Import geometry calculation from the MATLAB Reservoir Simulation Toolbox.

Author: Jostein R. Natvig

Hook up to build.
This commit is contained in:
Bård Skaflestad 2011-11-30 12:41:29 +01:00
parent e80ecf1077
commit dac3142d16
5 changed files with 330 additions and 20 deletions

View File

@ -15,12 +15,14 @@ noinst_LTLIBRARIES = libcpgpreprocess_noinst.la
libcpgpreprocess_la_SOURCES = \
cgridinterface.c \
facetopology.c \
uniquepoints.c \
facetopology.h \
geometry.c \
geometry.h \
preprocess.c \
sparsetable.c \
facetopology.h \
uniquepoints.h \
sparsetable.h
sparsetable.h \
uniquepoints.c \
uniquepoints.h
libcpgpreprocess_noinst_la_SOURCES = \
$(libcpgpreprocess_la_SOURCES)

View File

@ -1,28 +1,30 @@
#include <assert.h>
#include <stdlib.h>
#include <grid.h>
#include "geometry.h"
#include "cgridinterface.h"
static int *compute_cell_facepos(grid_t *g)
{
int i,j,k;
int *facepos = malloc((g->number_of_cells + 1) * sizeof *facepos);
int *fcells = g->face_cells;
for (i=0; i<g->number_of_cells; ++i) {
facepos [i] = 0;
}
for (i=0; i<2*g->number_of_faces; ++i) {
if (*fcells != -1) {
(facepos[*fcells])++;
}
fcells++;
}
/* cumsum */
j=0;
for (i=0; i<g->number_of_cells; ++i) {
@ -45,10 +47,10 @@ static int *compute_cell_faces(grid_t *g)
for(i=0; i<g->number_of_cells; ++i) {
work[i] = 0;
}
for (i=0; i<g->number_of_faces; ++i) {
for (k=0;k<2; ++k) {
if (*fcells != -1) {
cell = *fcells;
cfaces[g->cell_facepos[cell] + work[cell]] = i;
@ -57,13 +59,13 @@ static int *compute_cell_faces(grid_t *g)
fcells++;
}
}
free(work);
free(work);
return cfaces;
}
void preprocess (const struct grdecl *in,
double tol,
void preprocess (const struct grdecl *in,
double tol,
struct CornerpointGrid *G)
{
struct processed_grid pg;
@ -73,8 +75,8 @@ void preprocess (const struct grdecl *in,
process_grdecl(in, tol, &pg);
/*
* General grid interface
/*
* General grid interface
*/
base->dimensions = 3;
@ -87,11 +89,11 @@ void preprocess (const struct grdecl *in,
base->face_nodes = pg.face_nodes;
base->face_nodepos = pg.face_ptr;
base->face_cells = pg.face_neighbors;
base->face_centroids = NULL;
base->face_normals = NULL;
base->face_areas = NULL;
/* NB: compute_cell_facepos must be called before compute_cell_faces */
base->cell_facepos = compute_cell_facepos(base);
base->cell_faces = compute_cell_faces (base);
@ -99,8 +101,8 @@ void preprocess (const struct grdecl *in,
base->cell_volumes = NULL;
/*
* Cornerpoint grid interface
/*
* Cornerpoint grid interface
*/
G->cartdims[0] = pg.dimensions[0];
G->cartdims[1] = pg.dimensions[1];
@ -114,7 +116,7 @@ void preprocess (const struct grdecl *in,
G->index_map = pg.local_cell_index;
}
void free_cornerpoint_grid(struct CornerpointGrid *G)
{
free(G->grid.face_nodes);
@ -132,3 +134,53 @@ void free_cornerpoint_grid(struct CornerpointGrid *G)
free(G->index_map);
}
static int
allocate_geometry(struct CornerpointGrid *g)
{
int ok;
size_t nc, nf, nd;
assert (g->grid.dimensions == 3);
nc = g->grid.number_of_cells;
nf = g->grid.number_of_faces;
nd = 3;
g->grid.face_areas = malloc(nf * 1 * sizeof *g->grid.face_areas);
g->grid.face_centroids = malloc(nf * nd * sizeof *g->grid.face_centroids);
g->grid.face_normals = malloc(nf * nd * sizeof *g->grid.face_normals);
g->grid.cell_volumes = malloc(nc * 1 * sizeof *g->grid.cell_volumes);
g->grid.cell_centroids = malloc(nc * nd * sizeof *g->grid.cell_centroids);
ok = g->grid.face_areas != NULL;
ok += g->grid.face_centroids != NULL;
ok += g->grid.face_normals != NULL;
ok += g->grid.cell_volumes != NULL;
ok += g->grid.cell_centroids != NULL;
return ok == 5;
}
void compute_geometry(struct CornerpointGrid *g)
{
int ok;
ok = allocate_geometry(g);
if (ok) {
compute_face_geometry(nd, g->grid.node_coordinates, nf,
g->grid.face_nodepos, g->grid.face_nodes,
g->grid.face_normals, g->grid.face_centroids,
g->grid.face_areas);
compute_cell_geometry(nd, g->grid.node_coordinates,
g->grid.face_nodepos, g->grid.face_nodes,
g->grid.face_cells, g->grid.face_normals,
g->grid.face_centroids, nc,
g->grid.cell_facepos, g->grid.cell_faces,
g->grid.cell_centroids, g->grid.cell_volumes);
}
}

