Merge branch 'master' into reorder_tof
This commit is contained in:
commit
dd8b444bf5
@ -56,8 +56,8 @@ extern "C" {
|
||||
struct grdecl {
|
||||
int dims[3]; /**< Cartesian box dimensions. */
|
||||
const double *coord; /**< Pillar end-points. */
|
||||
const double *zcorn; /**< Explicit "active" map. May be NULL.*/
|
||||
const int *actnum; /**< Corner-point depths. */
|
||||
const double *zcorn; /**< Corner-point depths. */
|
||||
const int *actnum; /**< Explicit "active" map. May be NULL.*/
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -632,6 +632,23 @@ namespace Opm
|
||||
&state.pressure()[0],
|
||||
&state.faceflux()[0],
|
||||
&state.facepressure()[0]);
|
||||
|
||||
// Compute well perforation pressures (not done by the C code).
|
||||
if (wells_ != 0) {
|
||||
const int nw = wells_->number_of_wells;
|
||||
const int np = props_.numPhases();
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const double* comp_frac = &wells_->comp_frac[np*w];
|
||||
for (int j = wells_->well_connpos[w]; j < wells_->well_connpos[w+1]; ++j) {
|
||||
const double bhp = well_state.bhp()[w];
|
||||
double perf_p = bhp;
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
perf_p += wellperf_gpot_[np*j + phase]*comp_frac[phase];
|
||||
}
|
||||
well_state.perfPress()[j] = perf_p;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -196,6 +196,7 @@ namespace Opm
|
||||
if (!file) {
|
||||
THROW("Failed to open " << fname.str());
|
||||
}
|
||||
file.precision(15);
|
||||
const std::vector<double>& d = *(it->second);
|
||||
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
|
||||
}
|
||||
@ -319,15 +320,11 @@ namespace Opm
|
||||
Opm::time::StopWatch step_timer;
|
||||
Opm::time::StopWatch total_timer;
|
||||
total_timer.start();
|
||||
double init_satvol[2] = { 0.0 };
|
||||
double satvol[2] = { 0.0 };
|
||||
double injected[2] = { 0.0 };
|
||||
double produced[2] = { 0.0 };
|
||||
double init_surfvol[2] = { 0.0 };
|
||||
double inplace_surfvol[2] = { 0.0 };
|
||||
double tot_injected[2] = { 0.0 };
|
||||
double tot_produced[2] = { 0.0 };
|
||||
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
|
||||
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
|
||||
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
|
||||
Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
|
||||
Opm::Watercut watercut;
|
||||
watercut.push(0.0, 0.0, 0.0);
|
||||
Opm::WellReport wellreport;
|
||||
@ -434,9 +431,8 @@ namespace Opm
|
||||
computePorevolume(grid_, props_.porosity(), *rock_comp_, state.pressure(), porevol);
|
||||
}
|
||||
|
||||
// Process transport sources (to include bdy terms and well flows).
|
||||
Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
|
||||
wells_, well_state.perfRates(), transport_src);
|
||||
// Process transport sources from well flows.
|
||||
Opm::computeTransportSource(props_, wells_, well_state, transport_src);
|
||||
|
||||
// Solve transport.
|
||||
transport_timer.start();
|
||||
@ -445,13 +441,20 @@ namespace Opm
|
||||
stepsize /= double(num_transport_substeps_);
|
||||
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
|
||||
}
|
||||
double injected[2] = { 0.0 };
|
||||
double produced[2] = { 0.0 };
|
||||
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
|
||||
tsolver_.solve(&state.faceflux()[0], &state.pressure()[0],
|
||||
&initial_porevol[0], &porevol[0], &transport_src[0], stepsize,
|
||||
state.saturation(), state.surfacevol());
|
||||
Opm::computeInjectedProduced(props_,
|
||||
state.pressure(), state.surfacevol(), state.saturation(),
|
||||
transport_src, stepsize, injected, produced);
|
||||
double substep_injected[2] = { 0.0 };
|
||||
double substep_produced[2] = { 0.0 };
|
||||
Opm::computeInjectedProduced(props_, state, transport_src, stepsize,
|
||||
substep_injected, substep_produced);
|
||||
injected[0] += substep_injected[0];
|
||||
injected[1] += substep_injected[1];
|
||||
produced[0] += substep_produced[0];
|
||||
produced[1] += substep_produced[1];
|
||||
if (gravity_ != 0 && use_segregation_split_) {
|
||||
tsolver_.solveGravity(columns_, stepsize, state.saturation(), state.surfacevol());
|
||||
}
|
||||
@ -462,35 +465,35 @@ namespace Opm
|
||||
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
|
||||
ttime += tt;
|
||||
// Report volume balances.
