opm-core/opm/core/props/pvt/ThermalWaterPvtWrapper.hpp
2015-03-17 12:40:07 +01:00

391 lines
16 KiB
C++

/*
Copyright 2015 Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_THERMAL_WATER_PVT_WRAPPER_HPP
#define OPM_THERMAL_WATER_PVT_WRAPPER_HPP
#include <opm/core/props/pvt/PvtInterface.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <vector>
namespace Opm
{
/// Class which wraps another (i.e., isothermal) PVT object into one which adds
/// temperature dependence of water
class ThermalWaterPvtWrapper : public PvtInterface
{
public:
ThermalWaterPvtWrapper()
{}
/// set the tables which specify the temperature dependence of the water viscosity
void initFromDeck(std::shared_ptr<const PvtInterface> isothermalPvt,
Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclipseState)
{
isothermalPvt_ = isothermalPvt;
watvisctTables_ = 0;
// stuff which we need to get from the PVTW keyword
Opm::DeckKeywordConstPtr pvtwKeyword = deck->getKeyword("PVTW");
int numRegions = pvtwKeyword->size();
pvtwRefPress_.resize(numRegions);
pvtwRefB_.resize(numRegions);
pvtwCompressibility_.resize(numRegions);
pvtwViscosity_.resize(numRegions);
pvtwViscosibility_.resize(numRegions);
for (int regionIdx = 0; regionIdx < numRegions; ++ regionIdx) {
Opm::DeckRecordConstPtr pvtwRecord = pvtwKeyword->getRecord(regionIdx);
pvtwRefPress_[regionIdx] = pvtwRecord->getItem("P_REF")->getSIDouble(0);
pvtwRefB_[regionIdx] = pvtwRecord->getItem("WATER_VOL_FACTOR")->getSIDouble(0);
pvtwViscosity_[regionIdx] = pvtwRecord->getItem("WATER_VISCOSITY")->getSIDouble(0);
pvtwViscosibility_[regionIdx] = pvtwRecord->getItem("WATER_VISCOSIBILITY")->getSIDouble(0);
}
// quantities required for the temperature dependence of the viscosity
// (basically we expect well-behaved VISCREF and WATVISCT keywords.)
if (deck->hasKeyword("VISCREF")) {
watvisctTables_ = &eclipseState->getWatvisctTables();
Opm::DeckKeywordConstPtr viscrefKeyword = deck->getKeyword("VISCREF");
assert(watvisctTables_->size() == numRegions);
assert(viscrefKeyword->size() == numRegions);
viscrefPress_.resize(numRegions);
for (int regionIdx = 0; regionIdx < numRegions; ++ regionIdx) {
Opm::DeckRecordConstPtr viscrefRecord = viscrefKeyword->getRecord(regionIdx);
viscrefPress_[regionIdx] = viscrefRecord->getItem("REFERENCE_PRESSURE")->getSIDouble(0);
}
}
// quantities required for the temperature dependence of the density
if (deck->hasKeyword("WATDENT")) {
DeckKeywordConstPtr watdentKeyword = deck->getKeyword("WATDENT");
assert(watdentKeyword->size() == numRegions);
watdentRefTemp_.resize(numRegions);
watdentCT1_.resize(numRegions);
watdentCT2_.resize(numRegions);
for (int regionIdx = 0; regionIdx < numRegions; ++regionIdx) {
Opm::DeckRecordConstPtr watdentRecord = watdentKeyword->getRecord(regionIdx);
watdentRefTemp_[regionIdx] = watdentRecord->getItem("REFERENCE_TEMPERATURE")->getSIDouble(0);
watdentCT1_[regionIdx] = watdentRecord->getItem("EXPANSION_COEFF_LINEAR")->getSIDouble(0);
watdentCT2_[regionIdx] = watdentRecord->getItem("EXPANSION_COEFF_QUADRATIC")->getSIDouble(0);
}
}
}
virtual void mu(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* z,
double* output_mu) const
{
if (watvisctTables_)
// TODO: temperature dependence for viscosity depending on z
OPM_THROW(std::runtime_error,
"temperature dependent viscosity as a function of z "
"is not yet implemented!");
// compute the isothermal viscosity
isothermalPvt_->mu(n, pvtRegionIdx, p, T, z, output_mu);
}
virtual void mu(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* r,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
// compute the isothermal viscosity and its derivatives
isothermalPvt_->mu(n, pvtRegionIdx, p, T, r, output_mu, output_dmudp, output_dmudr);
if (!watvisctTables_)
// isothermal case
return;
// temperature dependence
for (int i = 0; i < n; ++i) {
int tableIdx = getTableIndex_(pvtRegionIdx, i);
// calculate the viscosity of the isothermal keyword for the reference
// pressure given by the VISCREF keyword.
