Initial version of compressible transport. Work in progress.
This commit is contained in:
parent
566eea86ec
commit
e0d38cfaf8
@ -113,6 +113,7 @@ opm/core/transport/spu_explicit.c \
|
||||
opm/core/transport/spu_implicit.c \
|
||||
opm/core/transport/transport_source.c \
|
||||
opm/core/transport/reorder/TransportModelInterface.cpp \
|
||||
opm/core/transport/reorder/TransportModelCompressibleTwophase.cpp \
|
||||
opm/core/transport/reorder/TransportModelTwophase.cpp \
|
||||
opm/core/transport/reorder/reordersequence.cpp \
|
||||
opm/core/transport/reorder/nlsolvers.c \
|
||||
@ -243,6 +244,7 @@ opm/core/transport/transport_source.h \
|
||||
opm/core/transport/GravityColumnSolver.hpp \
|
||||
opm/core/transport/GravityColumnSolver_impl.hpp \
|
||||
opm/core/transport/reorder/TransportModelInterface.hpp \
|
||||
opm/core/transport/reorder/TransportModelCompressibleTwophase.hpp \
|
||||
opm/core/transport/reorder/TransportModelTwophase.hpp \
|
||||
opm/core/transport/reorder/nlsolvers.h \
|
||||
opm/core/transport/reorder/reordersequence.h \
|
||||
|
@ -49,7 +49,7 @@
|
||||
#include <opm/core/WellState.hpp>
|
||||
#include <opm/core/transport/GravityColumnSolver.hpp>
|
||||
|
||||
#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
|
||||
#include <opm/core/transport/reorder/TransportModelCompressibleTwophase.hpp>
|
||||
|
||||
#include <boost/filesystem/convenience.hpp>
|
||||
#include <boost/scoped_ptr.hpp>
|
||||
@ -68,7 +68,7 @@
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
#define TRANSPORT_SOLVER_FIXED 0
|
||||
#define TRANSPORT_SOLVER_FIXED 1
|
||||
|
||||
|
||||
template <class State>
|
||||
@ -159,7 +159,7 @@ main(int argc, char** argv)
|
||||
}
|
||||
output_interval = param.getDefault("output_interval", output_interval);
|
||||
}
|
||||
// const int num_transport_substeps = param.getDefault("num_transport_substeps", 1);
|
||||
const int num_transport_substeps = param.getDefault("num_transport_substeps", 1);
|
||||
|
||||
// If we have a "deck_filename", grid and props will be read from that.
|
||||
bool use_deck = param.has("deck_filename");
|
||||
@ -307,7 +307,7 @@ main(int argc, char** argv)
|
||||
#if TRANSPORT_SOLVER_FIXED
|
||||
const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9);
|
||||
const int nl_maxiter = param.getDefault("nl_maxiter", 30);
|
||||
Opm::TransportModelTwophase reorder_model(*grid->c_grid(), *props, nl_tolerance, nl_maxiter);
|
||||
Opm::TransportModelCompressibleTwophase reorder_model(*grid->c_grid(), *props, nl_tolerance, nl_maxiter);
|
||||
if (use_gauss_seidel_gravity) {
|
||||
reorder_model.initGravity(grav);
|
||||
}
|
||||
@ -427,12 +427,13 @@ main(int argc, char** argv)
|
||||
}
|
||||
for (int tr_substep = 0; tr_substep < num_transport_substeps; ++tr_substep) {
|
||||
Opm::toWaterSat(state.saturation(), reorder_sat);
|
||||
reorder_model.solve(&state.faceflux()[0], &porevol[0], &reorder_src[0],
|
||||
stepsize, &reorder_sat[0]);
|
||||
reorder_model.solve(&state.faceflux()[0], &state.pressure()[0], &state.surfacevol()[0],
|
||||
&porevol[0], &reorder_src[0], stepsize, &reorder_sat[0]);
|
||||
Opm::toBothSat(reorder_sat, state.saturation());
|
||||
Opm::computeInjectedProduced(*props, state.saturation(), reorder_src, stepsize, injected, produced);
|
||||
// Opm::computeInjectedProduced(*props, state.saturation(), reorder_src, stepsize, injected, produced);
|
||||
if (use_segregation_split) {
|
||||
reorder_model.solveGravity(columns, &porevol[0], stepsize, reorder_sat);
|
||||
THROW("Segregation not implemented yet.");
|
||||
// reorder_model.solveGravity(columns, &porevol[0], stepsize, reorder_sat);
|
||||
Opm::toBothSat(reorder_sat, state.saturation());
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,510 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include <opm/core/transport/reorder/TransportModelCompressibleTwophase.hpp>
|
||||
#include <opm/core/fluid/BlackoilPropertiesInterface.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/transport/reorder/reordersequence.h>
|
||||
#include <opm/core/utility/RootFinders.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/pressure/tpfa/trans_tpfa.h>
|
||||
|
||||
#include <fstream>
|
||||
#include <iterator>
|
||||
#include <numeric>
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
// Choose error policy for scalar solves here.
