opm-core/opm/core/wells/WellsManager_impl.hpp
2017-10-24 20:38:15 +02:00

474 lines
18 KiB
C++

#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/core/grid/GridHelpers.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/core/utility/compressedToCartesian.hpp>
#include <opm/core/props/rock/RockFromDeck.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/EclipseGrid.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/CompletionSet.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <algorithm>
#include <array>
#include <cstddef>
#include <exception>
#include <iterator>
#include <numeric>
namespace WellsManagerDetail
{
namespace ProductionControl
{
enum Mode { ORAT, WRAT, GRAT,
LRAT, CRAT, RESV,
BHP , THP , GRUP };
/*
namespace Details {
std::map<std::string, Mode>
init_mode_map();
} // namespace Details
*/
Mode mode(const std::string& control);
Mode mode(Opm::WellProducer::ControlModeEnum controlMode);
} // namespace ProductionControl
namespace InjectionControl
{
enum Mode { RATE, RESV, BHP,
THP, GRUP };
/*
namespace Details {
std::map<std::string, Mode>
init_mode_map();
} // namespace Details
*/
Mode mode(const std::string& control);
Mode mode(Opm::WellInjector::ControlModeEnum controlMode);
} // namespace InjectionControl
double computeWellIndex(const double radius,
const std::array<double, 3>& cubical,
const double* cell_permeability,
const double skin_factor,
const Opm::WellCompletion::DirectionEnum direction,
const double ntg);
template <int dim, class C2F, class FC>
std::array<double, dim>
getCubeDim(const C2F& c2f,
FC begin_face_centroids,
int cell)
{
std::array< std::vector<double>, dim > X;
{
const std::vector<double>::size_type
nf = std::distance(c2f[cell].begin(),
c2f[cell].end ());
for (int d = 0; d < dim; ++d) {
X[d].reserve(nf);
}
}
typedef typename C2F::row_type::const_iterator FI;
for (FI f = c2f[cell].begin(), e = c2f[cell].end(); f != e; ++f) {
using Opm::UgGridHelpers::increment;
using Opm::UgGridHelpers::getCoordinate;
const FC& fc = increment(begin_face_centroids, *f, dim);
for (int d = 0; d < dim; ++d) {
X[d].push_back(getCoordinate(fc, d));
}
}
std::array<double, dim> cube;
for (int d = 0; d < dim; ++d) {
typedef std::vector<double>::iterator VI;
typedef std::pair<VI,VI> PVI;
const PVI m = std::minmax_element(X[d].begin(), X[d].end());
cube[d] = *m.second - *m.first;
}
return cube;
}
} // end namespace WellsManagerDetail
namespace Opm
{
template<class C2F, class FC, class NTG>
void WellsManager::createWellsFromSpecs(std::vector<const Well*>& wells, size_t timeStep,
const C2F& c2f,
const int* cart_dims,
FC begin_face_centroids,
int dimensions,
std::vector<double>& dz,
std::vector<std::string>& well_names,
std::vector<WellData>& well_data,
std::map<std::string, int>& well_names_to_index,
const PhaseUsage& phaseUsage,
const std::map<int,int>& cartesian_to_compressed,
const double* permeability,
const NTG& ntg,
std::vector<int>& wells_on_proc,
const std::unordered_set<std::string>& ignored_wells,
const DynamicListEconLimited& list_econ_limited)
{
if (dimensions != 3) {
OPM_THROW(std::domain_error,
"WellsManager::createWellsFromSpecs() only "
"supported in three space dimensions");
}
std::vector<std::vector<PerfData> > wellperf_data;
wellperf_data.resize(wells.size());
wells_on_proc.resize(wells.size(), 1);
// The well index on the current process.
// Note that some wells are deactivated as they live on the interior
// domain of another proccess. Therefore this might different from
// the index of the well according to the eclipse state
int active_well_index = 0;
for (auto wellIter= wells.begin(); wellIter != wells.end(); ++wellIter) {
const auto* well = (*wellIter);
if (well->getStatus(timeStep) == WellCommon::SHUT) {
continue;
}
if ( ignored_wells.find(well->name()) != ignored_wells.end() ) {
wells_on_proc[ wellIter - wells.begin() ] = 0;
continue;
}
if (list_econ_limited.wellShutEconLimited(well->name())) {
continue;
}
std::vector<int> cells_connection_closed;
if (list_econ_limited.anyConnectionClosedForWell(well->name())) {
cells_connection_closed = list_econ_limited.getClosedConnectionsForWell(well->name());
}
{ // COMPDAT handling
// shut completions and open ones stored in this process will have 1 others 0.
