Merge remote-tracking branch 'hnil/hnil_class' into combined.

Conflicts:
	CMakeLists.txt
	examples/sim_wateroil.cpp
	opm/core/grid/cpgpreprocess/geometry.c
	opm/core/transport/reorder/ReorderSolverInterface.hpp
	opm/core/transport/reorder/TofDiscGalReorder.cpp
	opm/core/transport/reorder/TofDiscGalReorder.hpp
	opm/core/transport/reorder/TofReorder.cpp
	opm/core/transport/reorder/TofReorder.hpp
	opm/core/transport/reorder/TransportSolverCompressibleTwophaseReorder.cpp
	opm/core/transport/reorder/TransportSolverTwophaseReorder.cpp
This commit is contained in:
Atgeirr Flø Rasmussen 2013-03-14 16:18:39 +01:00
commit c23898efa7
30 changed files with 1400 additions and 173 deletions

View File

@ -43,7 +43,7 @@
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/simulator/SimulatorIncompTwophase.hpp>
#include <opm/core/simulator/SimulatorIncompTwophaseReorder.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/filesystem.hpp>
@ -200,7 +200,7 @@ main(int argc, char** argv)
if (!use_deck) {
// Simple simulation without a deck.
WellsManager wells; // no wells.
SimulatorIncompTwophase simulator(param,
SimulatorIncompTwophaseReorder simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,
@ -255,7 +255,7 @@ main(int argc, char** argv)
}
// Create and run simulator.
SimulatorIncompTwophase simulator(param,
SimulatorIncompTwophaseReorder simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,

View File

@ -74,7 +74,7 @@
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/transport/GravityColumnSolver.hpp>
#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
#include <opm/core/transport/reorder/TransportSolverTwophaseReorder.hpp>
#include <boost/filesystem/convenience.hpp>
#include <boost/scoped_ptr.hpp>
@ -455,7 +455,7 @@ main(int argc, char** argv)
// Reordering solver.
const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9);
const int nl_maxiter = param.getDefault("nl_maxiter", 30);
Opm::TransportModelTwophase reorder_model(*grid->c_grid(), *props, nl_tolerance, nl_maxiter);
Opm::TransportSolverTwophaseReorder reorder_model(*grid->c_grid(), *props, nl_tolerance, nl_maxiter);
if (use_gauss_seidel_gravity) {
reorder_model.initGravity(grav);
}

View File

@ -63,13 +63,19 @@ namespace Opm
/// Construct a 2d cartesian grid with cells of unit size.
GridManager::GridManager(int nx, int ny)
{
ug_ = create_grid_cart2d(nx, ny);
ug_ = create_grid_cart2d(nx, ny, 1.0, 1.0);
if (!ug_) {
THROW("Failed to construct grid.");
}
}
GridManager::GridManager(int nx, int ny,double dx, double dy)
{
ug_ = create_grid_cart2d(nx, ny, dx, dy);
if (!ug_) {
THROW("Failed to construct grid.");
}
}
/// Construct a 3d cartesian grid with cells of unit size.

View File

@ -47,6 +47,9 @@ namespace Opm
/// Construct a 2d cartesian grid with cells of unit size.
GridManager(int nx, int ny);
/// Construct a 2d cartesian grid with cells of size [dx, dy].
GridManager(int nx, int ny, double dx, double dy);
/// Construct a 3d cartesian grid with cells of unit size.
GridManager(int nx, int ny, int nz);

View File

@ -91,7 +91,7 @@ static void fill_cart_geometry_2d(struct UnstructuredGrid *G,
const double *y);
struct UnstructuredGrid*
create_grid_cart2d(int nx, int ny)
create_grid_cart2d(int nx, int ny, double dx, double dy)
{
int i;
double *x, *y;
@ -104,8 +104,8 @@ create_grid_cart2d(int nx, int ny)
G = NULL;
} else {
for (i = 0; i < nx + 1; i++) { x[i] = i; }
for (i = 0; i < ny + 1; i++) { y[i] = i; }
for (i = 0; i < nx + 1; i++) { x[i] = i*dx; }
for (i = 0; i < ny + 1; i++) { y[i] = i*dy; }
G = create_grid_tensor2d(nx, ny, x, y);
}

View File

@ -44,7 +44,7 @@
extern "C" {
#endif
struct UnstructuredGrid;
/**
* Form geometrically Cartesian grid in two space dimensions with unit-sized
@ -52,12 +52,14 @@ struct UnstructuredGrid;
*
* @param[in] nx Number of cells in @c x direction.
* @param[in] ny Number of cells in @c y direction.
* @param[in] dx Length, in meters, of each cell's @c x extent.
* @param[in] dy Length, in meters, of each cell's @c y extent.
*
* @return Fully formed grid structure containing valid geometric primitives.
* Must be destroyed using function destroy_grid().
*/
struct UnstructuredGrid *
create_grid_cart2d(int nx, int ny);
create_grid_cart2d(int nx, int ny,double dx, double dy);
/**

View File

@ -2,6 +2,7 @@
* Copyright 2010 (c) SINTEF ICT, Applied Mathematics.
* Jostein R. Natvig <Jostein.R.Natvig at sintef.no>
*/
#include <omp.h>
#include <math.h>
#include <stdio.h>
#include "geometry.h"
@ -47,11 +48,20 @@ compute_face_geometry_3d(double *coords, int nfaces,
double cface[3] = {0};
double n[3] = {0};
const double twothirds = 0.666666666666666666666666666667;
double twothirds = 0.666666666666666666666666666667;
double a;
int num_face_nodes;
double area;
/*#pragma omp parallel for */
/*#pragma omp parallel for shared(fnormals,fcentroids,fareas)*/
#pragma omp parallel for default(none) \
private(f,x,u,v,w,i,k,node,cface,n,a,num_face_nodes,area) \
shared(fnormals,fcentroids,fareas \
,coords, nfaces, nodepos, facenodes) \
firstprivate(ndims, twothirds)
for (f=0; f<nfaces; ++f)
{
int num_face_nodes;
double area = 0.0;
for(i=0; i<ndims; ++i) x[i] = 0.0;
for(i=0; i<ndims; ++i) n[i] = 0.0;
for(i=0; i<ndims; ++i) cface[i] = 0.0;
@ -71,11 +81,11 @@ compute_face_geometry_3d(double *coords, int nfaces,
node = facenodes[nodepos[f+1]-1];
for(i=0; i<ndims; ++i) u[i] = coords[3*node+i] - x[i];
area=0.0;
/* Compute triangular contrib. to face normal and face centroid*/
for(k=nodepos[f]; k<nodepos[f+1]; ++k)
{
double a;
node = facenodes[k];
for (i=0; i<ndims; ++i) v[i] = coords[3*node+i] - x[i];
@ -83,11 +93,11 @@ compute_face_geometry_3d(double *coords, int nfaces,
cross(u,v,w);
a = 0.5*norm(w);
area += a;
if(!(a>0))
/* if(!(a>0))
{
fprintf(stderr, "Internal error in compute_face_geometry.");
}
*/
/* face normal */
for (i=0; i<ndims; ++i) n[i] += w[i];
@ -221,17 +231,19 @@ compute_cell_geometry_3d(double *coords,
double xcell[3];
double ccell[3];
double cface[3] = {0};
const double twothirds = 0.666666666666666666666666666667;
int ndigits;
ndigits = ((int) (log(ncells) / log(10.0))) + 1;
int num_faces;
double volume;
double tet_volume, subnormal_sign;
double twothirds = 0.666666666666666666666666666667;
#pragma omp parallel for default(none) \
private(i,k,f,c,face,node,x,u,v,w,xcell \
,ccell ,cface,num_faces,volume, tet_volume, subnormal_sign) \
shared(coords,nodepos,facenodes,neighbors, \
fnormals,fcentroids,facepos,cellfaces,ccentroids,cvolumes) \
firstprivate(ncells,ndims,twothirds)
for (c=0; c<ncells; ++c)
{
int num_faces;
double volume = 0.0;
for(i=0; i<ndims; ++i) xcell[i] = 0.0;
for(i=0; i<ndims; ++i) ccell[i] = 0.0;
@ -255,6 +267,7 @@ compute_cell_geometry_3d(double *coords,
* For all faces, add tetrahedron's volume and centroid to
* 'cvolume' and 'ccentroid'.
*/
volume=0.0;
for(f=facepos[c]; f<facepos[c+1]; ++f)
{
int num_face_nodes;
@ -279,38 +292,38 @@ compute_cell_geometry_3d(double *coords,
node = facenodes[nodepos[face+1]-1];
for(i=0; i<ndims; ++i) u[i] = coords[3*node+i] - x[i];
/* Compute triangular contributions to face normal and face centroid */
for(k=nodepos[face]; k<nodepos[face+1]; ++k)
{
double tet_volume, subnormal_sign;
node = facenodes[k];
for (i=0; i<ndims; ++i) v[i] = coords[3*node+i] - x[i];
cross(u,v,w);
tet_volume = 0;
tet_volume = 0.0;
for(i=0; i<ndims; ++i){
tet_volume += w[i] * (x[i] - xcell[i]);
}
tet_volume += w[i]*(x[i]-xcell[i]);
}
tet_volume *= 0.5 / 3;
subnormal_sign=0.0;
for(i=0; i<ndims; ++i){
subnormal_sign += w[i]*fnormals[3*face+i];
}
subnormal_sign=0.0;
for(i=0; i<ndims; ++i){
subnormal_sign += w[i]*fnormals[3*face+i];
}
if (subnormal_sign < 0.0) {
tet_volume = - tet_volume;
}
if (neighbors[2*face + 0] != c) {
tet_volume = - tet_volume;
}
volume += tet_volume;
if(subnormal_sign < 0.0){
tet_volume =- tet_volume;
}
if(!(neighbors[2*face+0]==c)){
tet_volume = -tet_volume;
}
volume += tet_volume;
/* face centroid of triangle */
for (i=0; i<ndims; ++i) cface[i] = (x[i]+twothirds*0.5*(u[i]+v[i]));
for (i=0; i<ndims; ++i) cface[i] = (x[i]+(twothirds)*0.5*(u[i]+v[i]));
/* Cell centroid */
for (i=0; i<ndims; ++i) ccell[i] += tet_volume * 3/4.0*(cface[i] - xcell[i]);
@ -320,13 +333,6 @@ compute_cell_geometry_3d(double *coords,
for (i=0; i<ndims; ++i) u[i] = v[i];
}
}
if (! (volume > 0.0)) {
fprintf(stderr,
"Internal error in mex_compute_geometry(%*d): "
"negative volume\n", ndigits, c);
}
for (i=0; i<ndims; ++i) ccentroids[3*c+i] = xcell[i] + ccell[i]/volume;
cvolumes[c] = volume;
}

