Document module and routines relating to per-cell contributions.

Per-well contributions and pressure/flux reconstruction remain.
This commit is contained in:
Bård Skaflestad 2012-06-25 00:57:36 +02:00
parent 6e8df003f1
commit dbde5af7e4

View File

@ -20,87 +20,338 @@
#ifndef OPM_HYBSYS_HEADER_INCLUDED #ifndef OPM_HYBSYS_HEADER_INCLUDED
#define OPM_HYBSYS_HEADER_INCLUDED #define OPM_HYBSYS_HEADER_INCLUDED
/**
* \file
* Routines and data structures to manage local contributions to a
* global system of simultaneous linear equations arising from a
* Schur complement reduction of an original block system.
*
* Specifically, these data structures and related routines compute
* and store the elemental (cell-based) contributions of the Schur
* complement reduction of the block system of simultaneous linear
* equations
* \f[
* \begin{pmatrix}
* B & C_1 & D \\
* C_2^\mathsf{T} & P & 0 \\
* D^\mathsf{T} & 0 & 0
* \end{pmatrix}
* \begin{pmatrix}
* v \\ -p \\ \pi
* \end{pmatrix} = \begin{pmatrix}
* G \\ g \\ h
* \end{pmatrix}
* \f]
* in which \f$G\f$ accounts for effects of gravity. The traditional
* Schurcomplement reduction (block Gaussian elimination) then produces
* the equivalent system of simultaneous linear equations
* \f[
* \begin{pmatrix}
* B & C_1 & D \\
* 0 & -L & -F_2 \\
* 0 & 0 & A
* \end{pmatrix}
* \begin{pmatrix}
* v \\ -p \\ \pi
* \end{pmatrix} = \begin{pmatrix}
* G \\ g - C_2^\mathsf{T}B^{-1}G \\ b
* \end{pmatrix}.
* \f]
* Here, the matrix \f$A\f$ and the right hand side vector \f$b\f$ are given
* by
* \f[
* \begin{aligned}
* A &= D^\mathsf{T}B^{-1}D - F_1^\mathsf{T}L^{-1}F_2 \\
* b &= D^\mathsf{T}B^{-1}G +
* F_1^\mathsf{T}L^{-1}(g - C_2^\mathsf{T}B^{-1}G) - h,
* \end{aligned}
* \f]
* and the component matrices \f$F_1\f$, \f$F_2\f$, and \f$L\f$ are given
* by
* \f[
* F_1 = C_1^\mathsf{T}B^{-1}D, \quad
* F_2 = C_2^\mathsf{T}B^{-1}D, \quad
* L = C_2^\mathsf{T}B^{-1}C_1 - P.
* \f]
* In the case of incompressible flow, the matrix \f$C_2\f$ is the same
* as \f$C_1\f$ and \f$P=0\f$ whence the coefficient matrix \f$A\f$ of
* the Schur complement system \f$A\pi=b\f$ is symmetric.
*
* A great deal of simplification arises from the simple characterisation
* of the \f$C_1\f$ and \f$D\f$ matrices. Specifically,
* \f[
* (C_1)_{ij} = \begin{cases}
* 1, &\quad i\in\{\mathit{pconn}_j, \dots, \mathit{pconn}_{j+1}-1\}, \\
* 0, &\quad \text{otherwise},
* \end{cases}
* \f]
* and
* \f[
* (D)_{ij} = \begin{cases}
* 1, &\quad \mathit{conn}_i = j, \\
* 0, &\quad \text{otherwise}.
* \end{cases}
* \f]
* When viewed in the context of a single cell, then the \f$D\f$ matrix
* is, effectively, the identity with the \f$\mathit{conn}\f$ array
* simply affecting a finite-element style redistribution (assembly)
* of the local contributions. This module leverages that property
* extensively.
*/
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
/**
* Elemental contributions (from cells) to block system of simultaneous
* linear equations. Mixes quantities of single cells (@c r,
* @c S and @c one) with those that cater to all cells (@c L,
* @c q, @c F1, and--possibly--@c F2).
*/
struct hybsys { struct hybsys {
double *L; /* C2' * inv(B) * C1 - P */ double *L; /**< \f$C_2^\mathsf{T}B^{-1}C - P\f$, all cells */
double *q; /* g - F2*G */ double *q; /**< \f$g - F_2 G\f$, all cells */
double *F1; /* C1' * inv(B) */ double *F1; /**< \f$C_1^\mathsf{T}B^{-1}\f$, all cells */
double *F2; /* C2' * inv(B) */ double *F2; /**< \f$C_2^\mathsf{T}B^{-1}\f$, all cells*/
double *r; /* system rhs in single cell */ double *r; /**< Data buffer for system right-hand side, single cell */
double *S; /* system matrix in single cell */ double *S; /**< Data buffer system matrix, single cell */
double *one; /* ones(max_nconn, 1) */ double *one; /**< \f$(1,1,\dots,1)^\mathsf{T}\f$, single cell */
}; };
/**
* Elemental contributions (from wells) to block system of simultaneous
* linear equations. Mixes quantities of single cell connections (@c r,
* @c w2r, @c r2w, and @c w2w) and those that pertain to all well
* connections (perforations) in concert (@c F1 and @c F2).