|
||||
typedef RegulaFalsi<WarnAndContinueOnError> RootFinder;
|
||||
|
||||
|
||||
TransportModelCompressibleTwophase::TransportModelCompressibleTwophase(const UnstructuredGrid& grid,
|
||||
const Opm::BlackoilPropertiesInterface& props,
|
||||
const double tol,
|
||||
const int maxit)
|
||||
: grid_(grid),
|
||||
props_(props),
|
||||
tol_(tol),
|
||||
maxit_(maxit),
|
||||
darcyflux_(0),
|
||||
source_(0),
|
||||
dt_(0.0),
|
||||
saturation_(0),
|
||||
fractionalflow_(grid.number_of_cells, -1.0),
|
||||
mob_(2*grid.number_of_cells, -1.0),
|
||||
ia_upw_(grid.number_of_cells + 1, -1),
|
||||
ja_upw_(grid.number_of_faces, -1),
|
||||
ia_downw_(grid.number_of_cells + 1, -1),
|
||||
ja_downw_(grid.number_of_faces, -1)
|
||||
{
|
||||
if (props.numPhases() != 2) {
|
||||
THROW("Property object must have 2 phases");
|
||||
}
|
||||
int np = props.numPhases();
|
||||
int num_cells = props.numCells();
|
||||
visc_.resize(np*num_cells);
|
||||
A_.resize(np*np*num_cells);
|
||||
smin_.resize(np*num_cells);
|
||||
smax_.resize(np*num_cells);
|
||||
allcells_.resize(num_cells);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
allcells_[i] = i;
|
||||
}
|
||||
props.satRange(props.numCells(), &allcells_[0], &smin_[0], &smax_[0]);
|
||||
}
|
||||
|
||||
void TransportModelCompressibleTwophase::solve(const double* darcyflux,
|
||||
const double* pressure,
|
||||
const double* surfacevol0,
|
||||
const double* porevolume,
|
||||
const double* source,
|
||||
const double dt,
|
||||
double* saturation)
|
||||
{
|
||||
darcyflux_ = darcyflux;
|
||||
surfacevol0_ = surfacevol0;
|
||||
porevolume_ = porevolume;
|
||||
source_ = source;
|
||||
dt_ = dt;
|
||||
saturation_ = saturation;
|
||||
props_.viscosity(props_.numCells(), pressure, NULL, &allcells_[0], &visc_[0], NULL);
|
||||
props_.matrix(props_.numCells(), pressure, NULL, &allcells_[0], &A_[0], NULL);
|
||||
|
||||
std::vector<int> seq(grid_.number_of_cells);
|
||||
std::vector<int> comp(grid_.number_of_cells + 1);
|
||||
int ncomp;
|
||||
compute_sequence_graph(&grid_, darcyflux_,
|
||||
&seq[0], &comp[0], &ncomp,
|
||||
&ia_upw_[0], &ja_upw_[0]);
|
||||
const int nf = grid_.number_of_faces;
|
||||
std::vector<double> neg_darcyflux(nf);
|
||||
std::transform(darcyflux, darcyflux + nf, neg_darcyflux.begin(), std::negate<double>());
|
||||
compute_sequence_graph(&grid_, &neg_darcyflux[0],
|
||||
&seq[0], &comp[0], &ncomp,
|
||||
&ia_downw_[0], &ja_downw_[0]);
|
||||
reorderAndTransport(grid_, darcyflux);
|
||||
}
|
||||
|
||||
// Residual function r(s) for a single-cell implicit Euler transport
|
||||
//
|
||||
// [[ incompressible was: r(s) = s - s0 + dt/pv*( influx + outflux*f(s) ) ]]
|
||||
//
|
||||
// r(s) = s - B*z0 + dt/pv*( influx + outflux*f(s))
|
||||
//
|
||||
// @@@ What about the source term
|
||||
//
|
||||
// where influx is water influx, outflux is total outflux.