double x = -pvtwViscosibility_[tableIdx]*(viscrefPress_[tableIdx] - pvtwRefPress_[tableIdx]);
double muRef = pvtwViscosity_[tableIdx]/(1.0 + x + 0.5*x*x);
// compute the viscosity deviation due to temperature
double muWatvisct = (*watvisctTables_)[tableIdx].evaluate("Viscosity", T[i]);
double alpha = muWatvisct/muRef;
output_mu[i] *= alpha;
output_dmudp[i] *= alpha;
output_dmudr[i] *= alpha;
// TODO (?): derivative of viscosity w.r.t. temperature.
}
}
virtual void mu(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* r,
const PhasePresence* cond,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
// compute the isothermal viscosity and its derivatives
isothermalPvt_->mu(n, pvtRegionIdx, p, T, r, cond, output_mu, output_dmudp, output_dmudr);
if (!watvisctTables_)
// isothermal case
return;
// temperature dependence
for (int i = 0; i < n; ++i) {
int tableIdx = getTableIndex_(pvtRegionIdx, i);
// calculate the viscosity of the isothermal keyword for the reference
// pressure given by the VISCREF keyword.
double x = -pvtwViscosibility_[tableIdx]*(viscrefPress_[tableIdx] - pvtwRefPress_[tableIdx]);
double muRef = pvtwViscosity_[tableIdx]/(1.0 + x + 0.5*x*x);
// compute the viscosity deviation due to temperature
double muWatvisct = (*watvisctTables_)[tableIdx].evaluate("Viscosity", T[i]);
double alpha = muWatvisct/muRef;
output_mu[i] *= alpha;
output_dmudp[i] *= alpha;
output_dmudr[i] *= alpha;
// TODO (?): derivative of viscosity w.r.t. temperature.
}
}
virtual void B(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* z,
double* output_B) const
{
if (watdentRefTemp_.empty()) {
// isothermal case
isothermalPvt_->B(n, pvtRegionIdx, p, T, z, output_B);
return;
}
// This changes how the water density depends on pressure compared to what's
// used for the PVTW keyword, but it seems to be what Eclipse does. For
// details, see the documentation for the WATDENT keyword in the Eclipse RM.
for (int i = 0; i < n; ++i) {
int tableIdx = getTableIndex_(pvtRegionIdx, i);
double BwRef = pvtwRefB_[tableIdx];
double TRef = watdentRefTemp_[tableIdx];
double X = pvtwCompressibility_[tableIdx]*(p[i] - pvtwRefPress_[tableIdx]);
double cT1 = watdentCT1_[tableIdx];
double cT2 = watdentCT2_[tableIdx];
double Y = T[i] - TRef;
double Bw = BwRef*(1 - X)*(1 + cT1*Y + cT2*Y*Y);
output_B[i] = Bw;
}
}
virtual void dBdp(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* z,
double* output_B,
double* output_dBdp) const
{
if (watdentRefTemp_.empty()) {
// isothermal case
isothermalPvt_->dBdp(n, pvtRegionIdx, p, T, z, output_B, output_dBdp);
return;
}
// This changes how the water density depends on pressure. This is awkward,
// but it seems to be what Eclipse does. See the documentation for the
// WATDENT keyword in the Eclipse RM
for (int i = 0; i < n; ++i) {
int tableIdx = getTableIndex_(pvtRegionIdx, i);
double BwRef = pvtwRefB_[tableIdx];
double TRef = watdentRefTemp_[tableIdx];
double X = pvtwCompressibility_[tableIdx]*(p[i] - pvtwRefPress_[tableIdx]);
double cT1 = watdentCT1_[tableIdx];
double cT2 = watdentCT2_[tableIdx];
double Y = T[i] - TRef;
double Bw = BwRef*(1 - X)*(1 + cT1*Y + cT2*Y*Y);
output_B[i] = Bw;
}
std::fill(output_dBdp, output_dBdp + n, 0.0);
}
virtual void b(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* r,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
