Now using SimulatorTimer class (therefore supporting TSTEP).

This commit is contained in:
Atgeirr Flø Rasmussen 2012-03-12 16:20:13 +01:00
parent 87cad4ccff
commit e2f00b66a4

View File

@ -53,6 +53,7 @@
#include <opm/core/WellsManager.hpp>
#include <opm/core/newwells.h>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/SimulatorTimer.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/writeVtkData.hpp>
@ -328,10 +329,7 @@ main(int argc, char** argv)
Opm::parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// Reading various control parameters.
const int num_psteps = param.getDefault("num_psteps", 1);
const double stepsize_days = param.getDefault("stepsize_days", 1.0);
const double stepsize = Opm::unit::convert::from(stepsize_days, Opm::unit::day);
// Reading various control parameters.
const bool guess_old_solution = param.getDefault("guess_old_solution", false);
const bool use_reorder = param.getDefault("use_reorder", true);
const bool output = param.getDefault("output", true);
@ -348,6 +346,7 @@ main(int argc, char** argv)
boost::scoped_ptr<Opm::GridManager> grid;
boost::scoped_ptr<Opm::IncompPropertiesInterface> props;
boost::scoped_ptr<Opm::WellsManager> wells;
Opm::SimulatorTimer simtimer;
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
Opm::EclipseGridParser deck(deck_filename);
@ -359,6 +358,12 @@ main(int argc, char** argv)
props.reset(new Opm::IncompPropertiesFromDeck(deck, global_cell));
// Wells init.
wells.reset(new Opm::WellsManager(deck, *grid->c_grid(), props->permeability()));
// Timer init.
if (deck.hasField("TSTEP")) {
simtimer.init(deck);
} else {
simtimer.init(param);
}
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
@ -372,6 +377,8 @@ main(int argc, char** argv)
props.reset(new Opm::IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
// Wells init.
wells.reset(new Opm::WellsManager());
// Timer init.
simtimer.init(param);
}
// Extra rock init.
@ -540,8 +547,6 @@ main(int argc, char** argv)
// Control init.
Opm::ImplicitTransportDetails::NRReport rpt;
Opm::ImplicitTransportDetails::NRControl ctrl;
double current_time = 0.0;
double total_time = stepsize*num_psteps;
if (!use_reorder || use_segregation_split) {
ctrl.max_it = param.getDefault("max_it", 20);
ctrl.verbosity = param.getDefault("verbosity", 0);
@ -582,16 +587,11 @@ main(int argc, char** argv)
double aver_sats[2] = { 0.0 };
Opm::computeAverageSat(porevol, state.saturation(), aver_sats);
std::cout << "\nInitial average saturations are " << aver_sats[0] << " " << aver_sats[1] << std::endl;
for (int pstep = 0; pstep < num_psteps; ++pstep) {
std::cout << "\n\n--------------- Simulation step number " << pstep
<< " ---------------"
<< "\n Current time (days) " << Opm::unit::convert::to(current_time, Opm::unit::day)
<< "\n Current stepsize (days) " << Opm::unit::convert::to(stepsize, Opm::unit::day)
<< "\n Total time (days) " << Opm::unit::convert::to(total_time, Opm::unit::day)
<< "\n" << std::endl;
for (; !simtimer.done(); ++simtimer) {
// Report timestep and (optionally) write state to disk.
simtimer.report(std::cout);
if (output) {
outputState(*grid->c_grid(), state, pstep, output_dir);
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir);
}
// Solve pressure.
@ -625,21 +625,21 @@ main(int argc, char** argv)
transport_timer.start();
if (use_reorder) {
Opm::toWaterSat(state.saturation(), reorder_sat);
reorder_model.solve(&state.faceflux()[0], &reorder_src[0], stepsize, &reorder_sat[0]);
reorder_model.solve(&state.faceflux()[0], &reorder_src[0], simtimer.currentStepLength(), &reorder_sat[0]);
Opm::toBothSat(reorder_sat, state.saturation());
if (use_segregation_split) {
if (use_column_solver) {
colsolver.solve(columns, stepsize, state.saturation());
colsolver.solve(columns, simtimer.currentStepLength(), state.saturation());
} else {
std::vector<double> fluxes = state.faceflux();
std::fill(state.faceflux().begin(), state.faceflux().end(), 0.0);
tsolver.solve(*grid->c_grid(), tsrc, stepsize, ctrl, state, linsolve, rpt);
tsolver.solve(*grid->c_grid(), tsrc, simtimer.currentStepLength(), ctrl, state, linsolve, rpt);
std::cout << rpt;
state.faceflux() = fluxes;
}
}
} else {
tsolver.solve(*grid->c_grid(), tsrc, stepsize, ctrl, state, linsolve, rpt);
tsolver.solve(*grid->c_grid(), tsrc, simtimer.currentStepLength(), ctrl, state, linsolve, rpt);
std::cout << rpt;
}
transport_timer.stop();
@ -647,10 +647,9 @@ main(int argc, char** argv)
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report average saturations. TODO: make complete mass balance reports.
Opm::computeAverageSat(porevol, state.saturation(), aver_sats);
std::cout << "\nAverage saturations are " << aver_sats[0] << " " << aver_sats[1] << std::endl;
current_time += stepsize;
}
total_timer.stop();
@ -660,7 +659,7 @@ main(int argc, char** argv)
<< "\n Transport time: " << ttime << std::endl;
if (output) {
outputState(*grid->c_grid(), state, num_psteps, output_dir);
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir);
}
destroy_transport_source(tsrc);