|
||||
// We need the formula influx = B_i sum_{j->i} b_j v_{ij} + q_w.
|
||||
// outflux = B_i sum_{i->j} b_i v_{ij} - q = sum_{i->j} v_{ij} - q (as before)
|
||||
// Influxes are negative, outfluxes positive.
|
||||
struct TransportModelCompressibleTwophase::Residual
|
||||
{
|
||||
int cell;
|
||||
double s0;
|
||||
double influx; // sum_j min(v_ij, 0)*f(s_j) + q_w // TODO: fix comment.
|
||||
double outflux; // sum_j max(v_ij, 0) - q
|
||||
// @@@ TODO: figure out change to rock-comp. terms with fluid compr.
|
||||
// double comp_term; // q - sum_j v_ij
|
||||
double dtpv; // dt/pv(i)
|
||||
const TransportModelCompressibleTwophase& tm;
|
||||
explicit Residual(const TransportModelCompressibleTwophase& tmodel, int cell_index)
|
||||
: tm(tmodel)
|
||||
{
|
||||
cell = cell_index;
|
||||
s0 = tm.saturation_[cell];
|
||||
const int np = tm.props_.numPhases();
|
||||
const double B_cell = 1.0/tm.A_[np*np*cell + 0];
|
||||
double src_flux = -tm.source_[cell];
|
||||
bool src_is_inflow = src_flux < 0.0;
|
||||
influx = src_is_inflow ? src_flux : 0.0;
|
||||
outflux = !src_is_inflow ? src_flux : 0.0;
|
||||
// comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water.
|
||||
dtpv = tm.dt_/tm.porevolume_[cell];
|
||||
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
|
||||
const int f = tm.grid_.cell_faces[i];
|
||||
double flux;
|
||||
int other;
|
||||
// Compute cell flux
|
||||
if (cell == tm.grid_.face_cells[2*f]) {
|
||||
flux = tm.darcyflux_[f];
|
||||
other = tm.grid_.face_cells[2*f+1];
|
||||
} else {
|
||||
flux =-tm.darcyflux_[f];
|
||||
other = tm.grid_.face_cells[2*f];
|
||||
}
|
||||
// Add flux to influx or outflux, if interior.
|
||||
if (other != -1) {
|
||||
if (flux < 0.0) {
|
||||
const double b_face = tm.A_[np*np*other + 0];
|
||||
influx += B_cell*b_face*flux*tm.fractionalflow_[other];
|
||||
} else {
|
||||
outflux += flux;
|
||||
}
|
||||
// comp_term -= flux;
|
||||
}
|
||||
}
|
||||
}
|
||||
double operator()(double s) const
|
||||
{
|
||||
// return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx + s*comp_term);
|
||||
return s - s0 + dtpv*(outflux*tm.fracFlow(s, cell) + influx);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void TransportModelCompressibleTwophase::solveSingleCell(const int cell)
|
||||
{
|
||||
Residual res(*this, cell);
|
||||
int iters_used;
|
||||
saturation_[cell] = RootFinder::solve(res, saturation_[cell], 0.0, 1.0, maxit_, tol_, iters_used);
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
}
|
||||
|
||||
|
||||
void TransportModelCompressibleTwophase::solveMultiCell(const int num_cells, const int* cells)
|
||||
{
|
||||
// Experiment: when a cell changes more than the tolerance,
|
||||
// mark all downwind cells as needing updates. After
|
||||
// computing a single update in each cell, use marks
|
||||
// to guide further updating. Clear mark in cell when
|
||||
// its solution gets updated.
|
||||
// Verdict: this is a good one! Approx. halved total time.
|
||||
std::vector<int> needs_update(num_cells, 1);
|
||||
// This one also needs the mapping from all cells to
|
||||
// the strongly connected subset to filter out connections
|
||||
std::vector<int> pos(grid_.number_of_cells, -1);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
pos[cell] = i;
|
||||
}
|
||||
|
||||
// Note: partially copied from below.