View File

@ -24,9 +24,12 @@ namespace Opm
{
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid)
const UnstructuredGrid& grid,
bool init_rock)
{
rock_.init(deck, grid);
if (init_rock){
rock_.init(deck, grid);
}
pvt_.init(deck, 200);
SaturationPropsFromDeck<SatFuncSimpleUniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleUniform>();
@ -41,9 +44,13 @@ namespace Opm
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param)
const parameter::ParameterGroup& param,
bool init_rock)
{
rock_.init(deck, grid);
if(init_rock){
rock_.init(deck, grid);
}
const int pvt_samples = param.getDefault("pvt_tab_size", 200);
pvt_.init(deck, pvt_samples);

View File

@ -45,7 +45,7 @@ namespace Opm
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid);
const UnstructuredGrid& grid, bool init_rock=true );
/// Initialize from deck, grid and parameters.
/// \param[in] deck Deck input parser
@ -60,7 +60,8 @@ namespace Opm
/// be done, and the input fluid data used directly for linear interpolation.
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param);
const parameter::ParameterGroup& param,
bool init_rock=true);
/// Destructor.
virtual ~BlackoilPropertiesFromDeck();

View File

@ -46,7 +46,7 @@
#include <opm/core/utility/ColumnExtract.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/transport/reorder/TransportModelCompressibleTwophase.hpp>
#include <opm/core/transport/reorder/TransportSolverCompressibleTwophaseReorder.hpp>
#include <boost/filesystem.hpp>
#include <boost/scoped_ptr.hpp>
@ -101,7 +101,7 @@ namespace Opm
const double* gravity_;
// Solvers
CompressibleTpfa psolver_;
TransportModelCompressibleTwophase tsolver_;
TransportSolverCompressibleTwophaseReorder tsolver_;
// Needed by column-based gravity segregation solver.
std::vector< std::vector<int> > columns_;
// Misc. data

View File

@ -45,8 +45,9 @@
#include <opm/core/utility/ColumnExtract.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
//#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
//#include <opm/core/transport/reorder/TransportSolverTwophaseReorder.hpp>
#include <opm/core/transport/ImplicitTwoPhaseTransportSolver.hpp>
#include <boost/filesystem.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/lexical_cast.hpp>
@ -98,7 +99,9 @@ namespace Opm
const FlowBoundaryConditions* bcs_;
// Solvers
IncompTpfa psolver_;
TransportModelTwophase tsolver_;
// this should maybe be packed in a separate file
boost::scoped_ptr<TwoPhaseTransportSolver> tsolver_;
//ImpliciteTwoPhaseTransportSolver tsolver_;
// Needed by column-based gravity segregation solver.
std::vector< std::vector<int> > columns_;
// Misc. data
@ -316,7 +319,7 @@ namespace Opm
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
LinearSolverInterface& linsolverp,
const double* gravity)
: grid_(grid),
props_(props),
@ -325,15 +328,49 @@ namespace Opm
wells_(wells_manager.c_wells()),
src_(src),
bcs_(bcs),
psolver_(grid, props, rock_comp_props, linsolver,
psolver_(grid, props, rock_comp_props, linsolverp,
param.getDefault("nl_pressure_residual_tolerance", 0.0),
param.getDefault("nl_pressure_change_tolerance", 1.0),
param.getDefault("nl_pressure_maxiter", 10),
gravity, wells_manager.c_wells(), src, bcs),
tsolver_(grid, props,
param.getDefault("nl_tolerance", 1e-9),
param.getDefault("nl_maxiter", 30))
gravity, wells_manager.c_wells(), src, bcs)
{
const bool use_reorder = param.getDefault("use_reorder", true);
if(use_reorder){
/*
tsolver_.reset(new Opm::TransportModelTwoPhase(grid, props, rock_comp_props, linsolver,
param.getDefault("nl_pressure_residual_tolerance", 0.0),
param.getDefault("nl_pressure_change_tolerance", 1.0),
param.getDefault("nl_pressure_maxiter", 10),
gravity, wells_manager.c_wells(), src, bcs));
*/
}else{
//Opm::ImplicitTransportDetails::NRReport rpt;
Opm::ImplicitTransportDetails::NRControl ctrl;
ctrl.max_it = param.getDefault("max_it", 20);
ctrl.verbosity = param.getDefault("verbosity", 0);
ctrl.max_it_ls = param.getDefault("max_it_ls", 5);
const bool guess_old_solution = param.getDefault("guess_old_solution", false);
Opm::SimpleFluid2pWrappingProps fluid(props);
std::vector<double> porevol;
//if (rock_comp->isActive()) {
// computePorevolume(grid, props->porosity(), rock_comp, state.pressure(), porevol);
//} else {
computePorevolume(grid, props.porosity(), porevol);
//}
SinglePointUpwindTwoPhase<Opm::SimpleFluid2pWrappingProps>
model(fluid, grid, porevol, gravity, guess_old_solution);
model.initGravityTrans(grid_, psolver_.getHalfTrans());
tsolver_.reset(new Opm::ImplicitTwoPhaseTransportSolver(
wells_manager,
*rock_comp_props,
ctrl,
model,
grid,
props,
param));
}
// For output.
output_ = param.getDefault("output", true);
if (output_) {
@ -356,12 +393,7 @@ namespace Opm
// Transport related init.
num_transport_substeps_ = param.getDefault("num_transport_substeps", 1);
use_segregation_split_ = param.getDefault("use_segregation_split", false);
if (gravity != 0 && use_segregation_split_){
tsolver_.initGravity(gravity);
extractColumn(grid_, columns_);
}
use_segregation_split_ = param.getDefault("use_segregation_split", false);
// Misc init.
const int num_cells = grid.number_of_cells;
allcells_.resize(num_cells);
@ -427,9 +459,6 @@ namespace Opm
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputVectorMatlab(std::string("reorder_it"),
tsolver_.getReorderIterations(),
timer.currentStepNum(), output_dir_);
}
SimulatorReport sreport;
@ -523,8 +552,14 @@ namespace Opm
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], &initial_porevol[0], &transport_src[0],
stepsize, state.saturation());
//tsolver_.solve(&state.faceflux()[0], &initial_porevol[0], &transport_src[0],
// stepsize, state.saturation());
tsolver_->solve(&transport_src[0],
&porevol[0],
stepsize,
state,
well_state);
double substep_injected[2] = { 0.0 };
double substep_produced[2] = { 0.0 };
Opm::computeInjectedProduced(props_, state.saturation(), transport_src, stepsize,
@ -533,17 +568,18 @@ namespace Opm
injected[1] += substep_injected[1];
produced[0] += substep_produced[0];
produced[1] += substep_produced[1];
if (use_segregation_split_) {
tsolver_.solveGravity(columns_, &initial_porevol[0], stepsize, state.saturation());
}
watercut.push(timer.currentTime() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_, state.saturation(),
timer.currentTime() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
@ -571,9 +607,6 @@ namespace Opm
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputVectorMatlab(std::string("reorder_it"),
tsolver_.getReorderIterations(),
timer.currentStepNum(), output_dir_);
outputWaterCut(watercut, output_dir_);
if (wells_) {
outputWellReport(wellreport, output_dir_);

