276 lines
11 KiB
C
276 lines
11 KiB
C
/*
|
|
Copyright 2010 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_MIMETIC_HEADER_INCLUDED
|
|
#define OPM_MIMETIC_HEADER_INCLUDED
|
|
|
|
/**
|
|
* \file
|
|
* Routines to assist mimetic discretisations of the flow equation.
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/**
|
|
* Form linear operator to span the null space of the normal vectors
|
|
* of a grid cell.
|
|
*
|
|
* Specifically,
|
|
* \f[
|
|
* \begin{aligned}
|
|
* X &= \operatorname{diag}(A) (I - QQ^\mathsf{T})
|
|
* \operatorname{diag}(A), \\
|
|
* Q &= \operatorname{orth}(\operatorname{diag}(A) C)
|
|
* \end{aligned}
|
|
* \f]
|
|
* in which \f$\operatorname{orth}(M)\f$ denotes an orthonormal
|
|
* basis for the colum space (range) of the matrix \f$M\f$,
|
|
* represented as a matrix.
|
|
*
|
|
* @param[in] nf Number of faces connected to single grid cell.
|
|
* @param[in] nconn Total number of grid cell connections.
|
|
* Typically equal to @c nf.
|
|
* @param[in] d Number of physical dimensions.
|
|
* Assumed less than four.
|
|
* @param[in,out] C Centroid vectors. Specifically,
|
|
* \f$c_{ij} = \Bar{x}_{ij} - \Bar{x}_{cj}\f$.
|
|
* Array of size \f$\mathit{nf}\times d\f$
|
|
* in column major (Fortran) order.
|
|
* Contents destroyed on output.
|
|
* @param[in] A Interface areas.
|
|
* @param[out] X Null space linear operator. Array of size
|
|
* \f$\mathit{nconn}\times\mathit{nconn}\f$
|
|
* in column major (Fortran) order. On output,
|
|
* the upper left \f$\mathit{nf}\times\mathit{nf}\f$
|
|
* sub-matrix contains the required null space
|
|
* linear operator.
|
|
* @param[out] work Scratch array of size at least @c nconn.
|
|
* @param[in] lwork Actual size of scratch array.
|
|
*/
|
|
void
|
|
mim_ip_span_nullspace(int nf, int nconn, int d,
|
|
double *C,
|
|
double *A,
|
|
double *X,
|
|
double *work, int lwork);
|
|
|
|
/**
|
|
* Form (inverse) mimetic inner product that reproduces linear
|
|
* pressure drops (constant velocity) on general polyhedral cells.
|
|
*
|
|
* Specifically
|
|
* \f[
|
|
* B^{-1} = \frac{1}{v} \big(NKN^\mathsf{T} + \frac{6t}{d}\,X\big)
|
|
* \f]
|
|
* in which \f$t = \operatorname{tr}(K)\f$ is the trace of \f$K\f$
|
|
* and \f$X\f$ is the result of function mim_ip_span_nullspace().
|
|
*
|
|
* @param[in] nf Number of faces connected to single grid cell.
|
|
* @param[in] nconn Total number of grid cell connections.
|
|
* Typically equal to @c nf.
|
|
* @param[in] d Number of physical dimensions.
|
|
* Assumed less than four.
|
|
* @param[in] vol Cell volume.
|
|
* @param[in] K Permeability. A \f$d\times d\f$ matrix in
|
|
* column major (Fortran) order.
|
|
* @param[in] N Normal vectors. An \f$\mathit{nf}\times d\f$
|
|
* matrix in column major (Fortran) order.
|
|
* @param[in,out] Binv Inverse inner product result. An
|
|
* \f$\mathit{nconn}\times\mathit{nconn}\f$
|
|
* matrix in column major format. On input,
|
|
* the result of mim_ip_span_nullspace(). On
|
|
* output, the upper left
|
|
* \f$\mathit{nf}\times\mathit{nf}\f$ sub-matrix
|
|
* will be overwritten with \f$B^{-1}\f$.
|
|
* @param[in,out] work Scratch array of size at least <CODE>nf * d</CODE>.
|
|
* @param[in] lwork Actual size of scratch array.