for(const auto& completion : well->getCompletions(timeStep)) {
if (completion.getState() == WellCompletion::OPEN) {
int i = completion.getI();
int j = completion.getJ();
int k = completion.getK();
const int* cpgdim = cart_dims;
int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
std::map<int, int>::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx);
if (cgit == cartesian_to_compressed.end()) {
OPM_MESSAGE("****Warning: Cell with i,j,k indices " << i << ' ' << j << ' '
<< k << " not found in grid. The completion will be igored (well = "
<< well->name() << ')');
}
else
{
int cell = cgit->second;
// check if the connection is closed due to economic limits
if (!cells_connection_closed.empty()) {
const bool connection_found = std::find(cells_connection_closed.begin(),
cells_connection_closed.end(), cell)
!= cells_connection_closed.end();
if (connection_found) {
continue;
}
}
PerfData pd;
pd.cell = cell;
{
const Value<double>& transmissibilityFactor = completion.getConnectionTransmissibilityFactorAsValueObject();
const double wellPi = completion.getWellPi();
if (transmissibilityFactor.hasValue()) {
pd.well_index = transmissibilityFactor.getValue();
} else {
double radius = 0.5*completion.getDiameter();
if (radius <= 0.0) {
radius = 0.5*unit::feet;
OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
}
std::array<double, 3> cubical =
WellsManagerDetail::getCubeDim<3>(c2f, begin_face_centroids, cell);
// overwrite dz values calculated in getCubeDim.
if (dz.size() > 0) {
cubical[2] = dz[cell];
}
const double* cell_perm = &permeability[dimensions*dimensions*cell];
pd.well_index =
WellsManagerDetail::computeWellIndex(radius, cubical, cell_perm,
completion.getSkinFactor(),
completion.getDirection(),
ntg[cell]);
}
pd.satnumid = completion.getSatTableId();
pd.well_index *= wellPi;
}
wellperf_data[active_well_index].push_back(pd);
}
} else {
if (completion.getState() != WellCompletion::SHUT) {
OPM_THROW(std::runtime_error, "Completion state: " << WellCompletion::StateEnum2String( completion.getState() ) << " not handled");
}
}
}
}
{ // WELSPECS handling
well_names_to_index[well->name()] = active_well_index;
well_names.push_back(well->name());
{
WellData wd;
wd.reference_bhp_depth = well->getRefDepth( timeStep );
wd.welspecsline = -1;
if (well->isInjector( timeStep ))
wd.type = INJECTOR;
else
wd.type = PRODUCER;
wd.allowCrossFlow = well->getAllowCrossFlow();
well_data.push_back(wd);
}
}
active_well_index++;
}
// Set up reference depths that were defaulted. Count perfs.
const int num_wells = well_data.size();
int num_perfs = 0;
assert (dimensions == 3);
for (int w = 0; w < num_wells; ++w) {
num_perfs += wellperf_data[w].size();
}
// Create the well data structures.
w_ = create_wells(phaseUsage.num_phases, num_wells, num_perfs);
if (!w_) {
OPM_THROW(std::runtime_error, "Failed creating Wells struct.");
}
// Add wells.
for (int w = 0; w < num_wells; ++w) {
const int w_num_perf = wellperf_data[w].size();
std::vector<int> perf_cells (w_num_perf);
std::vector<double> perf_prodind(w_num_perf);
std::vector<int> perf_satnumid(w_num_perf);
for (int perf = 0; perf < w_num_perf; ++perf) {
perf_cells [perf] = wellperf_data[w][perf].cell;
perf_prodind[perf] = wellperf_data[w][perf].well_index;
perf_satnumid[perf] = wellperf_data[w][perf].satnumid;
}
const double* comp_frac = NULL;
// We initialize all wells with a null component fraction,
// and must (for injection wells) overwrite it later.
const int ok =
add_well(well_data[w].type,
well_data[w].reference_bhp_depth,
w_num_perf,
comp_frac,
perf_cells.data(),
perf_prodind.data(),
perf_satnumid.data(),
well_names[w].c_str(),
well_data[w].allowCrossFlow,
w_);
if (!ok) {
OPM_THROW(std::runtime_error,
"Failed adding well "
<< well_names[w]
<< " to Wells data structure.");
}
}
}
template <class C2F, class FC>
WellsManager::
WellsManager(const Opm::EclipseState& eclipseState,
const Opm::Schedule& schedule,
const size_t timeStep,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
int dimensions,
const C2F& cell_to_faces,
FC begin_face_centroids,
const DynamicListEconLimited& list_econ_limited,
bool is_parallel_run,
const std::unordered_set<std::string>& deactivated_wells)
: w_(0), is_parallel_run_(is_parallel_run)
{
init(eclipseState, schedule, timeStep, number_of_cells, global_cell,
cart_dims, dimensions,
cell_to_faces, begin_face_centroids, list_econ_limited, deactivated_wells);
}
/// Construct wells from deck.