|
||||
const double tol = 1e-9;
|
||||
const int max_iters = 300;
|
||||
// Must store s0 before we start.
|
||||
std::vector<double> s0(num_cells);
|
||||
// Must set initial fractional flows before we start.
|
||||
// Also, we compute the # of upstream neighbours.
|
||||
// std::vector<int> num_upstream(num_cells);
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
const int cell = cells[i];
|
||||
fractionalflow_[cell] = fracFlow(saturation_[cell], cell);
|
||||
s0[i] = saturation_[cell];
|
||||
// num_upstream[i] = ia_upw_[cell + 1] - ia_upw_[cell];
|
||||
}
|
||||
// Solve once in each cell.
|
||||
// std::vector<int> fully_marked_stack;
|
||||
// fully_marked_stack.reserve(num_cells);
|
||||
int num_iters = 0;
|
||||
int update_count = 0; // Change name/meaning to cells_updated?
|
||||
do {
|
||||
update_count = 0; // Must reset count for every iteration.
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
// while (!fully_marked_stack.empty()) {
|
||||
// // std::cout << "# fully marked cells = " << fully_marked_stack.size() << std::endl;
|
||||
// const int fully_marked_ci = fully_marked_stack.back();
|
||||
// fully_marked_stack.pop_back();
|
||||
// ++update_count;
|
||||
// const int cell = cells[fully_marked_ci];
|
||||
// const double old_s = saturation_[cell];
|
||||
// saturation_[cell] = s0[fully_marked_ci];
|
||||
// solveSingleCell(cell);
|
||||
// const double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
// if (s_change > tol) {
|
||||
// // Mark downwind cells.
|
||||
// for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
|
||||
// const int downwind_cell = ja_downw_[j];
|
||||
// int ci = pos[downwind_cell];
|
||||
// ++needs_update[ci];
|
||||
// if (needs_update[ci] == num_upstream[ci]) {
|
||||
// fully_marked_stack.push_back(ci);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// // Unmark this cell.
|
||||
// needs_update[fully_marked_ci] = 0;
|
||||
// }
|
||||
if (!needs_update[i]) {
|
||||
continue;
|
||||
}
|
||||
++update_count;
|
||||
const int cell = cells[i];
|
||||
const double old_s = saturation_[cell];
|
||||
saturation_[cell] = s0[i];
|
||||
solveSingleCell(cell);
|
||||
const double s_change = std::fabs(saturation_[cell] - old_s);
|
||||
if (s_change > tol) {
|
||||
// Mark downwind cells.
|
||||
for (int j = ia_downw_[cell]; j < ia_downw_[cell+1]; ++j) {
|
||||
const int downwind_cell = ja_downw_[j];
|
||||
int ci = pos[downwind_cell];
|
||||
if (ci != -1) {
|
||||
needs_update[ci] = 1;
|
||||
}
|
||||
// ++needs_update[ci];
|
||||
// if (needs_update[ci] == num_upstream[ci]) {
|
||||
// fully_marked_stack.push_back(ci);
|
||||
// }
|
||||
}
|
||||
}
|
||||
// Unmark this cell.
|
||||
needs_update[i] = 0;
|
||||
}
|
||||
// std::cout << "Iter = " << num_iters << " update_count = " << update_count
|
||||
// << " # marked cells = "
|
||||
// << std::accumulate(needs_update.begin(), needs_update.end(), 0) << std::endl;
|
||||
} while (update_count > 0 && ++num_iters < max_iters);
|
||||
|
||||
// Done with iterations, check if we succeeded.
|
||||
if (update_count > 0) {
|
||||
THROW("In solveMultiCell(), we did not converge after "
|
||||
<< num_iters << " iterations. Remaining update count = " << update_count);
|
||||
}
|
||||
std::cout << "Solved " << num_cells << " cell multicell problem in "
|
||||
<< num_iters << " iterations." << std::endl;
|
||||
|
||||
}
|
||||
|
||||
double TransportModelCompressibleTwophase::fracFlow(double s, int cell) const
|
||||
{
|
||||
double sat[2] = { s, 1.0 - s };
|
||||
double mob[2];
|
||||
props_.relperm(1, sat, &cell, mob, 0);
|
||||
mob[0] /= visc_[2*cell + 0];
|
||||
mob[1] /= visc_[2*cell + 1];
|
||||
return mob[0]/(mob[0] + mob[1]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// Residual function r(s) for a single-cell implicit Euler gravity segregation
|
||||
//
|
||||
// r(s) = s - s0 + dt/pv*sum_{j adj i}( gravmod_ij * gf_ij ).