View File

@ -42,6 +42,8 @@ extern "C" {
double tol,
struct CornerpointGrid *out);
void compute_geometry (struct CornerpointGrid *g);
void free_cornerpoint_grid(struct CornerpointGrid *g);
#ifdef __cplusplus
}

235
geometry.c Normal file
View File

@ -0,0 +1,235 @@
/*
* Copyright 2010 (c) SINTEF ICT, Applied Mathematics.
* Jostein R. Natvig <Jostein.R.Natvig at sintef.no>
*/
#include <math.h>
#include <stdio.h>
#include "geometry.h"
/* ------------------------------------------------------------------ */
static void
cross(const double u[3], const double v[3], double w[3])
/* ------------------------------------------------------------------ */
{
w[0] = u[1]*v[2]-u[2]*v[1];
w[1] = u[2]*v[0]-u[0]*v[2];
w[2] = u[0]*v[1]-u[1]*v[0];
}
/* ------------------------------------------------------------------ */
static double
norm(const double w[3])
/* ------------------------------------------------------------------ */
{
return sqrt(w[0]*w[0] + w[1]*w[1] + w[2]*w[2]);
}
/* ------------------------------------------------------------------ */
void
compute_face_geometry(int ndims, double *coords, int nfaces,
int *nodepos, int *facenodes, double *fnormals,
double *fcentroids, double *fareas)
/* ------------------------------------------------------------------ */
{
/* Assume 3D for now */
int f;
double x[3];
double u[3];
double v[3];
double w[3];
int i,k;
int node;
double cface[3] = {0};
double n[3] = {0};
const double twothirds = 0.666666666666666666666666666667;
for (f=0; f<nfaces; ++f)
{
int num_face_nodes;
double area = 0.0;
for(i=0; i<ndims; ++i) x[i] = 0.0;
for(i=0; i<ndims; ++i) n[i] = 0.0;
for(i=0; i<ndims; ++i) cface[i] = 0.0;
/* average node */
for(k=nodepos[f]; k<nodepos[f+1]; ++k)
{
node = facenodes[k];
for (i=0; i<ndims; ++i) x[i] += coords[3*node+i];
}
num_face_nodes = nodepos[f+1] - nodepos[f];
for(i=0; i<ndims; ++i) x[i] /= num_face_nodes;
/* compute first vector u (to the last node in the face) */
node = facenodes[nodepos[f+1]-1];
for(i=0; i<ndims; ++i) u[i] = coords[3*node+i] - x[i];
/* Compute triangular contrib. to face normal and face centroid*/
for(k=nodepos[f]; k<nodepos[f+1]; ++k)
{
double a;
node = facenodes[k];
for (i=0; i<ndims; ++i) v[i] = coords[3*node+i] - x[i];
cross(u,v,w);
a = 0.5*norm(w);
area += a;
if(!(a>0))
{
fprintf(stderr, "Internal error in compute_face_geometry.");
}
/* face normal */
for (i=0; i<ndims; ++i) n[i] += w[i];
/* face centroid */
for (i=0; i<ndims; ++i)
cface[i] += a*(x[i]+twothirds*0.5*(u[i]+v[i]));
/* Store v in u for next iteration */
for (i=0; i<ndims; ++i) u[i] = v[i];
}
/* Store face normal and face centroid */
for (i=0; i<ndims; ++i)
{
/* normal is scaled with face area */
fnormals [3*f+i] = 0.5*n[i];
fcentroids[3*f+i] = cface[i]/area;
}
fareas[f] = area;
}
}
/* ------------------------------------------------------------------ */
void
compute_cell_geometry(int ndims, double *coords,
int *nodepos, int *facenodes, int *neighbors,
double *fnormals,
double *fcentroids,
int ncells, int *facepos, int *cellfaces,
double *ccentroids, double *cvolumes)