template <class C2F, class FC>
void
WellsManager::init(const Opm::EclipseState& eclipseState,
const Opm::Schedule& schedule,
const size_t timeStep,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
int dimensions,
const C2F& cell_to_faces,
FC begin_face_centroids,
const DynamicListEconLimited& list_econ_limited,
const std::unordered_set<std::string>& deactivated_wells)
{
if (dimensions != 3) {
OPM_THROW(std::runtime_error,
"We cannot initialize wells from a deck unless "
"the corresponding grid is 3-dimensional.");
}
if (schedule.numWells() == 0) {
OPM_MESSAGE("No wells specified in Schedule section, "
"initializing no wells");
return;
}
std::map<int,int> cartesian_to_compressed;
setupCompressedToCartesian(global_cell, number_of_cells,
cartesian_to_compressed);
// Obtain phase usage data.
PhaseUsage pu = phaseUsageFromDeck(eclipseState);
// These data structures will be filled in this constructor,
// then used to initialize the Wells struct.
std::vector<std::string> well_names;
std::vector<WellData> well_data;
// For easy lookup:
std::map<std::string, int> well_names_to_index;
auto wells = schedule.getWells(timeStep);
std::vector<int> wells_on_proc;
well_names.reserve(wells.size());
well_data.reserve(wells.size());
typedef GridPropertyAccess::ArrayPolicy::ExtractFromDeck<double> DoubleArray;
typedef GridPropertyAccess::Compressed<DoubleArray, GridPropertyAccess::Tag::NTG> NTGArray;
DoubleArray ntg_glob(eclipseState, "NTG", 1.0);
NTGArray ntg(ntg_glob, global_cell);
const auto& eclGrid = eclipseState.getInputGrid();
// use cell thickness (dz) from eclGrid
// dz overwrites values calculated by WellDetails::getCubeDim
std::vector<double> dz(number_of_cells);
{
std::vector<int> gc = compressedToCartesian(number_of_cells, global_cell);
for (int cell = 0; cell < number_of_cells; ++cell) {
dz[cell] = eclGrid.getCellThicknes(gc[cell]);
}
}
std::vector<double> interleavedPerm;
RockFromDeck::extractInterleavedPermeability(eclipseState,
number_of_cells,
global_cell,
cart_dims,
0.0,
interleavedPerm);
createWellsFromSpecs(wells, timeStep, cell_to_faces,
cart_dims,
begin_face_centroids,
dimensions,
dz,
well_names, well_data, well_names_to_index,
pu, cartesian_to_compressed, interleavedPerm.data(), ntg,
wells_on_proc, deactivated_wells, list_econ_limited);
setupWellControls(wells, timeStep, well_names, pu, wells_on_proc, list_econ_limited);
{
const auto& fieldGroup = schedule.getGroup( "FIELD" );
well_collection_.addField(fieldGroup, timeStep, pu);
const auto& grouptree = schedule.getGroupTree( timeStep );
std::vector< std::string > group_stack = { "FIELD" };
do {
auto parent = group_stack.back();
group_stack.pop_back();
const auto& children = grouptree.children( parent );
group_stack.insert( group_stack.end(), children.begin(), children.end() );
for( const auto& child : children ) {
well_collection_.addGroup( schedule.getGroup( child ), parent, timeStep, pu );
}
} while( !group_stack.empty() );
}
for (size_t i = 0; i < wells_on_proc.size(); ++i) {
// wells_on_proc is a vector of flag to indicate whether a well is on the process
if (wells_on_proc[i]) {
well_collection_.addWell(wells[i], timeStep, pu);
}
}
well_collection_.setWellsPointer(w_);
if (well_collection_.groupControlActive()) {
// here does not consider the well potentials related guide rate setting
setupGuideRates(wells, timeStep, well_data, well_names_to_index);
}
// Debug output.
#define EXTRA_OUTPUT
#ifdef EXTRA_OUTPUT
/*
std::cout << "\t WELL DATA" << std::endl;
for(int i = 0; i< num_wells; ++i) {
std::cout << i << ": " << well_data[i].type << " "
<< well_data[i].control << " " << well_data[i].target
<< std::endl;
}
std::cout << "\n\t PERF DATA" << std::endl;
for(int i=0; i< int(wellperf_data.size()); ++i) {
for(int j=0; j< int(wellperf_data[i].size()); ++j) {
std::cout << i << ": " << wellperf_data[i][j].cell << " "
<< wellperf_data[i][j].well_index << std::endl;
}
}
*/
#endif
}
} // end namespace Opm