|
||||
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
|
||||
Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
|
||||
tot_injected[0] += injected[0];
|
||||
tot_injected[1] += injected[1];
|
||||
tot_produced[0] += produced[0];
|
||||
tot_produced[1] += produced[1];
|
||||
std::cout.precision(5);
|
||||
const int width = 18;
|
||||
std::cout << "\nVolume balance report (all numbers relative to total pore volume).\n";
|
||||
std::cout << " Saturated volumes: "
|
||||
<< std::setw(width) << satvol[0]/tot_porevol_init
|
||||
<< std::setw(width) << satvol[1]/tot_porevol_init << std::endl;
|
||||
std::cout << " Injected volumes: "
|
||||
<< std::setw(width) << injected[0]/tot_porevol_init
|
||||
<< std::setw(width) << injected[1]/tot_porevol_init << std::endl;
|
||||
std::cout << " Produced volumes: "
|
||||
<< std::setw(width) << produced[0]/tot_porevol_init
|
||||
<< std::setw(width) << produced[1]/tot_porevol_init << std::endl;
|
||||
std::cout << " Total inj volumes: "
|
||||
<< std::setw(width) << tot_injected[0]/tot_porevol_init
|
||||
<< std::setw(width) << tot_injected[1]/tot_porevol_init << std::endl;
|
||||
std::cout << " Total prod volumes: "
|
||||
<< std::setw(width) << tot_produced[0]/tot_porevol_init
|
||||
<< std::setw(width) << tot_produced[1]/tot_porevol_init << std::endl;
|
||||
std::cout << " In-place + prod - inj: "
|
||||
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
|
||||
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init << std::endl;
|
||||
std::cout << " Init - now - pr + inj: "
|
||||
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
|
||||
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
|
||||
std::cout << "\nMass balance report.\n";
|
||||
std::cout << " Injected surface volumes: "
|
||||
<< std::setw(width) << injected[0]
|
||||
<< std::setw(width) << injected[1] << std::endl;
|
||||
std::cout << " Produced surface volumes: "
|
||||
<< std::setw(width) << produced[0]
|
||||
<< std::setw(width) << produced[1] << std::endl;
|
||||
std::cout << " Total inj surface volumes: "
|
||||
<< std::setw(width) << tot_injected[0]
|
||||
<< std::setw(width) << tot_injected[1] << std::endl;
|
||||
std::cout << " Total prod surface volumes: "
|
||||
<< std::setw(width) << tot_produced[0]
|
||||
<< std::setw(width) << tot_produced[1] << std::endl;
|
||||
const double balance[2] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
|
||||
init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1] };
|
||||
std::cout << " Initial - inplace + inj - prod: "
|
||||
<< std::setw(width) << balance[0]
|
||||
<< std::setw(width) << balance[1]
|
||||
<< std::endl;
|
||||
std::cout << " Relative mass error: "
|
||||
<< std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
|
||||
<< std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
|
||||
<< std::endl;
|
||||
std::cout.precision(8);
|
||||
|
||||
|
@ -244,6 +244,7 @@ namespace Opm
|
||||
if (!file) {
|
||||
THROW("Failed to open " << fname.str());
|
||||
}
|
||||
file.precision(15);
|
||||
const std::vector<double>& d = *(it->second);
|
||||
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
|
||||
}
|
||||
@ -398,8 +399,6 @@ namespace Opm
|
||||
total_timer.start();
|
||||
double init_satvol[2] = { 0.0 };
|
||||
double satvol[2] = { 0.0 };
|
||||
double injected[2] = { 0.0 };
|
||||
double produced[2] = { 0.0 };