|
||||
//
|
||||
struct TransportModelCompressibleTwophase::GravityResidual
|
||||
{
|
||||
int cell;
|
||||
int nbcell[2];
|
||||
double s0;
|
||||
double dtpv; // dt/pv(i)
|
||||
double gf[2];
|
||||
const TransportModelCompressibleTwophase& tm;
|
||||
explicit GravityResidual(const TransportModelCompressibleTwophase& tmodel,
|
||||
const std::vector<int>& cells,
|
||||
const int pos,
|
||||
const double* gravflux) // Always oriented towards next in column. Size = colsize - 1.
|
||||
: tm(tmodel)
|
||||
{
|
||||
cell = cells[pos];
|
||||
nbcell[0] = -1;
|
||||
gf[0] = 0.0;
|
||||
if (pos > 0) {
|
||||
nbcell[0] = cells[pos - 1];
|
||||
gf[0] = -gravflux[pos - 1];
|
||||
}
|
||||
nbcell[1] = -1;
|
||||
gf[1] = 0.0;
|
||||
if (pos < int(cells.size() - 1)) {
|
||||
nbcell[1] = cells[pos + 1];
|
||||
gf[1] = gravflux[pos];
|
||||
}
|
||||
s0 = tm.saturation_[cell];
|
||||
dtpv = tm.dt_/tm.porevolume_[cell];
|
||||
|
||||
}
|
||||
double operator()(double s) const
|
||||
{
|
||||
double res = s - s0;
|
||||
double mobcell[2];
|
||||
tm.mobility(s, cell, mobcell);
|
||||
for (int nb = 0; nb < 2; ++nb) {
|
||||
if (nbcell[nb] != -1) {
|
||||
double m[2];
|
||||
if (gf[nb] < 0.0) {
|
||||
m[0] = mobcell[0];
|
||||
m[1] = tm.mob_[2*nbcell[nb] + 1];
|
||||
} else {
|
||||
m[0] = tm.mob_[2*nbcell[nb]];
|
||||
m[1] = mobcell[1];
|
||||
}
|
||||
if (m[0] + m[1] > 0.0) {
|
||||
res += -dtpv*gf[nb]*m[0]*m[1]/(m[0] + m[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
void TransportModelCompressibleTwophase::mobility(double s, int cell, double* mob) const
|
||||
{
|
||||
double sat[2] = { s, 1.0 - s };
|
||||
props_.relperm(1, sat, &cell, mob, 0);
|
||||
mob[0] /= visc_[0];
|
||||
mob[1] /= visc_[1];
|
||||
}
|
||||
|
||||
|
||||
|
||||
void TransportModelCompressibleTwophase::initGravity(const double* grav)
|
||||
{
|
||||
// Set up gravflux_ = T_ij g (rho_w - rho_o) (z_i - z_j)
|
||||
std::vector<double> htrans(grid_.cell_facepos[grid_.number_of_cells]);
|
||||
const int nf = grid_.number_of_faces;
|
||||
const int dim = grid_.dimensions;
|
||||
gravflux_.resize(nf);
|
||||
tpfa_htrans_compute(const_cast<UnstructuredGrid*>(&grid_), props_.permeability(), &htrans[0]);
|
||||
tpfa_trans_compute(const_cast<UnstructuredGrid*>(&grid_), &htrans[0], &gravflux_[0]);
|
||||
|
||||
const double delta_rho = 0.0;// props_.density()[0] - props_.density()[1];
|
||||
THROW("TransportModelCompressibleTwophase gravity solver not done yet."); // See line above...