|
|
*/
|
|
void
|
|
mim_ip_linpress_exact(int nf, int nconn, int d,
|
|
double vol, double *K,
|
|
double *N,
|
|
double *Binv,
|
|
double *work, int lwork);
|
|
|
|
|
|
/**
|
|
* Convenience wrapper around the function pair mim_ip_span_nullspace()
|
|
* and mim_ip_linpress_exact().
|
|
*
|
|
* @param[in] nf Number of faces connected to single grid cell.
|
|
* @param[in] nconn Total number of grid cell connections.
|
|
* Typically equal to @c nf.
|
|
* @param[in] d Number of physical dimensions.
|
|
* Assumed less than four.
|
|
* @param[in] v Cell volume.
|
|
* @param[in] K Permeability. A \f$d\times d\f$ matrix in
|
|
* column major (Fortran) order.
|
|
* @param[in,out] C Centroid vectors. Specifically,
|
|
* \f$c_{ij} = \Bar{x}_{ij} - \Bar{x}_{cj}\f$.
|
|
* Array of size \f$\mathit{nf}\times d\f$
|
|
* in column major (Fortran) order.
|
|
* Contents destroyed on output.
|
|
* @param[in] A Interface areas.
|
|
* @param[in] N Outward normal vectors.
|
|
* An \f$\mathit{nf}\times d\f$ matrix in
|
|
* column major (Fortran) order.
|
|
* @param[out] Binv Inverse inner product result. An
|
|
* \f$\mathit{nconn}\times\mathit{nconn}\f$
|
|
* matrix in column major format. On
|
|
* output, the upper left
|
|
* \f$\mathit{nf}\times\mathit{nf}\f$ sub-matrix
|
|
* will be overwritten with \f$B^{-1}\f$
|
|
* defined by function mim_ip_linpress_exact().
|
|
* @param[in,out] work Scratch array of size at least <CODE>nf * d</CODE>.
|
|
* @param[in] lwork Actual size of scratch array.
|
|
*/
|
|
void
|
|
mim_ip_simple(int nf, int nconn, int d,
|
|
double v, double *K, double *C,
|
|
double *A, double *N,
|
|
double *Binv,
|
|
double *work, int lwork);
|
|
|
|
|
|
/**
|
|
* Compute the mimetic inner products given a grid and cell-wise
|
|
* permeability tensors.
|
|
*
|
|
* This function applies mim_ip_simple() to all specified cells.
|
|
*
|
|
* @param[in] ncells Number of cells.
|
|
* @param[in] d Number of physical dimensions.
|
|
* @param[in] max_ncf Maximum number of connections (faces)
|
|
* of any individual cell.
|
|
* @param[in] pconn Start pointers of cell-to-face topology
|
|
* mapping.
|
|
* @param[in] conn Actual cell-to-face topology mapping.
|
|
* @param[in] fneighbour Face-to-cell mapping.
|
|
* @param[in] fcentroid Face centroids.
|
|
* @param[in] fnormal Face normals.
|
|
* @param[in] farea Face areas.
|
|
* @param[in] ccentroid Cell centroids.
|
|
* @param[in] cvol Cell volumes.
|
|
* @param[in] perm Cell permeability.
|
|
* @param[out] Binv Inverse inner product result. Must point
|
|
* to an array of size at least
|
|
* \f$\sum_c n_c^2\f$ when \f$n_c\f$ denotes
|
|
* the number of connections (faces) of
|
|
* cell \f$c\f$.
|
|
*/
|
|
void
|
|
mim_ip_simple_all(int ncells, int d, int max_ncf,
|
|
int *pconn, int *conn,
|
|
int *fneighbour, double *fcentroid, double *fnormal,
|
|
double *farea, double *ccentroid, double *cvol,
|
|
double *perm, double *Binv);
|
|
|
|
/**
|
|
* Compute local, static gravity pressure contributions to Darcy
|
|
* flow equation discretised using a mimetic finite-difference method.