View File

@ -0,0 +1,594 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/simulator/SimulatorIncompTwophaseReorder.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/pressure/IncompTpfa.hpp>
#include <opm/core/grid.h>
#include <opm/core/newwells.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/utility/writeVtkData.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/fluid/IncompPropertiesInterface.hpp>
#include <opm/core/fluid/RockCompressibility.hpp>
#include <opm/core/utility/ColumnExtract.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/transport/reorder/TransportSolverTwophaseReorder.hpp>
#include <boost/filesystem.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/lexical_cast.hpp>
#include <numeric>
#include <fstream>
namespace Opm
{
class SimulatorIncompTwophaseReorder::Impl
{
public:
Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity);
SimulatorReport run(SimulatorTimer& timer,
TwophaseState& state,
WellState& well_state);
private:
// Data.
// Parameters for output.
bool output_;
bool output_vtk_;
std::string output_dir_;
int output_interval_;
// Parameters for well control
bool check_well_controls_;
int max_well_control_iterations_;
// Parameters for transport solver.
int num_transport_substeps_;
bool use_segregation_split_;
// Observed objects.
const UnstructuredGrid& grid_;
const IncompPropertiesInterface& props_;
const RockCompressibility* rock_comp_props_;
WellsManager& wells_manager_;
const Wells* wells_;
const std::vector<double>& src_;
const FlowBoundaryConditions* bcs_;
// Solvers
IncompTpfa psolver_;
TransportSolverTwophaseReorder tsolver_;
// Needed by column-based gravity segregation solver.
std::vector< std::vector<int> > columns_;
// Misc. data
std::vector<int> allcells_;
};
SimulatorIncompTwophaseReorder::SimulatorIncompTwophaseReorder(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity)
{
pimpl_.reset(new Impl(param, grid, props, rock_comp_props, wells_manager, src, bcs, linsolver, gravity));
}
SimulatorReport SimulatorIncompTwophaseReorder::run(SimulatorTimer& timer,
TwophaseState& state,
WellState& well_state)
{
return pimpl_->run(timer, state, well_state);
}
static void reportVolumes(std::ostream &os, double satvol[2], double tot_porevol_init,
double tot_injected[2], double tot_produced[2],
double injected[2], double produced[2],
double init_satvol[2])
{
std::cout.precision(5);
const int width = 18;
os << "\nVolume balance report (all numbers relative to total pore volume).\n";
os << " Saturated volumes: "
<< std::setw(width) << satvol[0]/tot_porevol_init
<< std::setw(width) << satvol[1]/tot_porevol_init << std::endl;
os << " Injected volumes: "
<< std::setw(width) << injected[0]/tot_porevol_init
<< std::setw(width) << injected[1]/tot_porevol_init << std::endl;
os << " Produced volumes: "
<< std::setw(width) << produced[0]/tot_porevol_init
<< std::setw(width) << produced[1]/tot_porevol_init << std::endl;
os << " Total inj volumes: "
<< std::setw(width) << tot_injected[0]/tot_porevol_init
<< std::setw(width) << tot_injected[1]/tot_porevol_init << std::endl;
os << " Total prod volumes: "
<< std::setw(width) << tot_produced[0]/tot_porevol_init
<< std::setw(width) << tot_produced[1]/tot_porevol_init << std::endl;
os << " In-place + prod - inj: "
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init << std::endl;
os << " Init - now - pr + inj: "
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
<< std::endl;
os.precision(8);
}
static void outputStateVtk(const UnstructuredGrid& grid,
const Opm::TwophaseState& state,
const int step,
const std::string& output_dir)
{
// Write data in VTK format.
std::ostringstream vtkfilename;
vtkfilename << output_dir << "/vtk_files";
boost::filesystem::path fpath(vtkfilename.str());
try {
create_directories(fpath);
}
catch (...) {
THROW("Creating directories failed: " << fpath);
}
vtkfilename << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
if (!vtkfile) {
THROW("Failed to open " << vtkfilename.str());
}
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
Opm::writeVtkData(grid, dm, vtkfile);
}
static void outputVectorMatlab(const std::string& name,
const std::vector<int>& vec,
const int step,
const std::string& output_dir)
{
std::ostringstream fname;
fname << output_dir << "/" << name;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
THROW("Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
THROW("Failed to open " << fname.str());
}
std::copy(vec.begin(), vec.end(), std::ostream_iterator<double>(file, "\n"));
}
static void outputStateMatlab(const UnstructuredGrid& grid,
const Opm::TwophaseState& state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
THROW("Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
THROW("Failed to open " << fname.str());
}
file.precision(15);
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
static void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
THROW("Failed to open " << fname);
}
watercut.write(os);
}
static void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
THROW("Failed to open " << fname);
}
wellreport.write(os);
}
static bool allNeumannBCs(const FlowBoundaryConditions* bcs)
{
if (bcs == NULL) {
return true;
} else {
return std::find(bcs->type, bcs->type + bcs->nbc, BC_PRESSURE)
== bcs->type + bcs->nbc;
}
}
static bool allRateWells(const Wells* wells)
{
if (wells == NULL) {
return true;
}
const int nw = wells->number_of_wells;
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells->ctrls[w];
if (wc->current >= 0) {
if (wc->type[wc->current] == BHP) {
return false;
}
}
}
return true;
}
SimulatorIncompTwophaseReorder::Impl::Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity)
: grid_(grid),
props_(props),
rock_comp_props_(rock_comp_props),
wells_manager_(wells_manager),
wells_(wells_manager.c_wells()),
src_(src),
bcs_(bcs),
psolver_(grid, props, rock_comp_props, linsolver,
param.getDefault("nl_pressure_residual_tolerance", 0.0),
param.getDefault("nl_pressure_change_tolerance", 1.0),
param.getDefault("nl_pressure_maxiter", 10),
gravity, wells_manager.c_wells(), src, bcs),
tsolver_(grid, props,
param.getDefault("nl_tolerance", 1e-9),
param.getDefault("nl_maxiter", 30))
{
// For output.
output_ = param.getDefault("output", true);
if (output_) {
output_vtk_ = param.getDefault("output_vtk", true);
output_dir_ = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
boost::filesystem::path fpath(output_dir_);
try {
create_directories(fpath);
}
catch (...) {
THROW("Creating directories failed: " << fpath);
}
output_interval_ = param.getDefault("output_interval", 1);
}
// Well control related init.
check_well_controls_ = param.getDefault("check_well_controls", false);
max_well_control_iterations_ = param.getDefault("max_well_control_iterations", 10);
// Transport related init.
num_transport_substeps_ = param.getDefault("num_transport_substeps", 1);
use_segregation_split_ = param.getDefault("use_segregation_split", false);
if (gravity != 0 && use_segregation_split_){
tsolver_.initGravity(gravity);
extractColumn(grid_, columns_);
}
// Misc init.
const int num_cells = grid.number_of_cells;
allcells_.resize(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells_[cell] = cell;
}
}
SimulatorReport SimulatorIncompTwophaseReorder::Impl::run(SimulatorTimer& timer,
TwophaseState& state,
WellState& well_state)
{
std::vector<double> transport_src;
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_satvol[2] = { 0.0 };
double satvol[2] = { 0.0 };
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
std::fstream tstep_os;
if (output_) {
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputVectorMatlab(std::string("reorder_it"),
tsolver_.getReorderIterations(),
timer.currentStepNum(), output_dir_);
}
SimulatorReport sreport;
// Solve pressure equation.
if (check_well_controls_) {
computeFractionalFlow(props_, allcells_, state.saturation(), fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
pressure_timer.start();
std::vector<double> initial_pressure = state.pressure();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if rock is incompressible, and
// there are no pressure conditions (bcs or wells).
// It is deemed sufficient for now to renormalize
// using geometric volume instead of pore volume.
if ((rock_comp_props_ == NULL || !rock_comp_props_->isActive())
&& allNeumannBCs(bcs_) && allRateWells(wells_)) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
}
// Stop timer and report.
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
sreport.pressure_time = pt;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
THROW("Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
wells_, well_state.perfRates(), transport_src);
// Solve transport.
transport_timer.start();
double stepsize = timer.currentStepLength();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], &initial_porevol[0], &transport_src[0],
stepsize, state.saturation());
double substep_injected[2] = { 0.0 };
double substep_produced[2] = { 0.0 };
Opm::computeInjectedProduced(props_, state.saturation(), transport_src, stepsize,
substep_injected, substep_produced);
injected[0] += substep_injected[0];
injected[1] += substep_injected[1];
produced[0] += substep_produced[0];
produced[1] += substep_produced[1];
if (use_segregation_split_) {
tsolver_.solveGravity(columns_, &initial_porevol[0], stepsize, state.saturation());
}
watercut.push(timer.currentTime() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_, state.saturation(),
timer.currentTime() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
sreport.transport_time = tt;
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
reportVolumes(std::cout,satvol, tot_porevol_init,
tot_injected, tot_produced,
injected, produced,
init_satvol);
sreport.total_time = step_timer.secsSinceStart();
if (output_) {
sreport.reportParam(tstep_os);
}
}
if (output_) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputVectorMatlab(std::string("reorder_it"),
tsolver_.getReorderIterations(),
timer.currentStepNum(), output_dir_);
outputWaterCut(watercut, output_dir_);
if (wells_) {
outputWellReport(wellreport, output_dir_);
}
tstep_os.close();
}
total_timer.stop();
SimulatorReport report;
report.pressure_time = ptime;
report.transport_time = ttime;
report.total_time = total_timer.secsSinceStart();
return report;
}
} // namespace Opm

