* output is to be formatted or not (FMTOUT keyword, default if keyword not present is unformatted)
* Whether restart file should be written for a specified report step
* whether restart files are to be unified or not (UNIFOUT keyword, default if keyword not present is multiple)
* whether an EGRID file should be written (GRIDFILE, NOGGF keywords)
* whether an INIT file should be written (INIT keyword)
* Removed former setting for interval writes to disk (from params)
Bård spotet a bug after PR #805 was merged. Indead returning
-numeric_limits<type>::min() does not make sense for integral
values. This commit resorts to returning numeric_limits<type>::min().
Kudos to Bård for his attention.
The only stage where parallelism changes the adaptive time
stepping is when some inner products on the saturation and
pressure are computed.
This commit makes this part parallel by added an additonal boost::any
parameter to the time stepping and the controller. Per default this
is empty. In a parallel run it contains a ParallelIstlInformation object
encapsulating the information about the parallelisation. This then used
to compute the parallel inner product.
This behaviour does not work for computing a global inner product.
Therfore this commit introduces a new function to the functor that
returns an appropriate initial value.
Previously we hardcoded float. Now we use the result_type of
the binary_function without any qualifiers. With any cv or reference
qualifiers std::numeric_limits uses a default implementation which
produces nonesense (e.g. numeric_limits<const int>::max() returns 0).
Previously, we used the setStatus method to set wells that do not
exist on the local grid to SHUT. Or at least this is what I thought
that ```well.setStatus(timestep, SHUT)```. Unfortunately, my
assumption was wrong. This was revealed while testing a parallel run
with SPE9 that threw an expeption about "Elements must be added in
weakly increasing order" in Opm::DynamicState::add(int, T). Seems like
the method name is a bit misleading.
As it turns out the WellManager has its own complete list of active
wells (shut wells are simply left out). Therefore we can use this
behaviour to our advantage: With this commit we not only exclude shut
wells from the list, but also the ones that do not exist on the local
grid. We even get rid of an ugly const_cast.
Currently, I have running a parallel SPE9 test that has not yet
aborted.
In this case the parallel index set might represent N entries (this might be the number of
cells of grid). Nevertheless, there several (n) equations/unknowns attached to each index.
In this case we construct a larger index set representing N*n unknows, where each unknown
is attached to an index.
This change only affects parallel runs.