|
||||
double tot_injected[2] = { 0.0 };
|
||||
double tot_produced[2] = { 0.0 };
|
||||
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
|
||||
@ -521,10 +520,19 @@ namespace Opm
|
||||
stepsize /= double(num_transport_substeps_);
|
||||
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
|
||||
}
|
||||
double injected[2] = { 0.0 };
|
||||
double produced[2] = { 0.0 };
|
||||
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
|
||||
tsolver_.solve(&state.faceflux()[0], &initial_porevol[0], &transport_src[0],
|
||||
stepsize, state.saturation());
|
||||
Opm::computeInjectedProduced(props_, state.saturation(), transport_src, stepsize, injected, produced);
|
||||
double substep_injected[2] = { 0.0 };
|
||||
double substep_produced[2] = { 0.0 };
|
||||
Opm::computeInjectedProduced(props_, state.saturation(), transport_src, stepsize,
|
||||
substep_injected, substep_produced);
|
||||
injected[0] += substep_injected[0];
|
||||
injected[1] += substep_injected[1];
|
||||
produced[0] += substep_produced[0];
|
||||
produced[1] += substep_produced[1];
|
||||
if (use_segregation_split_) {
|
||||
tsolver_.solveGravity(columns_, &initial_porevol[0], stepsize, state.saturation());
|
||||
}
|
||||
|
@ -49,7 +49,8 @@ namespace Opm
|
||||
bhp_[w] = state.pressure()[cell];
|
||||
}
|
||||
}
|
||||
perfrates_.resize(wells->well_connpos[nw]);
|
||||
perfrates_.resize(wells->well_connpos[nw], 0.0);
|
||||
perfpress_.resize(wells->well_connpos[nw], -1e100);
|
||||
}
|
||||
}
|
||||
|
||||
@ -61,9 +62,14 @@ namespace Opm
|
||||
std::vector<double>& perfRates() { return perfrates_; }
|
||||
const std::vector<double>& perfRates() const { return perfrates_; }
|
||||
|
||||
/// One pressure per well connection.
|
||||
std::vector<double>& perfPress() { return perfpress_; }
|
||||
const std::vector<double>& perfPress() const { return perfpress_; }
|
||||
|
||||
private:
|
||||
std::vector<double> bhp_;
|
||||
std::vector<double> perfrates_;
|
||||
std::vector<double> perfpress_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -152,7 +152,7 @@ namespace Opm
|
||||
B_cell = 1.0/tm.A_[np*np*cell + 0];
|
||||
double src_flux = -tm.source_[cell];
|
||||
bool src_is_inflow = src_flux < 0.0;
|
||||
influx = src_is_inflow ? src_flux : 0.0;
|
||||
influx = src_is_inflow ? B_cell* src_flux : 0.0;
|
||||
outflux = !src_is_inflow ? src_flux : 0.0;
|
||||
comp_term = (tm.porevolume_[cell] - tm.porevolume0_[cell])/tm.porevolume0_[cell];
|
||||
dtpv = tm.dt_/tm.porevolume0_[cell];
|
||||
|
@ -21,7 +21,10 @@
|
||||
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/newwells.h>
|
||||
#include <opm/core/fluid/BlackoilPropertiesInterface.hpp>
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
@ -31,53 +34,74 @@
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/// @brief Computes injected and produced volumes of all phases.
|
||||
/// @brief Computes injected and produced surface volumes of all phases.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] p pressure (one value per cell)
|
||||
/// @param[in] z surface-volume values (for all P phases)
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// Note 3: Gives surface volume values, not reservoir volumes
|
||||
/// (as the incompressible version of the function does).
|
||||
/// Also, assumes that transport_src is given in surface volumes
|
||||
/// for injector terms!