View File

@ -0,0 +1,99 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIMULATORINCOMPTWOPHASEREORDER_HEADER_INCLUDED
#define OPM_SIMULATORINCOMPTWOPHASEREORDER_HEADER_INCLUDED
#include <boost/shared_ptr.hpp>
#include <vector>
struct UnstructuredGrid;
struct Wells;
struct FlowBoundaryConditions;
namespace Opm
{
namespace parameter { class ParameterGroup; }
class IncompPropertiesInterface;
class RockCompressibility;
class WellsManager;
class LinearSolverInterface;
class SimulatorTimer;
class TwophaseState;
class WellState;
struct SimulatorReport;
/// Class collecting all necessary components for a two-phase simulation.
class SimulatorIncompTwophaseReorder
{
public:
/// Initialise from parameters and objects to observe.
/// \param[in] param parameters, this class accepts the following:
/// parameter (default) effect
/// -----------------------------------------------------------
/// output (true) write output to files?
/// output_dir ("output") output directoty
/// output_interval (1) output every nth step
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
/// nl_maxiter (30) max nonlinear iterations in transport
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
/// num_transport_substeps (1) number of transport steps per pressure step
/// use_segregation_split (false) solve for gravity segregation (if false,
/// segregation is ignored).
///
/// \param[in] grid grid data structure
/// \param[in] props fluid and rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] well_manager well manager, may manage no (null) wells
/// \param[in] src source terms
/// \param[in] bcs boundary conditions, treat as all noflow if null
/// \param[in] linsolver linear solver
/// \param[in] gravity if non-null, gravity vector
SimulatorIncompTwophaseReorder(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity);
/// Run the simulation.
/// This will run succesive timesteps until timer.done() is true. It will
/// modify the reservoir and well states.
/// \param[in,out] timer governs the requested reporting timesteps
/// \param[in,out] state state of reservoir: pressure, fluxes
/// \param[in,out] well_state state of wells: bhp, perforation rates
/// \return simulation report, with timing data
SimulatorReport run(SimulatorTimer& timer,
TwophaseState& state,
WellState& well_state);
private:
class Impl;
// Using shared_ptr instead of scoped_ptr since scoped_ptr requires complete type for Impl.
boost::shared_ptr<Impl> pimpl_;
};
} // namespace Opm
#endif // OPM_SIMULATORINCOMPTWOPHASEREORDER_HEADER_INCLUDED

View File

@ -0,0 +1,86 @@
/*===========================================================================
//
// File: ImpliciteTwoPhaseTransportSolver.cpp
//
// Author: hnil <hnil@sintef.no>
//
// Created: 9 Nov 2012
//==========================================================================*/
/*
Copyright 2011 SINTEF ICT, Applied Mathematics.
Copyright 2011 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/transport/ImplicitTwoPhaseTransportSolver.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/utility/miscUtilities.hpp>
namespace Opm{
ImplicitTwoPhaseTransportSolver::ImplicitTwoPhaseTransportSolver(
const Opm::WellsManager& wells,
const Opm::RockCompressibility& rock_comp,
const ImplicitTransportDetails::NRControl& ctrl,
SinglePointUpwindTwoPhase<Opm::SimpleFluid2pWrappingProps>& model,
const UnstructuredGrid& grid,
const Opm::IncompPropertiesInterface& props,
const parameter::ParameterGroup& param)
: tsolver_(model),
grid_(grid),
ctrl_(ctrl),
props_(props),
rock_comp_(rock_comp),
wells_(wells)
{
tsrc_ = create_transport_source(2, 2);
//linsolver_(param),
//src_(num_cells, 0.0);
}
void ImplicitTwoPhaseTransportSolver::solve(const double* porevolume,
const double* source,
const double dt,
TwophaseState& state,
WellState& well_state)
{
std::vector<double> porevol;
if (rock_comp_.isActive()) {
computePorevolume(grid_, props_.porosity(), rock_comp_, state.pressure(), porevol);
}
std::vector<double> src(grid_.number_of_cells, 0.0);
//Opm::wellsToSrc(*wells->c_wells(), num_cells, src);
Opm::computeTransportSource(grid_, src, state.faceflux(), 1.0,
wells_.c_wells(), well_state.perfRates(), src);
double ssrc[] = { 1.0, 0.0 };
double ssink[] = { 0.0, 1.0 };
double zdummy[] = { 0.0, 0.0 };
for (int cell = 0; cell < grid_.number_of_cells; ++cell) {
clear_transport_source(tsrc_);
if (src[cell] > 0.0) {
append_transport_source(cell, 2, 0, src[cell], ssrc, zdummy, tsrc_);
} else if (src[cell] < 0.0) {
append_transport_source(cell, 2, 0, src[cell], ssink, zdummy, tsrc_);
}
}
// Boundary conditions.
Opm::ImplicitTransportDetails::NRReport rpt;
tsolver_.solve(grid_, tsrc_, dt, ctrl_, state, linsolver_, rpt);
std::cout << rpt;
}
}