*/
struct hybsys_well { struct hybsys_well {
double *F1; double *F1; /**< \f$C_1^\mathsf{T}B^{-1}\f$, all connections. */
double *F2; double *F2; /**< \f$C_2^\mathsf{T}B^{-1}\f$, all connections. */
double *r; double *r; /**< Data buffer for system right-hand side, single cell. */
double *w2r; double *w2r; /**< Well-to-reservoir connection strength, single cell. */
double *r2w; double *r2w; /**< Reservoir-to-well connection strength, single cell. */
double *w2w; double *w2w; /**< Aggregate well-to-well connection strength. */
double *data; double *data; /**< Linear storage array. Structure undisclosed. */
}; };
/**
* Allocate a hybrid system management structure suitable for discretising
* a symmetric (i.e., incompressible) flow problem on a grid model of
* given size.
*
* @param[in] max_nconn Maximum number of single cell faces.
* @param[in] nc Total number of grid cells.
* @param[in] nconn_tot Aggregate number of cell faces for all cells.
* @return Fully formed hybrid system management structure if successful or
* @c NULL in case of allocation failure.
*/
struct hybsys * struct hybsys *
hybsys_allocate_symm(int max_nconn, int nc, int nconn_tot); hybsys_allocate_symm(int max_nconn, int nc, int nconn_tot);
/**
* Allocate a hybrid system management structure suitable for discretising
* an unsymmetric (i.e., compressible) flow problem on a grid model of
* given size.
*
* @param[in] max_nconn Maximum number of single cell faces.
* @param[in] nc Total number of grid cells.
* @param[in] nconn_tot Aggregate number of cell faces for all cells.
* @return Fully formed hybrid system management structure if successful or
* @c NULL in case of allocation failure.
*/
struct hybsys * struct hybsys *
hybsys_allocate_unsymm(int max_nconn, int nc, int nconn_tot); hybsys_allocate_unsymm(int max_nconn, int nc, int nconn_tot);
/**
* Allocate a hybrid system management structure suitable for discretising
* an incompressible (i.e., symmetric) well flow problem on a grid model
* of given size.
*
* @param[in] max_nconn Maximum number of single cell faces.
* @param[in] nc Total number of grid cells.
* @param[in] cwpos Indirection array that defines each cell's
* connecting wells. Values typically computed
* using function derive_cell_wells().
* @return Fully formed hybrid system management structure if successful or
* @c NULL in case of allocation failure.
*/
struct hybsys_well * struct hybsys_well *
hybsys_well_allocate_symm(int max_nconn, int nc, int *cwpos); hybsys_well_allocate_symm(int max_nconn, int nc, int *cwpos);
/**
* Allocate a hybrid system management structure suitable for discretising
* a compressible (i.e., unsymmetric) well flow problem on a grid model
* of given size.
*
* @param[in] max_nconn Maximum number of single cell faces.
* @param[in] nc Total number of grid cells.
* @param[in] cwpos Indirection array that defines each cell's
* connecting wells. Values typically computed
* using function derive_cell_wells().
* @return Fully formed hybrid system management structure if successful
* or @c NULL in case of allocation failure.
*/
struct hybsys_well * struct hybsys_well *
hybsys_well_allocate_unsymm(int max_nconn, int nc, int *cwpos); hybsys_well_allocate_unsymm(int max_nconn, int nc, int *cwpos);
/**
* Dispose of memory resources previously obtained through one of the
* allocation functions, hybsys_allocate_symm() or
* hybsys_allocate_unsymm().
*
* Following a call to hybsys_free(), the input pointer is no longer
* valid. <CODE>hybsys_free(NULL)</CODE> does nothing.
*
* @param[in,out] sys Previously allocated hybrid system management
* structure (or @c NULL).
*/
void void
hybsys_free(struct hybsys *sys); hybsys_free(struct hybsys *sys);
/**
* Dispose of memory resources previously obtained through one of the
* allocation functions, hybsys_well_allocate_symm() or
* hybsys_well_allocate_unsymm().
*
* Following a call to hybsys_well_free(), the input pointer is
* no longer valid. <CODE>hybsys_well_free(NULL)</CODE> does nothing.
*
* @param[in,out] wsys Previously allocated hybrid system management
* structure (or @c NULL).
*/
void void
hybsys_well_free(struct hybsys_well *wsys); hybsys_well_free(struct hybsys_well *wsys);
/**
* Perform post-construction dynamic initialisation of system
* structure obtained from function hybsys_allocate_symm() or
* hybsys_allocate_unsymm().
*
* @param[in] max_nconn Maximum number of single cell faces.
* Must coincide with the equally named
* parameter of functions hybsys_allocate_symm()
* or hybsys_allocate_unsymm().