|
|
*
|
|
* The pressure contribution of local face \f$i\f$ in cell \f$c\f$ is
|
|
* \f[
|
|
* \mathit{gpress}_{\mathit{pconn}_c + i} =
|
|
* \vec{g}\cdot (\Bar{x}_{\mathit{conn}_{\mathit{pconn}_c + i}}
|
|
* - \Bar{x}_c)
|
|
* \f]
|
|
*
|
|
* @param[in] nc Number of cells.
|
|
* @param[in] d Number of physcial dimensions.
|
|
* @param[in] grav Gravity vector. Array of size @c d.
|
|
* @param[in] pconn Start pointers of cell-to-face topology
|
|
* mapping.
|
|
* @param[in] conn Actual cell-to-face topology mapping.
|
|
* @param[in] fcentroid Face centroids.
|
|
* @param[in] ccentroid Cell centroids.
|
|
* @param[out] gpress Gravity pressure result. Array of size
|
|
* at least <CODE>pconn[nc]</CODE>.
|
|
*/
|
|
void
|
|
mim_ip_compute_gpress(int nc, int d, const double *grav,
|
|
const int *pconn, const int *conn,
|
|
const double *fcentroid, const double *ccentroid,
|
|
double *gpress);
|
|
|
|
|
|
/**
|
|
* Incorporate effects of multiple phases in mimetic discretisation of
|
|
* flow equations.
|
|
*
|
|
* Specifically, update the (inverse) inner products \f$B^{-1}\f$
|
|
* previously computed using function mim_ip_linpress_exact() according
|
|
* to the rule
|
|
* \f[
|
|
* \Tilde{B}_c^{-1} = \frac{1}{\lambda_{T,c}} B_c^{-1},
|
|
* \quad i=0,\dots,\mathit{nc}-1
|
|
* \f]
|
|
* in which \f$B_c^{-1}\f$ denotes the result of mim_ip_linpress_exact()
|
|
* for cell \f$c\f$ and \f$\lambda_{T,c}\f$ denotes the total mobility
|
|
* of cell \f$c\f$.
|
|
*
|
|
* @param[in] nc Number of cells.
|
|
* @param[in] pconn Start pointers of cell-to-face topology
|
|
* mapping.
|
|
* @param[in] totmob Total mobility for all cells. Array of size @c nc.
|
|
* @param[in] Binv0 Inverse inner product results for all cells.
|
|
* @param[out] Binv Inverse inner product results incorporating
|
|
* effects of multiple fluid phases.
|
|
*/
|
|
void
|
|
mim_ip_mobility_update(int nc, const int *pconn, const double *totmob,
|
|
const double *Binv0, double *Binv);
|
|
|
|
|
|
/**
|
|
* Incorporate effects of multiple fluid phases into existing, local,
|
|
* static mimetic discretisations of gravity pressure.
|
|
*
|
|
* Specifically, update the result of mim_ip_compute_gpress()
|
|
* according to the rule
|
|
* \f[
|
|
* \Tilde{G}_{\mathit{pconn}_c + i} = \omega_c\cdot
|
|
* G_{\mathit{pconn}_c + i}, \quad i=\mathit{pconn}_c, \dots,
|
|
* \mathit{pconn}_{c+1}-1, \quad c=0,\dots,\mathit{nc}-1
|
|
* \f]
|
|
* in which \f$\omega_c = (\sum_\alpha \lambda_{\alpha,c}
|
|
* \rho_\alpha)/\lambda_{T,c}\f$ and \f$\Tilde{G}\f$ denotes the result
|
|
* of function mim_ip_compute_gpress().
|
|
*
|
|
* @param[in] nc Number of cells.
|
|
* @param[in] pconn Start pointers of cell-to-face topology
|
|
* mapping.
|
|
* @param[in] omega Sum of phase densities weighted by
|
|
* fractional flow.
|
|
* @param[in] gpress0 Result of mim_ip_compute_gpress().
|
|
* @param[out] gpress Gravity pressure incorporating effects
|
|
* of multiple fluid phases.
|
|
*/
|
|
void
|
|
mim_ip_density_update(int nc, const int *pconn, const double *omega,
|
|
const double *gpress0, double *gpress);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* OPM_MIMETIC_HEADER_INCLUDED */
|