View File

@ -0,0 +1,129 @@
/*===========================================================================
//
// File: ImpliciteTwoPhaseTransportSolver.hpp
//
// Author: hnil <hnil@sintef.no>
//
// Created: 9 Nov 2012
//==========================================================================*/
/*
Copyright 2011 SINTEF ICT, Applied Mathematics.
Copyright 2011 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef IMPLICITETWOPHASETRANSPORTSOLVER_HPP
#define IMPLICITTWOPHASETRANSPORTSOLVER_HPP
#include <vector>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/transport/TwoPhaseTransportSolver.hpp>
#include <opm/core/fluid/IncompPropertiesInterface.hpp>
#include <opm/core/transport/SimpleFluid2pWrappingProps.hpp>
#include <opm/core/transport/SinglePointUpwindTwoPhase.hpp>
#include <opm/core/transport/ImplicitTransport.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/core/transport/transport_source.h>
#include <opm/core/transport/CSRMatrixUmfpackSolver.hpp>
#include <opm/core/transport/NormSupport.hpp>
#include <opm/core/transport/ImplicitAssembly.hpp>
#include <opm/core/transport/ImplicitTransport.hpp>
#include <opm/core/transport/JacobianSystem.hpp>
#include <opm/core/transport/CSRMatrixBlockAssembler.hpp>
#include <opm/core/transport/SinglePointUpwindTwoPhase.hpp>
#include <boost/scoped_ptr.hpp>
#include <opm/core/fluid/RockCompressibility.hpp>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/simulator/WellState.hpp>
namespace Opm{
// implicite transprot solver
class ImplicitTwoPhaseTransportSolver : public TwoPhaseTransportSolver
{
public:
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] tol Tolerance used in the solver.
/// \param[in] maxit Maximum number of non-linear iterations used.
ImplicitTwoPhaseTransportSolver(
const Opm::WellsManager& wells,
const Opm::RockCompressibility& rock_comp,
const ImplicitTransportDetails::NRControl& ctrl,
SinglePointUpwindTwoPhase<Opm::SimpleFluid2pWrappingProps>& model,
const UnstructuredGrid& grid,
const Opm::IncompPropertiesInterface& props,
const parameter::ParameterGroup& param);
~ImplicitTwoPhaseTransportSolver(){
destroy_transport_source(tsrc_);
}
/// Solve for saturation at next timestep.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Transport source term.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
void solve(const double* porevolume,
const double* source,
const double dt,
Opm::TwophaseState& state,
Opm::WellState& well_state);
private:
ImplicitTwoPhaseTransportSolver(const ImplicitTwoPhaseTransportSolver&);
ImplicitTwoPhaseTransportSolver& operator=(const ImplicitTwoPhaseTransportSolver&);
typedef Opm::SimpleFluid2pWrappingProps TwophaseFluid;
typedef Opm::SinglePointUpwindTwoPhase<TwophaseFluid> TransportModel;
//using namespace ImplicitTransportDefault;
typedef ImplicitTransportDefault::NewtonVectorCollection< ::std::vector<double> > NVecColl;
typedef ImplicitTransportDefault::JacobianSystem < struct CSRMatrix, NVecColl > JacSys;
template <class Vector>
class MaxNorm {
public:
static double
norm(const Vector& v) {
return ImplicitTransportDefault::AccumulationNorm <Vector, ImplicitTransportDefault::MaxAbs>::norm(v);
}
};
typedef Opm::ImplicitTransport<TransportModel,
JacSys ,
MaxNorm ,
ImplicitTransportDefault::VectorNegater ,
ImplicitTransportDefault::VectorZero ,
ImplicitTransportDefault::MatrixZero ,
ImplicitTransportDefault::VectorAssign > TransportSolver;
//Opm::LinearSolverFactory
Opm::ImplicitTransportLinAlgSupport::CSRMatrixUmfpackSolver linsolver_;
TransportSolver tsolver_;
const UnstructuredGrid& grid_;
const Opm::ImplicitTransportDetails::NRControl& ctrl_;
const Opm::IncompPropertiesInterface& props_;
const Opm::RockCompressibility& rock_comp_;
const Opm::WellsManager& wells_;
TransportSource* tsrc_;
};
}
#endif // IMPLICITETWOPHASETRANSPORTSOLVER_HPP

View File

@ -0,0 +1,70 @@
/*===========================================================================
//
// File: SimpleFluid2pWrappingProps.hpp
//
// Author: hnil <hnil@sintef.no>
//
// Created: 15 Nov 2012
//==========================================================================*/
/*
Copyright 2011 SINTEF ICT, Applied Mathematics.
Copyright 2011 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef SIMPLEFLUID2PWRAPPINGPROPS_HPP
#define SIMPLEFLUID2PWRAPPINGPROPS_HPP
#include <opm/core/fluid/IncompPropertiesInterface.hpp>
#include <vector>
namespace Opm{
class SimpleFluid2pWrappingProps
{
public:
SimpleFluid2pWrappingProps(const Opm::IncompPropertiesInterface& props);
double density(int phase) const;
template <class Sat,
class Mob,
class DMob>
void mobility(int c, const Sat& s, Mob& mob, DMob& dmob) const;
template <class Sat,
class Pcap,
class DPcap>
void pc(int c, const Sat& s, Pcap& pcap, DPcap& dpcap) const;
double s_min(int c) const;
double s_max(int c) const;
private:
const Opm::IncompPropertiesInterface& props_;
std::vector<double> smin_;
std::vector<double> smax_;
};
}
#include <opm/core/transport/SimpleFluid2pWrappingProps_impl.hpp>
#endif // SIMPLEFLUID2PWRAPPINGPROPS_HPP

View File

@ -0,0 +1,104 @@
/*===========================================================================
//
// File: SimpleFluid2pWrappingProps.cpp
//
// Author: hnil <hnil@sintef.no>
//
// Created: 15 Nov 2012
//==========================================================================*/
/*
Copyright 2011 SINTEF ICT, Applied Mathematics.
Copyright 2011 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef SIMPLEFLUID2PWRAPPINGPROPS_IMPL_HPP
#define SIMPLEFLUID2PWRAPPINGPROPS_IMPL_HPP
#include <opm/core/transport/SimpleFluid2pWrappingProps.hpp>
#include <cassert>
#include <opm/core/utility/ErrorMacros.hpp>
namespace Opm{
inline SimpleFluid2pWrappingProps::SimpleFluid2pWrappingProps(const Opm::IncompPropertiesInterface& props)
: props_(props),
smin_(props.numCells()*props.numPhases()),
smax_(props.numCells()*props.numPhases())
{
if (props.numPhases() != 2) {
THROW("SimpleFluid2pWrapper requires 2 phases.");
}
const int num_cells = props.numCells();
std::vector<int> cells(num_cells);
for (int c = 0; c < num_cells; ++c) {
cells[c] = c;
}
props.satRange(num_cells, &cells[0], &smin_[0], &smax_[0]);
}
inline double SimpleFluid2pWrappingProps::density(int phase) const
{
return props_.density()[phase];
}
template <class Sat,
class Mob,
class DMob>
void SimpleFluid2pWrappingProps::mobility(int c, const Sat& s, Mob& mob, DMob& dmob) const
{
props_.relperm(1, &s[0], &c, &mob[0], &dmob[0]);
const double* mu = props_.viscosity();
mob[0] /= mu[0];
mob[1] /= mu[1];
// Recall that we use Fortran ordering for kr derivatives,
// therefore dmob[i*2 + j] is row j and column i of the
// matrix.
// Each row corresponds to a kr function, so which mu to
// divide by also depends on the row, j.
dmob[0*2 + 0] /= mu[0];
dmob[0*2 + 1] /= mu[1];
dmob[1*2 + 0] /= mu[0];
dmob[1*2 + 1] /= mu[1];
}
template <class Sat,
class Pcap,
class DPcap>
void SimpleFluid2pWrappingProps::pc(int c, const Sat& s, Pcap& pcap, DPcap& dpcap) const
{
double pcow[2];
double dpcow[4];
props_.capPress(1, &s[0], &c, pcow, dpcow);
pcap = pcow[0];
ASSERT(pcow[1] == 0.0);
dpcap = dpcow[0];
ASSERT(dpcow[1] == 0.0);
ASSERT(dpcow[2] == 0.0);
ASSERT(dpcow[3] == 0.0);
}
inline double SimpleFluid2pWrappingProps::s_min(int c) const
{
return smin_[2*c + 0];
}
inline double SimpleFluid2pWrappingProps::s_max(int c) const
{
return smax_[2*c + 0];
}
}
#endif // SIMPLEFLUID2PWRAPPINGPROPS_IMPL_HPP