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] state state variables (pressure, sat, surfvol)
|
||||
/// @param[in] transport_src if < 0: total resv outflow, if > 0: first phase surfv inflow
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
|
||||
const std::vector<double>& press,
|
||||
const std::vector<double>& z,
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& src,
|
||||
const BlackoilState& state,
|
||||
const std::vector<double>& transport_src,
|
||||
const double dt,
|
||||
double* injected,
|
||||
double* produced)
|
||||
{
|
||||
const int num_cells = src.size();
|
||||
const int np = s.size()/src.size();
|
||||
if (int(s.size()) != num_cells*np) {
|
||||
THROW("Sizes of s and src vectors do not match.");
|
||||
const int num_cells = transport_src.size();
|
||||
if (props.numCells() != num_cells) {
|
||||
THROW("Size of transport_src vector does not match number of cells in props.");
|
||||
}
|
||||
const int np = props.numPhases();
|
||||
if (int(state.saturation().size()) != num_cells*np) {
|
||||
THROW("Sizes of state vectors do not match number of cells.");
|
||||
}
|
||||
const std::vector<double>& press = state.pressure();
|
||||
const std::vector<double>& s = state.saturation();
|
||||
const std::vector<double>& z = state.surfacevol();
|
||||
std::fill(injected, injected + np, 0.0);
|
||||
std::fill(produced, produced + np, 0.0);
|
||||
std::vector<double> visc(np);
|
||||
std::vector<double> mob(np);
|
||||
std::vector<double> A(np*np);
|
||||
std::vector<double> prod_resv_phase(np);
|
||||
std::vector<double> prod_surfvol(np);
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
if (src[c] > 0.0) {
|
||||
injected[0] += src[c]*dt;
|
||||
} else if (src[c] < 0.0) {
|
||||
const double flux = -src[c]*dt;
|
||||
if (transport_src[c] > 0.0) {
|
||||
// Inflowing transport source is a surface volume flux
|
||||
// for the first phase.
|
||||
injected[0] += transport_src[c]*dt;
|
||||
} else if (transport_src[c] < 0.0) {
|
||||
// Outflowing transport source is a total reservoir
|
||||
// volume flux.
|
||||
const double flux = -transport_src[c]*dt;
|
||||
const double* sat = &s[np*c];
|
||||
props.relperm(1, sat, &c, &mob[0], 0);
|
||||
props.viscosity(1, &press[c], &z[np*c], &c, &visc[0], 0);
|
||||
props.matrix(1, &press[c], &z[np*c], &c, &A[0], 0);
|
||||
double totmob = 0.0;
|
||||
for (int p = 0; p < np; ++p) {
|
||||
mob[p] /= visc[p];
|
||||
totmob += mob[p];
|
||||
}
|
||||
std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
|
||||
for (int p = 0; p < np; ++p) {
|
||||
produced[p] += (mob[p]/totmob)*flux;
|
||||
prod_resv_phase[p] = (mob[p]/totmob)*flux;
|
||||
for (int q = 0; q < np; ++q) {
|
||||
prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
|
||||
}
|
||||
}
|
||||
for (int p = 0; p < np; ++p) {
|
||||
produced[p] += prod_surfvol[p];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -251,4 +275,58 @@ namespace Opm
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Compute two-phase transport source terms from well terms.
|
||||
/// Note: Unlike the incompressible version of this function,
|
||||
/// this version computes surface volume injection rates,
|
||||
/// production rates are still total reservoir volumes.
|
||||
/// \param[in] props Fluid and rock properties.
|
||||
/// \param[in] wells Wells data structure.
|
||||
/// \param[in] well_state Well pressures and fluxes.
|
||||
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
|
||||
/// (+) positive inflow of first (water) phase (surface volume),
|
||||
/// (-) negative total outflow of both phases (reservoir volume).
|
||||
void computeTransportSource(const BlackoilPropertiesInterface& props,
|
||||
const Wells* wells,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& transport_src)
|
||||
{
|
||||
int nc = props.numCells();
|
||||
transport_src.clear();
|
||||
transport_src.resize(nc, 0.0);
|
||||
// Well contributions.