/* ------------------------------------------------------------------ */
{
int i,k, f,c;
int face,node;
double x[3];
double u[3];
double v[3];
double w[3];
double xcell[3];
double ccell[3];
double cface[3] = {0};
const double twothirds = 0.666666666666666666666666666667;
for (c=0; c<ncells; ++c)
{
int num_faces;
double volume = 0.0;
for(i=0; i<ndims; ++i) xcell[i] = 0.0;
for(i=0; i<ndims; ++i) ccell[i] = 0.0;
/*
* Approximate cell center as average of face centroids
*/
for(f=facepos[c]; f<facepos[c+1]; ++f)
{
face = cellfaces[f];
for (i=0; i<ndims; ++i) xcell[i] += fcentroids[3*face+i];
}
num_faces = facepos[c+1] - facepos[c];
for(i=0; i<ndims; ++i) xcell[i] /= num_faces;
/*
* For all faces, add tetrahedron's volume and centroid to
* 'cvolume' and 'ccentroid'.
*/
for(f=facepos[c]; f<facepos[c+1]; ++f)
{
int num_face_nodes;
for(i=0; i<ndims; ++i) x[i] = 0.0;
for(i=0; i<ndims; ++i) cface[i] = 0.0;
face = cellfaces[f];
/* average face node x */
for(k=nodepos[face]; k<nodepos[face+1]; ++k)
{
node = facenodes[k];
for (i=0; i<ndims; ++i) x[i] += coords[3*node+i];
}
num_face_nodes = nodepos[face+1] - nodepos[face];
for(i=0; i<ndims; ++i) x[i] /= num_face_nodes;
/* compute first vector u (to the last node in the face) */
node = facenodes[nodepos[face+1]-1];
for(i=0; i<ndims; ++i) u[i] = coords[3*node+i] - x[i];
/* Compute triangular contributions to face normal and face centroid */
for(k=nodepos[face]; k<nodepos[face+1]; ++k)
{
double tet_volume, subnormal_sign;
node = facenodes[k];
for (i=0; i<ndims; ++i) v[i] = coords[3*node+i] - x[i];
cross(u,v,w);
tet_volume = 0;
for(i=0; i<ndims; ++i){
tet_volume += 0.5/3 * w[i]*(x[i]-xcell[i]);
/*tet_volume += 0.5/3 * w[i]*(x[i]-xcell[i]);*/
}
/*tet_volume = fabs(tet_volume);*/
subnormal_sign=0.0;
for(i=0; i<ndims; ++i){
subnormal_sign += w[i]*fnormals[3*face+i];
}
if(subnormal_sign<0){
tet_volume*=-1.0;
}
if(!(neighbors[2*face+0]==c)){
tet_volume*=-1.0;
}
volume += tet_volume;
if(!(volume>0)){
fprintf(stderr, "Internal error in mex_compute_geometry: negative volume\n");
}
/* face centroid of triangle */
for (i=0; i<ndims; ++i) cface[i] = (x[i]+twothirds*0.5*(u[i]+v[i]));
/* Cell centroid */
for (i=0; i<ndims; ++i) ccell[i] += tet_volume * 3/4.0*(cface[i] - xcell[i]);
/* Store v in u for next iteration */
for (i=0; i<ndims; ++i) u[i] = v[i];
}
}
for (i=0; i<ndims; ++i) ccentroids[3*c+i] = xcell[i] + ccell[i]/volume;
cvolumes[c] = volume;
}
}

19
geometry.h Normal file
View File

@ -0,0 +1,19 @@
/*
* Copyright 2010 (c) SINTEF ICT, Applied Mathematics.
* Jostein R. Natvig <Jostein.R.Natvig at sintef.no>
*/
#ifndef MRST_GEOMETRY_H_INCLUDED
#define MRST_GEOMETRY_H_INCLUDED
void compute_face_geometry(int ndims, double *coords, int nfaces,
int *nodepos, int *facenodes,
double *fnormals, double *fcentroids,
double *fareas);
void compute_cell_geometry(int ndims, double *coords,
int *nodepos, int *facenodes, int *neighbours,
double *fnormals,
double *fcentroids, int ncells,
int *facepos, int *cellfaces,
double *ccentroids, double *cvolumes);
#endif /* MRST_GEOMETRY_H_INCLUDED */