[c[(j+1)%2]][Liquid];
if (inflow_bdy) {
FluidStateBlackoil bdy_state = fluid.computeState(face_pressure[face], bdy_z);
phase_mob[j] = bdy_state.mobility_;
face_z += bdy_z;
} else {
phase_p[j] = -1e100; // To ensure correct upwinding.
// No need to set phase_mob[j].
}
}
z_face /= double(num);
}
if (!bdy || inflow_bdy) {
face_z *= 0.5;
}
for (int phase = 0; phase < np; ++phase) {
if (phase_p[0][phase] == phase_p[1][phase]) {
// Average mobilities.
double aver = 0.5*(phasemobc[c[0]][phase] + phasemobc[c[1]][phase]);
double aver = 0.5*(phase_mob[0][phase] + phase_mob[1][phase]);
phasemobf[np*face + phase] = aver;
} else {
// Upwind mobilities.
int upwind = (phase_p[0][phase] > phase_p[1][phase]) ? 0 : 1;
phasemobf[np*face + phase] = phasemobc[c[upwind]][phase];
phasemobf[np*face + phase] = phase_mob[upwind][phase];
}
}
FluidStateBlackoil face_state = fluid.computeState(face_pressure[face], z_face);
FluidStateBlackoil face_state = fluid.computeState(face_pressure[face], face_z);
std::copy(face_state.phase_to_comp_, face_state.phase_to_comp_ + nc*np, &faceA[face*nc*np]);
}