|
||||
if (wells) {
|
||||
const int nw = wells->number_of_wells;
|
||||
const int np = wells->number_of_phases;
|
||||
if (np != 2) {
|
||||
THROW("computeTransportSource() requires a 2 phase case.");
|
||||
}
|
||||
std::vector<double> A(np*np);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const double* comp_frac = wells->comp_frac + np*w;
|
||||
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
|
||||
const int perf_cell = wells->well_cells[perf];
|
||||
double perf_rate = well_state.perfRates()[perf];
|
||||
if (perf_rate > 0.0) {
|
||||
// perf_rate is a total inflow reservoir rate, we want a surface water rate.
|
||||
if (wells->type[w] != INJECTOR) {
|
||||
std::cout << "**** Warning: crossflow in well "
|
||||
<< w << " perf " << perf - wells->well_connpos[w]
|
||||
<< " ignored. Reservoir rate was "
|
||||
<< perf_rate/Opm::unit::day << " m^3/day." << std::endl;
|
||||
perf_rate = 0.0;
|
||||
} else {
|
||||
ASSERT(std::fabs(comp_frac[0] + comp_frac[1] - 1.0) < 1e-6);
|
||||
perf_rate *= comp_frac[0]; // Water reservoir volume rate.
|
||||
props.matrix(1, &well_state.perfPress()[perf], comp_frac, &perf_cell, &A[0], 0);
|
||||
perf_rate *= A[0]; // Water surface volume rate.
|
||||
}
|
||||
}
|
||||
transport_src[perf_cell] += perf_rate;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -22,36 +22,40 @@
|
||||
|
||||
#include <vector>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
struct Wells;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class BlackoilPropertiesInterface;
|
||||
class BlackoilState;
|
||||
class WellState;
|
||||
|
||||
/// @brief Computes injected and produced volumes of all phases.
|
||||
|
||||
/// @brief Computes injected and produced surface volumes of all phases.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] p pressure (one value per cell)
|
||||
/// @param[in] z surface-volume values (for all P phases)
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// Note 3: Gives surface volume values, not reservoir volumes
|
||||
/// (as the incompressible version of the function does).
|
||||
/// Also, assumes that transport_src is given in surface volumes
|
||||
/// for injector terms!
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] state state variables (pressure, sat, surfvol)
|
||||
/// @param[in] transport_src if < 0: total resv outflow, if > 0: first phase surfv inflow
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
|
||||
const std::vector<double>& p,
|
||||
const std::vector<double>& z,
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& src,
|
||||
const BlackoilState& state,
|
||||
const std::vector<double>& transport_src,
|
||||
const double dt,
|
||||
double* injected,
|
||||
double* produced);
|
||||
|
||||
|
||||
/// @brief Computes total mobility for a set of saturation values.
|
||||
/// @param[in] props rock and fluid properties
|
||||
/// @param[in] cells cells with which the saturation values are associated
|
||||
@ -66,6 +70,7 @@ namespace Opm
|
||||
const std::vector<double>& s,
|
||||
std::vector<double>& totmob);
|
||||
|
||||
|
||||
/// @brief Computes total mobility and omega for a set of saturation values.
|
||||
/// @param[in] props rock and fluid properties
|
||||
/// @param[in] cells cells with which the saturation values are associated
|
||||
@ -131,6 +136,22 @@ namespace Opm
|
||||
const double* saturation,
|
||||
double* surfacevol);
|
||||
|
||||
|
||||
/// Compute two-phase transport source terms from well terms.
|
||||
/// Note: Unlike the incompressible version of this function,
|
||||
/// this version computes surface volume injection rates,
|
||||
/// production rates are still total reservoir volumes.
|
||||
/// \param[in] props Fluid and rock properties.
|
||||
/// \param[in] wells Wells data structure.
|
||||
/// \param[in] well_state Well pressures and fluxes.
|
||||
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
|
||||
/// (+) positive inflow of first (water) phase (surface volume),
|
||||
/// (-) negative total outflow of both phases (reservoir volume).
|
||||
void computeTransportSource(const BlackoilPropertiesInterface& props,
|
||||
const Wells* wells,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& transport_src);
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_MISCUTILITIESBLACKOIL_HEADER_INCLUDED
|
||||
|
Loading…
Reference in New Issue
Block a user