View File

@ -0,0 +1,32 @@
/*===========================================================================
//
// File: TwoPhaseTransportSolver.cpp
//
// Author: hnil <hnil@sintef.no>
//
// Created: 9 Nov 2012
//==========================================================================*/
/*
Copyright 2011 SINTEF ICT, Applied Mathematics.
Copyright 2011 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "TwoPhaseTransportSolver.hpp"

View File

@ -0,0 +1,60 @@
/*===========================================================================
//
// File: TwoPhaseTransportSolver.hpp
//
// Author: hnil <hnil@sintef.no>
//
// Created: 9 Nov 2012
//==========================================================================*/
/*
Copyright 2011 SINTEF ICT, Applied Mathematics.
Copyright 2011 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TWOPHASETRANSPORTSOLVER_HPP
#define TWOPHASETRANSPORTSOLVER_HPP
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
namespace Opm
{
/// Base class for tranport solvers
class TwoPhaseTransportSolver
{
public:
/// Virtual destructor to enable inheritance.
virtual ~TwoPhaseTransportSolver() {}
/// Solve for saturation at next timestep.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] porevolume Array of pore volumes.
/// \param[in] source Transport source term.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
virtual void solve(const double* porevolume,
const double* source,
const double dt,
TwophaseState& state,
WellState& wstate) = 0;
};
}
#endif // TWOPHASETRANSPORTSOLVER_HPP

View File

@ -17,7 +17,7 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
#include <opm/core/transport/reorder/ReorderSolverInterface.hpp>
#include <opm/core/transport/reorder/reordersequence.h>
#include <opm/core/grid.h>
#include <opm/core/utility/StopWatch.hpp>
@ -26,7 +26,7 @@
#include <cassert>
void Opm::TransportModelInterface::reorderAndTransport(const UnstructuredGrid& grid, const double* darcyflux)
void Opm::ReorderSolverInterface::reorderAndTransport(const UnstructuredGrid& grid, const double* darcyflux)
{
// Compute reordered sequence of single-cell problems
sequence_.resize(grid.number_of_cells);

View File

@ -17,8 +17,8 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TRANSPORTMODELINTERFACE_HEADER_INCLUDED
#define OPM_TRANSPORTMODELINTERFACE_HEADER_INCLUDED
#ifndef OPM_REORDERSOLVERINTERFACE_HEADER_INCLUDED
#define OPM_REORDERSOLVERINTERFACE_HEADER_INCLUDED
#include <vector>
@ -35,10 +35,10 @@ namespace Opm
/// class.) The reorderAndTransport() method is provided as an aid
/// to implementing solve() in subclasses, together with the
/// sequence() and components() methods for accessing the ordering.
class TransportModelInterface
class ReorderSolverInterface
{
public:
virtual ~TransportModelInterface() {}
virtual ~ReorderSolverInterface() {}
private:
virtual void solveSingleCell(const int cell) = 0;
virtual void solveMultiCell(const int num_cells, const int* cells) = 0;

View File

@ -19,7 +19,7 @@
#include <opm/core/grid/CellQuadrature.hpp>
#include <opm/core/grid/FaceQuadrature.hpp>
#include <opm/core/transport/reorder/TransportModelTracerTofDiscGal.hpp>
#include <opm/core/transport/reorder/TofDiscGalReorder.hpp>
#include <opm/core/transport/reorder/DGBasis.hpp>
#include <opm/core/grid.h>
#include <opm/core/utility/ErrorMacros.hpp>
@ -34,10 +34,6 @@ namespace Opm
{
// --------------- Methods of TransportModelTracerTofDiscGal ---------------
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] param Parameters for the solver.
@ -55,8 +51,8 @@ namespace Opm
/// computing (unlimited) solution.
/// AsSimultaneousPostProcess Apply to each cell independently, using un-
/// limited solution in neighbouring cells.
TransportModelTracerTofDiscGal::TransportModelTracerTofDiscGal(const UnstructuredGrid& grid,
const parameter::ParameterGroup& param)
TofDiscGalReorder::TofDiscGalReorder(const UnstructuredGrid& grid,
const parameter::ParameterGroup& param)
: grid_(grid),
use_cvi_(false),
use_limiter_(false),
@ -127,7 +123,7 @@ namespace Opm
/// cell comes before the K coefficients corresponding
/// to the second cell etc.
/// K depends on degree and grid dimension.
void TransportModelTracerTofDiscGal::solveTof(const double* darcyflux,
void TofDiscGalReorder::solveTof(const double* darcyflux,
const double* porevolume,
const double* source,
std::vector<double>& tof_coeff)
@ -173,7 +169,7 @@ namespace Opm
void TransportModelTracerTofDiscGal::solveSingleCell(const int cell)
void TofDiscGalReorder::solveSingleCell(const int cell)
{
// Residual:
// For each cell K, basis function b_j (spanning V_h),
@ -396,7 +392,7 @@ namespace Opm
void TransportModelTracerTofDiscGal::solveMultiCell(const int num_cells, const int* cells)
void TofDiscGalReorder::solveMultiCell(const int num_cells, const int* cells)
{
std::cout << "Pretending to solve multi-cell dependent equation with " << num_cells << " cells." << std::endl;
for (int i = 0; i < num_cells; ++i) {

View File

@ -17,10 +17,10 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TRANSPORTMODELTRACERTOFDISCGAL_HEADER_INCLUDED
#define OPM_TRANSPORTMODELTRACERTOFDISCGAL_HEADER_INCLUDED
#ifndef OPM_TOFDISCGALREORDER_HEADER_INCLUDED
#define OPM_TOFDISCGALREORDER_HEADER_INCLUDED
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
#include <opm/core/transport/reorder/ReorderSolverInterface.hpp>
#include <boost/shared_ptr.hpp>
#include <vector>
#include <map>
@ -45,7 +45,7 @@ namespace Opm
/// \tau is specified to be zero on all inflow boundaries.
/// The user may specify the polynomial degree of the basis function space
/// used, but only degrees 0 and 1 are supported so far.
class TransportModelTracerTofDiscGal : public TransportModelInterface
class TofDiscGalReorder : public ReorderSolverInterface
{
public:
/// Construct solver.
@ -68,8 +68,8 @@ namespace Opm
/// computing (unlimited) solution.
/// AsSimultaneousPostProcess Apply to each cell independently, using un-
/// limited solution in neighbouring cells.
TransportModelTracerTofDiscGal(const UnstructuredGrid& grid,
const parameter::ParameterGroup& param);
TofDiscGalReorder(const UnstructuredGrid& grid,
const parameter::ParameterGroup& param);
/// Solve for time-of-flight.
@ -95,8 +95,8 @@ namespace Opm
private:
// Disable copying and assignment.
TransportModelTracerTofDiscGal(const TransportModelTracerTofDiscGal&);
TransportModelTracerTofDiscGal& operator=(const TransportModelTracerTofDiscGal&);
TofDiscGalReorder(const TofDiscGalReorder&);
TofDiscGalReorder& operator=(const TofDiscGalReorder&);
// Data members
const UnstructuredGrid& grid_;

View File

@ -17,7 +17,7 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/transport/reorder/TransportModelTracerTof.hpp>
#include <opm/core/transport/reorder/TofReorder.hpp>
#include <opm/core/grid.h>
#include <opm/core/utility/ErrorMacros.hpp>
#include <algorithm>
@ -30,8 +30,8 @@ namespace Opm
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
TransportModelTracerTof::TransportModelTracerTof(const UnstructuredGrid& grid,
const bool use_multidim_upwind)
TofReorder::TofReorder(const UnstructuredGrid& grid,
const bool use_multidim_upwind)
: grid_(grid),
darcyflux_(0),
porevolume_(0),
@ -53,7 +53,7 @@ namespace Opm
/// (+) inflow flux,
/// (-) outflow flux.
/// \param[out] tof Array of time-of-flight values.
void TransportModelTracerTof::solveTof(const double* darcyflux,
void TofReorder::solveTof(const double* darcyflux,
const double* porevolume,
const double* source,
std::vector<double>& tof)
@ -137,7 +137,7 @@ namespace Opm
void TransportModelTracerTof::solveSingleCell(const int cell)
void TofReorder::solveSingleCell(const int cell)
{
if (use_multidim_upwind_) {
solveSingleCellMultidimUpwind(cell);
@ -243,7 +243,7 @@ namespace Opm
void TransportModelTracerTof::solveMultiCell(const int num_cells, const int* cells)
void TofReorder::solveMultiCell(const int num_cells, const int* cells)
{
std::cout << "Pretending to solve multi-cell dependent equation with " << num_cells << " cells." << std::endl;
for (int i = 0; i < num_cells; ++i) {