if (watdentRefTemp_.empty()) {
// isothermal case
isothermalPvt_->b(n, pvtRegionIdx, p, T, r, output_b, output_dbdp, output_dbdr);
return;
}
// This changes how the water density depends on pressure. This is awkward,
// but it seems to be what Eclipse does. See the documentation for the
// WATDENT keyword in the Eclipse RM
for (int i = 0; i < n; ++i) {
int tableIdx = getTableIndex_(pvtRegionIdx, i);
double BwRef = pvtwRefB_[tableIdx];
double TRef = watdentRefTemp_[tableIdx];
double X = pvtwCompressibility_[tableIdx]*(p[i] - pvtwRefPress_[tableIdx]);
double cT1 = watdentCT1_[tableIdx];
double cT2 = watdentCT2_[tableIdx];
double Y = T[i] - TRef;
double Bw = BwRef*(1 - X)*(1 + cT1*Y + cT2*Y*Y);
output_b[i] = 1.0/Bw;
}
std::fill(output_dbdp, output_dbdp + n, 0.0);
std::fill(output_dbdr, output_dbdr + n, 0.0);
}
virtual void b(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* r,
const PhasePresence* cond,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
if (watdentRefTemp_.empty()) {
// isothermal case
isothermalPvt_->b(n, pvtRegionIdx, p, T, r, cond, output_b, output_dbdp, output_dbdr);
return;
}
// This changes pressure dependence of the water density, but it seems to be
// what Eclipse does. See the documentation for the WATDENT keyword in the
// Eclipse RM
for (int i = 0; i < n; ++i) {
int tableIdx = getTableIndex_(pvtRegionIdx, i);
double BwRef = pvtwRefB_[tableIdx];
double TRef = watdentRefTemp_[tableIdx];
double X = pvtwCompressibility_[tableIdx]*(p[i] - pvtwRefPress_[tableIdx]);
double cT1 = watdentCT1_[tableIdx];
double cT2 = watdentCT2_[tableIdx];
double Y = T[i] - TRef;
double Bw = BwRef*(1 - X)*(1 + cT1*Y + cT2*Y*Y);
output_b[i] = 1.0/Bw;
}
std::fill(output_dbdp, output_dbdp + n, 0.0);
std::fill(output_dbdr, output_dbdr + n, 0.0);
}
virtual void rsSat(const int n,
const int* pvtRegionIdx,
const double* p,
double* output_rsSat,
double* output_drsSatdp) const
{
isothermalPvt_->rsSat(n, pvtRegionIdx, p, output_rsSat, output_drsSatdp);
}
virtual void rvSat(const int n,
const int* pvtRegionIdx,
const double* p,
double* output_rvSat,
double* output_drvSatdp) const
{
isothermalPvt_->rvSat(n, pvtRegionIdx, p, output_rvSat, output_drvSatdp);
}
virtual void R(const int n,
const int* pvtRegionIdx,
const double* p,
const double* z,
double* output_R) const
{
isothermalPvt_->R(n, pvtRegionIdx, p, z, output_R);
}
virtual void dRdp(const int n,
const int* pvtRegionIdx,
const double* p,
const double* z,
double* output_R,
double* output_dRdp) const
{
isothermalPvt_->dRdp(n, pvtRegionIdx, p, z, output_R, output_dRdp);
}
private:
int getTableIndex_(const int* pvtTableIdx, int cellIdx) const
{
if (!pvtTableIdx)
return 0;
return pvtTableIdx[cellIdx];
}
// the PVT propertied for the isothermal case
std::shared_ptr<const PvtInterface> isothermalPvt_;
// The PVT properties needed for temperature dependence. We need to store one
// value per PVT region.
std::vector<double> viscrefPress_;
std::vector<double> watdentRefTemp_;
std::vector<double> watdentCT1_;
std::vector<double> watdentCT2_;
std::vector<double> pvtwRefPress_;
std::vector<double> pvtwRefB_;
std::vector<double> pvtwCompressibility_;
std::vector<double> pvtwViscosity_;
std::vector<double> pvtwViscosibility_;
const std::vector<Opm::WatvisctTable>* watvisctTables_;
};
}
#endif