|
||||
for (int f = 0; f < nf; ++f) {
|
||||
const int* c = &grid_.face_cells[2*f];
|
||||
double gdz = 0.0;
|
||||
if (c[0] != -1 && c[1] != -1) {
|
||||
for (int d = 0; d < dim; ++d) {
|
||||
gdz += grav[d]*(grid_.cell_centroids[dim*c[0] + d] - grid_.cell_centroids[dim*c[1] + d]);
|
||||
}
|
||||
}
|
||||
gravflux_[f] *= delta_rho*gdz;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void TransportModelCompressibleTwophase::solveSingleCellGravity(const std::vector<int>& cells,
|
||||
const int pos,
|
||||
const double* gravflux)
|
||||
{
|
||||
const int cell = cells[pos];
|
||||
GravityResidual res(*this, cells, pos, gravflux);
|
||||
if (std::fabs(res(saturation_[cell])) > tol_) {
|
||||
int iters_used;
|
||||
saturation_[cell] = RootFinder::solve(res, smin_[2*cell], smax_[2*cell], maxit_, tol_, iters_used);
|
||||
}
|
||||
saturation_[cell] = std::min(std::max(saturation_[cell], smin_[2*cell]), smax_[2*cell]);
|
||||
mobility(saturation_[cell], cell, &mob_[2*cell]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
int TransportModelCompressibleTwophase::solveGravityColumn(const std::vector<int>& cells)
|
||||
{
|
||||
// Set up column gravflux.
|
||||
const int nc = cells.size();
|
||||
std::vector<double> col_gravflux(nc - 1);
|
||||
for (int ci = 0; ci < nc - 1; ++ci) {
|
||||
const int cell = cells[ci];
|
||||
const int next_cell = cells[ci + 1];
|
||||
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
|
||||
const int face = grid_.cell_faces[j];
|
||||
const int c1 = grid_.face_cells[2*face + 0];
|
||||
const int c2 = grid_.face_cells[2*face + 1];
|
||||
if (c1 == next_cell || c2 == next_cell) {
|
||||
const double gf = gravflux_[face];
|
||||
col_gravflux[ci] = (c1 == cell) ? gf : -gf;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Store initial saturation s0
|
||||
s0_.resize(nc);
|
||||
for (int ci = 0; ci < nc; ++ci) {
|
||||
s0_[ci] = saturation_[cells[ci]];
|
||||
}
|
||||
|
||||
// Solve single cell problems, repeating if necessary.
|
||||
double max_s_change = 0.0;
|
||||
int num_iters = 0;
|
||||
do {
|
||||
max_s_change = 0.0;
|
||||
for (int ci = 0; ci < nc; ++ci) {
|
||||
const int ci2 = nc - ci - 1;
|
||||
double old_s[2] = { saturation_[cells[ci]],
|
||||
saturation_[cells[ci2]] };
|
||||
saturation_[cells[ci]] = s0_[ci];
|
||||
solveSingleCellGravity(cells, ci, &col_gravflux[0]);
|
||||
saturation_[cells[ci2]] = s0_[ci2];
|
||||
solveSingleCellGravity(cells, ci2, &col_gravflux[0]);
|
||||
max_s_change = std::max(max_s_change, std::max(std::fabs(saturation_[cells[ci]] - old_s[0]),
|
||||
std::fabs(saturation_[cells[ci2]] - old_s[1])));
|
||||
}
|
||||
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change << std::endl;
|
||||
} while (max_s_change > tol_ && ++num_iters < maxit_);
|
||||
|
||||
if (max_s_change > tol_) {
|
||||
THROW("In solveGravityColumn(), we did not converge after "
|
||||
<< num_iters << " iterations. Delta s = " << max_s_change);
|
||||
}
|
||||
return num_iters + 1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void TransportModelCompressibleTwophase::solveGravity(const std::vector<std::vector<int> >& columns,
|
||||
const double* pressure,
|
||||
const double* porevolume,
|
||||
const double dt,
|
||||
std::vector<double>& saturation)
|
||||
{
|
||||
// Initialize mobilities.
|
||||
const int nc = grid_.number_of_cells;
|
||||
std::vector<int> cells(nc);
|
||||
for (int c = 0; c < nc; ++c) {
|
||||
cells[c] = c;
|
||||
}
|
||||
mob_.resize(2*nc);
|
||||
std::vector<double> boths;
|
||||
Opm::toBothSat(saturation, boths);
|
||||
props_.relperm(cells.size(), &boths[0], &cells[0], &mob_[0], 0);
|
||||
|
||||
props_.viscosity(props_.numCells(), pressure, NULL, &allcells_[0], &visc_[0], NULL);
|
||||
for (int c = 0; c < nc; ++c) {
|
||||
mob_[2*c + 0] /= visc_[2*c + 0];
|
||||
mob_[2*c + 1] /= visc_[2*c + 1];
|
||||
}
|
||||
|
||||
// Set up other variables.