View File

@ -17,10 +17,10 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TRANSPORTMODELTRACERTOF_HEADER_INCLUDED
#define OPM_TRANSPORTMODELTRACERTOF_HEADER_INCLUDED
#ifndef OPM_TOFREORDER_HEADER_INCLUDED
#define OPM_TOFREORDER_HEADER_INCLUDED
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
#include <opm/core/transport/reorder/ReorderSolverInterface.hpp>
#include <vector>
#include <map>
#include <ostream>
@ -38,14 +38,14 @@ namespace Opm
/// where v is the fluid velocity, \tau is time-of-flight and
/// \phi is the porosity. This is a boundary value problem, where
/// \tau is specified to be zero on all inflow boundaries.
class TransportModelTracerTof : public TransportModelInterface
class TofReorder : public ReorderSolverInterface
{
public:
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] use_multidim_upwind If true, use multidimensional tof upwinding.
TransportModelTracerTof(const UnstructuredGrid& grid,
const bool use_multidim_upwind = false);
TofReorder(const UnstructuredGrid& grid,
const bool use_multidim_upwind = false);
/// Solve for time-of-flight.
/// \param[in] darcyflux Array of signed face fluxes.

View File

@ -18,7 +18,7 @@
*/
#include <opm/core/transport/reorder/TransportModelCompressibleTwophase.hpp>
#include <opm/core/transport/reorder/TransportSolverCompressibleTwophaseReorder.hpp>
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/grid.h>
#include <opm/core/transport/reorder/reordersequence.h>
@ -39,7 +39,7 @@ namespace Opm
typedef RegulaFalsi<WarnAndContinueOnError> RootFinder;
TransportModelCompressibleTwophase::TransportModelCompressibleTwophase(
TransportSolverCompressibleTwophaseReorder::TransportSolverCompressibleTwophaseReorder(
const UnstructuredGrid& grid,
const Opm::BlackoilPropertiesInterface& props,
const double tol,
@ -76,7 +76,7 @@ namespace Opm
props.satRange(props.numCells(), &allcells_[0], &smin_[0], &smax_[0]);
}
void TransportModelCompressibleTwophase::solve(const double* darcyflux,
void TransportSolverCompressibleTwophaseReorder::solve(const double* darcyflux,
const double* pressure,
const double* porevolume0,
const double* porevolume,
@ -132,7 +132,7 @@ namespace Opm
// We need the formula influx = B_i sum_{j->i} b_j v_{ij} - B_i q_w.
// outflux = B_i sum_{i->j} b_i v_{ij} - B_i q = sum_{i->j} v_{ij} - B_i q
// Influxes are negative, outfluxes positive.
struct TransportModelCompressibleTwophase::Residual
struct TransportSolverCompressibleTwophaseReorder::Residual
{
int cell;
double B_cell;
@ -142,8 +142,8 @@ namespace Opm
// @@@ TODO: figure out change to rock-comp. terms with fluid compr.
double comp_term; // Now: used to be: q - sum_j v_ij
double dtpv; // dt/pv(i)
const TransportModelCompressibleTwophase& tm;
explicit Residual(const TransportModelCompressibleTwophase& tmodel, int cell_index)
const TransportSolverCompressibleTwophaseReorder& tm;
explicit Residual(const TransportSolverCompressibleTwophaseReorder& tmodel, int cell_index)
: tm(tmodel)
{
cell = cell_index;
@ -187,7 +187,7 @@ namespace Opm
};
void TransportModelCompressibleTwophase::solveSingleCell(const int cell)
void TransportSolverCompressibleTwophaseReorder::solveSingleCell(const int cell)
{
Residual res(*this, cell);
int iters_used;
@ -196,7 +196,7 @@ namespace Opm
}
void TransportModelCompressibleTwophase::solveMultiCell(const int num_cells, const int* cells)
void TransportSolverCompressibleTwophaseReorder::solveMultiCell(const int num_cells, const int* cells)
{
// Experiment: when a cell changes more than the tolerance,
// mark all downwind cells as needing updates. After
@ -302,7 +302,7 @@ namespace Opm
}
double TransportModelCompressibleTwophase::fracFlow(double s, int cell) const
double TransportSolverCompressibleTwophaseReorder::fracFlow(double s, int cell) const
{
double sat[2] = { s, 1.0 - s };
double mob[2];
@ -321,15 +321,15 @@ namespace Opm
// [[ incompressible was: r(s) = s - s0 + dt/pv*sum_{j adj i}( gravmod_ij * gf_ij ) ]]
//
// r(s) = s - B*z0 + dt/pv*( influx + outflux*f(s) )
struct TransportModelCompressibleTwophase::GravityResidual
struct TransportSolverCompressibleTwophaseReorder::GravityResidual
{
int cell;
int nbcell[2];
double s0;
double dtpv; // dt/pv(i)
double gf[2];
const TransportModelCompressibleTwophase& tm;
explicit GravityResidual(const TransportModelCompressibleTwophase& tmodel,
const TransportSolverCompressibleTwophaseReorder& tm;
explicit GravityResidual(const TransportSolverCompressibleTwophaseReorder& tmodel,
const std::vector<int>& cells,
const int pos,
const double* gravflux) // Always oriented towards next in column. Size = colsize - 1.
@ -376,7 +376,7 @@ namespace Opm
}
};
void TransportModelCompressibleTwophase::mobility(double s, int cell, double* mob) const
void TransportSolverCompressibleTwophaseReorder::mobility(double s, int cell, double* mob) const
{
double sat[2] = { s, 1.0 - s };
props_.relperm(1, sat, &cell, mob, 0);
@ -386,7 +386,7 @@ namespace Opm
void TransportModelCompressibleTwophase::initGravity(const double* grav)
void TransportSolverCompressibleTwophaseReorder::initGravity(const double* grav)
{
// Set up transmissibilities.
std::vector<double> htrans(grid_.cell_facepos[grid_.number_of_cells]);
@ -403,7 +403,7 @@ namespace Opm
void TransportModelCompressibleTwophase::initGravityDynamic()
void TransportSolverCompressibleTwophaseReorder::initGravityDynamic()
{
// Set up gravflux_ = T_ij g [ (b_w,i rho_w,S - b_o,i rho_o,S) (z_i - z_f)
// + (b_w,j rho_w,S - b_o,j rho_o,S) (z_f - z_j) ]
@ -436,7 +436,7 @@ namespace Opm
void TransportModelCompressibleTwophase::solveSingleCellGravity(const std::vector<int>& cells,
void TransportSolverCompressibleTwophaseReorder::solveSingleCellGravity(const std::vector<int>& cells,
const int pos,
const double* gravflux)
{
@ -451,7 +451,7 @@ namespace Opm
int TransportModelCompressibleTwophase::solveGravityColumn(const std::vector<int>& cells)
int TransportSolverCompressibleTwophaseReorder::solveGravityColumn(const std::vector<int>& cells)
{
// Set up column gravflux.
const int nc = cells.size();
@ -504,7 +504,7 @@ namespace Opm
void TransportModelCompressibleTwophase::solveGravity(const std::vector<std::vector<int> >& columns,
void TransportSolverCompressibleTwophaseReorder::solveGravity(const std::vector<std::vector<int> >& columns,
const double dt,
std::vector<double>& saturation,
std::vector<double>& surfacevol)