* @param[in,out] sys Previously allocated hybrid system management
* structure.
*/
void void
hybsys_init(int max_nconn, struct hybsys *sys); hybsys_init(int max_nconn, struct hybsys *sys);
/* /**
* Schur complement reduction (per grid cell) of block matrix * Compute elemental (per-cell) contributions to symmetric Schur
* system of simultaneous linear equations.
* *
* [ B C D ] * This function assumes that the coefficient matrix of the hybrid
* [ C' 0 0 ] * system of linear equations is that of the introduction with the
* [ D' 0 0 ] * additional provision that \f$C_1=C_2=C\f$ and that \f$P=0\f$.
* In other words, this function assumes that the coefficient matrix
* is of the form
* \f[
* \begin{pmatrix}
* B & C & D \\
* C^\mathsf{T} & 0 & 0 \\
* D^\mathsf{T} & 0 & 0
* \end{pmatrix}.
* \f]
* This function fills the @c F1 and @c L fields of the management
* structure.
* *
* @param[in] nc Total number of grid cells.
* @param[in] pconn Cell-to-face start pointers.
* @param[in] Binv Inverse inner product results, usually
* computed using mim_ip_simple_all() and
* mim_ip_mobility_update().
* @param[in,out] sys Hybrid system management structure allocated
* using hybsys_allocate_symm() and initialised
* using hybsys_init().
*/ */
void void
hybsys_schur_comp_symm(int nc, const int *pconn, hybsys_schur_comp_symm(int nc, const int *pconn,
const double *Binv, struct hybsys *sys); const double *Binv, struct hybsys *sys);
/*
* Schur complement reduction (per grid cell) of block matrix /**
* Compute elemental (per-cell) contributions to unsymmetric Schur
* system of simultaneous linear equations.
* *
* [ B C D ] * This function assumes that the coefficient matrix of the hybrid
* [ (C-V)' P 0 ] * system of linear equations is that of the introduction with the
* [ D' 0 0 ] * additional provision that \f$C_2=C_1-V\f$. In other words, this
* function assumes that the coefficient matrix is of the form
* \f[
* \begin{pmatrix}
* B & C & D \\
* (C-V)^\mathsf{T} & P & 0 \\
* D^\mathsf{T} & 0 & 0
* \end{pmatrix}.
* \f]
* This matrix arises in the ``\f$v^2\f$'' phase compressibility
* formulation of the compressible black-oil model. This function
* fills the @c F1, @c F2 and @c L fields of the management structure.
* *
* @param[in] nc Total number of grid cells.
* @param[in] pconn Cell-to-face start pointers.
* @param[in] Binv Inverse inner product results, usually
* computed using mim_ip_simple_all() and
* mim_ip_mobility_update().
* @param[in] BIV \f$B^{-1}v\f$ in which \f$v\f$ is the flux
* field of a previous time step or non-linear
* iteration.
* @param[in] P Per cell compressible accumulation term. One
* scalar per cell.
* @param[in,out] sys Hybrid system management structure allocated
* using hybsys_allocate_symm() and initialised
* using hybsys_init().
*/ */
void void
hybsys_schur_comp_unsymm(int nc, const int *pconn, hybsys_schur_comp_unsymm(int nc, const int *pconn,
const double *Binv, const double *BIV, const double *Binv, const double *BIV,
const double *P, struct hybsys *sys); const double *P, struct hybsys *sys);
/*
* Schur complement reduction (per grid cell) of block matrix /**
* Compute elemental (per-cell) contributions to unsymmetric Schur
* system of simultaneous linear equations.
* *
* [ B C D ] * This function assumes that the coefficient matrix of the hybrid
* [ C2' P 0 ] * system of linear equations is that of the introduction with no
* [ D' 0 0 ] * additional provisions. In other words, this
* function assumes that the coefficient matrix is of the form
* \f[
* \begin{pmatrix}
* B & C_1 & D \\
* C_2^\mathsf{T} & P & 0 \\
* D^\mathsf{T} & 0 & 0
* \end{pmatrix}.
* \f]
* This function fills the @c F1, @c F2 and @c L fields of
* the management structure.
* *
* @param[in] nc Total number of grid cells.
* @param[in] pconn Cell-to-face start pointers.
* @param[in] Binv Inverse inner product results, usually
* computed using mim_ip_simple_all() and
* mim_ip_mobility_update().
* @param[in] C2 Explicit representation of the \f$C_2\f$
* matrix as a linear array. Assumed to only
* contain the (structurally) non-zero matrix
* elements (that correspond to the non-zero
* structure of \f$C_1\f$).
* @param[in] P Per cell compressible accumulation term. One
* scalar per cell.
* @param[in,out] sys Hybrid system management structure allocated
* using hybsys_allocate_symm() and initialised
* using hybsys_init().
*/ */
void void
hybsys_schur_comp_gen(int nc, const int *pconn, hybsys_schur_comp_gen(int nc, const int *pconn,