|
||||
porevolume_ = porevolume;
|
||||
dt_ = dt;
|
||||
saturation_ = &saturation[0];
|
||||
|
||||
// Solve on all columns.
|
||||
int num_iters = 0;
|
||||
for (std::vector<std::vector<int> >::size_type i = 0; i < columns.size(); i++) {
|
||||
// std::cout << "==== new column" << std::endl;
|
||||
num_iters += solveGravityColumn(columns[i]);
|
||||
}
|
||||
std::cout << "Gauss-Seidel column solver average iterations: "
|
||||
<< double(num_iters)/double(columns.size()) << std::endl;
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
|
||||
|
||||
/* Local Variables: */
|
||||
/* c-basic-offset:4 */
|
||||
/* End: */
|
@ -0,0 +1,101 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_TRANSPORTMODELCOMPRESSIBLETWOPHASE_HEADER_INCLUDED
|
||||
#define OPM_TRANSPORTMODELCOMPRESSIBLETWOPHASE_HEADER_INCLUDED
|
||||
|
||||
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
|
||||
#include <vector>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class BlackoilPropertiesInterface;
|
||||
|
||||
class TransportModelCompressibleTwophase : public TransportModelInterface
|
||||
{
|
||||
public:
|
||||
TransportModelCompressibleTwophase(const UnstructuredGrid& grid,
|
||||
const Opm::BlackoilPropertiesInterface& props,
|
||||
const double tol,
|
||||
const int maxit);
|
||||
|
||||
void solve(const double* darcyflux,
|
||||
const double* pressure,
|
||||
const double* surfacevol0,
|
||||
const double* porevolume,
|
||||
const double* source,
|
||||
const double dt,
|
||||
double* saturation);
|
||||
|
||||
virtual void solveSingleCell(const int cell);
|
||||
virtual void solveMultiCell(const int num_cells, const int* cells);
|
||||
|
||||
void initGravity(const double* grav);
|
||||
void solveSingleCellGravity(const std::vector<int>& cells,
|
||||
const int pos,
|
||||
const double* gravflux);
|
||||
int solveGravityColumn(const std::vector<int>& cells);
|
||||
void solveGravity(const std::vector<std::vector<int> >& columns,
|
||||
const double* pressure,
|
||||
const double* porevolume,
|
||||
const double dt,
|
||||
std::vector<double>& saturation);
|
||||
|
||||
private:
|
||||
const UnstructuredGrid& grid_;
|
||||
const BlackoilPropertiesInterface& props_;
|
||||
std::vector<int> allcells_;
|
||||
std::vector<double> visc_;
|
||||
std::vector<double> A_;
|
||||
std::vector<double> smin_;
|
||||
std::vector<double> smax_;
|
||||
double tol_;
|
||||
double maxit_;
|
||||
|
||||
const double* darcyflux_; // one flux per grid face
|
||||
const double* surfacevol0_; // one per phase per cell
|
||||
const double* porevolume_; // one volume per cell
|
||||
const double* source_; // one source per cell
|
||||
double dt_;
|
||||
double* saturation_; // one per cell
|
||||
std::vector<double> fractionalflow_; // = m[0]/(m[0] + m[1]) per cell
|
||||
// For gravity segregation.
|
||||
std::vector<double> gravflux_;
|
||||
std::vector<double> mob_;
|
||||
std::vector<double> s0_;
|
||||
|
||||
// Storing the upwind and downwind graphs for experiments.
|
||||
std::vector<int> ia_upw_;
|
||||
std::vector<int> ja_upw_;
|
||||
std::vector<int> ia_downw_;
|
||||
std::vector<int> ja_downw_;
|
||||
|
||||
struct Residual;
|
||||
double fracFlow(double s, int cell) const;
|
||||
|
||||
struct GravityResidual;
|
||||
void mobility(double s, int cell, double* mob) const;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_TRANSPORTMODELCOMPRESSIBLETWOPHASE_HEADER_INCLUDED
|
Loading…
Reference in New Issue
Block a user