View File

@ -17,10 +17,10 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TRANSPORTMODELCOMPRESSIBLETWOPHASE_HEADER_INCLUDED
#define OPM_TRANSPORTMODELCOMPRESSIBLETWOPHASE_HEADER_INCLUDED
#ifndef OPM_TRANSPORTSOLVERCOMPRESSIBLETWOPHASEREORDER_HEADER_INCLUDED
#define OPM_TRANSPORTSOLVERCOMPRESSIBLETWOPHASEREORDER_HEADER_INCLUDED
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
#include <opm/core/transport/reorder/ReorderSolverInterface.hpp>
#include <vector>
struct UnstructuredGrid;
@ -32,7 +32,7 @@ namespace Opm
/// Implements a reordering transport solver for compressible,
/// non-miscible two-phase flow.
class TransportModelCompressibleTwophase : public TransportModelInterface
class TransportSolverCompressibleTwophaseReorder : public ReorderSolverInterface
{
public:
/// Construct solver.
@ -40,7 +40,7 @@ namespace Opm
/// \param[in] props Rock and fluid properties.
/// \param[in] tol Tolerance used in the solver.
/// \param[in] maxit Maximum number of non-linear iterations used.
TransportModelCompressibleTwophase(const UnstructuredGrid& grid,
TransportSolverCompressibleTwophaseReorder(const UnstructuredGrid& grid,
const Opm::BlackoilPropertiesInterface& props,
const double tol,
const int maxit);

View File

@ -17,7 +17,7 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
#include <opm/core/transport/reorder/TransportSolverTwophaseReorder.hpp>
#include <opm/core/props/IncompPropertiesInterface.hpp>
#include <opm/core/grid.h>
#include <opm/core/transport/reorder/reordersequence.h>
@ -40,7 +40,7 @@ namespace Opm
typedef RegulaFalsi<WarnAndContinueOnError> RootFinder;
TransportModelTwophase::TransportModelTwophase(const UnstructuredGrid& grid,
TransportSolverTwophaseReorder::TransportSolverTwophaseReorder(const UnstructuredGrid& grid,
const Opm::IncompPropertiesInterface& props,
const double tol,
const int maxit)
@ -76,7 +76,7 @@ namespace Opm
props.satRange(props.numCells(), &cells[0], &smin_[0], &smax_[0]);
}
void TransportModelTwophase::solve(const double* darcyflux,
void TransportSolverTwophaseReorder::solve(const double* darcyflux,
const double* porevolume,
const double* source,
const double dt,
@ -108,7 +108,7 @@ namespace Opm
}
const std::vector<int>& TransportModelTwophase::getReorderIterations() const
const std::vector<int>& TransportSolverTwophaseReorder::getReorderIterations() const
{
return reorder_iterations_;
}
@ -120,7 +120,7 @@ namespace Opm
//
// where influx is water influx, outflux is total outflux.
// Influxes are negative, outfluxes positive.
struct TransportModelTwophase::Residual
struct TransportSolverTwophaseReorder::Residual
{
int cell;
double s0;
@ -128,8 +128,8 @@ namespace Opm
double outflux; // sum_j max(v_ij, 0) - q
double comp_term; // q - sum_j v_ij
double dtpv; // dt/pv(i)
const TransportModelTwophase& tm;
explicit Residual(const TransportModelTwophase& tmodel, int cell_index)
const TransportSolverTwophaseReorder& tm;
explicit Residual(const TransportSolverTwophaseReorder& tmodel, int cell_index)
: tm(tmodel)
{
cell = cell_index;
@ -171,7 +171,7 @@ namespace Opm
};
void TransportModelTwophase::solveSingleCell(const int cell)
void TransportSolverTwophaseReorder::solveSingleCell(const int cell)
{
Residual res(*this, cell);
// const double r0 = res(saturation_[cell]);
@ -225,7 +225,7 @@ namespace Opm
// } // anon namespace
void TransportModelTwophase::solveMultiCell(const int num_cells, const int* cells)
void TransportSolverTwophaseReorder::solveMultiCell(const int num_cells, const int* cells)
{
// std::ofstream os("dump");
// std::copy(cells, cells + num_cells, std::ostream_iterator<double>(os, "\n"));
@ -440,7 +440,7 @@ namespace Opm
#endif // EXPERIMENT_GAUSS_SEIDEL
}
double TransportModelTwophase::fracFlow(double s, int cell) const
double TransportSolverTwophaseReorder::fracFlow(double s, int cell) const
{
double sat[2] = { s, 1.0 - s };
double mob[2];
@ -458,15 +458,15 @@ namespace Opm
//
// r(s) = s - s0 + dt/pv*sum_{j adj i}( gravmod_ij * gf_ij ).
//
struct TransportModelTwophase::GravityResidual
struct TransportSolverTwophaseReorder::GravityResidual
{
int cell;
int nbcell[2];
double s0;
double dtpv; // dt/pv(i)
double gf[2];
const TransportModelTwophase& tm;
explicit GravityResidual(const TransportModelTwophase& tmodel,
const TransportSolverTwophaseReorder& tm;
explicit GravityResidual(const TransportSolverTwophaseReorder& tmodel,
const std::vector<int>& cells,
const int pos,
const double* gravflux) // Always oriented towards next in column. Size = colsize - 1.
@ -513,7 +513,7 @@ namespace Opm
}
};
void TransportModelTwophase::mobility(double s, int cell, double* mob) const
void TransportSolverTwophaseReorder::mobility(double s, int cell, double* mob) const
{
double sat[2] = { s, 1.0 - s };
props_.relperm(1, sat, &cell, mob, 0);
@ -523,7 +523,7 @@ namespace Opm
void TransportModelTwophase::initGravity(const double* grav)
void TransportSolverTwophaseReorder::initGravity(const double* grav)
{
// Set up gravflux_ = T_ij g (rho_w - rho_o) (z_i - z_j)
std::vector<double> htrans(grid_.cell_facepos[grid_.number_of_cells]);
@ -547,7 +547,7 @@ namespace Opm
void TransportModelTwophase::solveSingleCellGravity(const std::vector<int>& cells,
void TransportSolverTwophaseReorder::solveSingleCellGravity(const std::vector<int>& cells,
const int pos,
const double* gravflux)
{
@ -564,7 +564,7 @@ namespace Opm
int TransportModelTwophase::solveGravityColumn(const std::vector<int>& cells)
int TransportSolverTwophaseReorder::solveGravityColumn(const std::vector<int>& cells)
{
// Set up column gravflux.
const int nc = cells.size();
@ -617,7 +617,7 @@ namespace Opm
void TransportModelTwophase::solveGravity(const std::vector<std::vector<int> >& columns,
void TransportSolverTwophaseReorder::solveGravity(const std::vector<std::vector<int> >& columns,
const double* porevolume,
const double dt,
std::vector<double>& saturation)

View File

@ -17,10 +17,10 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TRANSPORTMODELTWOPHASE_HEADER_INCLUDED
#define OPM_TRANSPORTMODELTWOPHASE_HEADER_INCLUDED
#ifndef OPM_TRANSPORTSOLVERTWOPHASEREORDER_HEADER_INCLUDED
#define OPM_TRANSPORTSOLVERTWOPHASEREORDER_HEADER_INCLUDED
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
#include <opm/core/transport/reorder/ReorderSolverInterface.hpp>
#include <vector>
#include <map>
#include <ostream>
@ -32,7 +32,7 @@ namespace Opm
class IncompPropertiesInterface;
/// Implements a reordering transport solver for incompressible two-phase flow.
class TransportModelTwophase : public TransportModelInterface
class TransportSolverTwophaseReorder : public ReorderSolverInterface
{
public:
/// Construct solver.
@ -40,7 +40,7 @@ namespace Opm
/// \param[in] props Rock and fluid properties.
/// \param[in] tol Tolerance used in the solver.
/// \param[in] maxit Maximum number of non-linear iterations used.
TransportModelTwophase(const UnstructuredGrid& grid,
TransportSolverTwophaseReorder(const UnstructuredGrid& grid,
const Opm::IncompPropertiesInterface& props,
const double tol,
const int maxit);

View File

@ -223,8 +223,7 @@ namespace Opm
: w_(0)
{
}
/// Construct from existing wells object.
WellsManager::WellsManager(struct Wells* W)