opm-core/examples/compute_tof.cpp
2015-08-19 13:12:14 +02:00

350 lines
13 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/SparseTable.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/props/IncompPropertiesSinglePhase.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/core/pressure/IncompTpfaSinglePhase.hpp>
#include <opm/core/flowdiagnostics/FlowDiagnostics.hpp>
#include <opm/core/flowdiagnostics/TofReorder.hpp>
#include <opm/core/flowdiagnostics/TofDiscGalReorder.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseMode.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <memory>
#include <boost/filesystem.hpp>
#include <algorithm>
#include <iostream>
#include <vector>
#include <numeric>
namespace
{
const static double alq_invalid = -std::numeric_limits<double>::max();
const static double vfp_invalid = -std::numeric_limits<int>::max();
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
void buildTracerheadsFromWells(const Wells& wells,
const bool trace_injectors,
Opm::SparseTable<int>& tracerheads)
{
tracerheads.clear();
const int num_wells = wells.number_of_wells;
const WellType wanted_type = trace_injectors ? INJECTOR : PRODUCER;
for (int w = 0; w < num_wells; ++w) {
if (wells.type[w] != wanted_type) {
continue;
}
tracerheads.appendRow(wells.well_cells + wells.well_connpos[w],
wells.well_cells + wells.well_connpos[w + 1]);
}
}
void setBhpWells(Wells& wells)
{
const int num_wells = wells.number_of_wells;
for (int w = 0; w < num_wells; ++w) {
WellControls* ctrl = wells.ctrls[w];
const double target = (wells.type[w] == INJECTOR) ? 200*Opm::unit::barsa : 100*Opm::unit::barsa;
const double distr[3] = { 1.0, 0.0, 0.0 }; // Large enough irrespective of #phases.
well_controls_add_new(BHP, target,
alq_invalid, vfp_invalid,
distr, ctrl);
well_controls_set_current(ctrl, well_controls_get_num(ctrl) - 1);
}
}
void computeTransportSourceSinglePhase(const UnstructuredGrid& grid,
const std::vector<double>& src,
const std::vector<double>& faceflux,
const double inflow_frac,
const Wells* wells,
const std::vector<double>& well_perfrates,
std::vector<double>& transport_src)
{
using namespace Opm;
int nc = grid.number_of_cells;
transport_src.resize(nc);
// Source term and boundary contributions.
for (int c = 0; c < nc; ++c) {
transport_src[c] = 0.0;
transport_src[c] += src[c] > 0.0 ? inflow_frac*src[c] : src[c];
for (int hf = grid.cell_facepos[c]; hf < grid.cell_facepos[c + 1]; ++hf) {
int f = grid.cell_faces[hf];
const int* f2c = &grid.face_cells[2*f];
double bdy_influx = 0.0;
if (f2c[0] == c && f2c[1] == -1) {
bdy_influx = -faceflux[f];
} else if (f2c[0] == -1 && f2c[1] == c) {
bdy_influx = faceflux[f];
}
if (bdy_influx != 0.0) {
transport_src[c] += bdy_influx > 0.0 ? inflow_frac*bdy_influx : bdy_influx;
}
}
}
// Well contributions.
if (wells) {
const int nw = wells->number_of_wells;
for (int w = 0; w < nw; ++w) {
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
const int perf_cell = wells->well_cells[perf];
double perf_rate = well_perfrates[perf];
if (perf_rate > 0.0) {
// perf_rate is a total inflow rate, we want a water rate.
if (wells->type[w] != INJECTOR) {
std::cout << "**** Warning: crossflow in well "
<< w << " perf " << perf - wells->well_connpos[w]
<< " ignored. Rate was "
<< perf_rate/Opm::unit::day << " m^3/day." << std::endl;
perf_rate = 0.0;
} else {
perf_rate *= inflow_frac;
}
}
transport_src[perf_cell] += perf_rate;
}
}
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
std::cout << "\n================ Test program for incompressible tof computations ===============\n\n";
parameter::ParameterGroup param(argc, argv);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// Read the deck.
std::string deck_filename = param.get<std::string>("deck_filename");
Parser parser;
ParseMode parseMode;
DeckConstPtr deck = parser.parseFile(deck_filename , parseMode);
EclipseStateConstPtr eclipseState = std::make_shared<EclipseState>(deck , parseMode);
// Grid init
GridManager grid_manager(deck);
const UnstructuredGrid& grid = *grid_manager.c_grid();
// Rock and fluid init
IncompPropertiesSinglePhase props(deck, eclipseState, grid);
// Wells init.
WellsManager wells_manager(eclipseState , 0, grid, props.permeability());
std::shared_ptr<Wells> my_wells(clone_wells(wells_manager.c_wells()), destroy_wells);
setBhpWells(*my_wells);
const Wells& wells = *my_wells;
// Pore volume.
std::vector<double> porevol;
computePorevolume(grid, props.porosity(), porevol);
int num_cells = grid.number_of_cells;
// Linear solver.
LinearSolverFactory linsolver(param);
// Pressure solver.
Opm::IncompTpfaSinglePhase psolver(grid, props, linsolver, wells);
// Choice of tof solver.
bool use_dg = param.getDefault("use_dg", false);
bool use_multidim_upwind = false;
// Need to initialize dg solver here, since it uses parameters now.
std::unique_ptr<Opm::TofDiscGalReorder> dg_solver;
if (use_dg) {
dg_solver.reset(new Opm::TofDiscGalReorder(grid, param));
} else {
use_multidim_upwind = param.getDefault("use_multidim_upwind", false);
}
bool compute_tracer = param.getDefault("compute_tracer", false);
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
std::ofstream epoch_os;
std::string output_dir;
if (output) {
output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
param.writeParam(output_dir + "/simulation.param");
}
// Check if we have misspelled anything
warnIfUnusedParams(param);
// Main solvers.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch total_timer;
total_timer.start();
std::cout << "\n\n================ Starting main solvers ===============" << std::endl;
// Solve pressure.
std::vector<double> press;
std::vector<double> flux;
std::vector<double> bhp;
std::vector<double> wellrates;
pressure_timer.start();
psolver.solve(press, flux, bhp, wellrates);
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
// Process transport sources (to include bdy terms and well flows).
std::vector<double> src(num_cells, 0.0);
std::vector<double> transport_src;
computeTransportSourceSinglePhase(grid, src, flux, 1.0,
&wells, wellrates, transport_src);
std::string tof_filenames[2] = { output_dir + "/ftof.txt", output_dir + "/btof.txt" };
std::string tracer_filenames[2] = { output_dir + "/ftracer.txt", output_dir + "/btracer.txt" };
std::vector<double> tracers[2];
// We compute tof twice, direction == 0 is from injectors, 1 is from producers.
for (int direction = 0; direction < 2; ++direction) {
// Turn direction of flux and flip source terms if starting from producers.
if (direction == 1) {
for (auto it = flux.begin(); it != flux.end(); ++it) {
(*it) = -(*it);
}
for (auto it = transport_src.begin(); it != transport_src.end(); ++it) {
(*it) = -(*it);
}
}
// Solve time-of-flight.
transport_timer.start();
std::vector<double> tof;
std::vector<double> tracer;
Opm::SparseTable<int> tracerheads;
if (compute_tracer) {
buildTracerheadsFromWells(wells, direction == 0, tracerheads);
}
if (use_dg) {
if (compute_tracer) {
dg_solver->solveTofTracer(flux.data(), porevol.data(), transport_src.data(), tracerheads, tof, tracer);
} else {
dg_solver->solveTof(flux.data(), porevol.data(), transport_src.data(), tof);
}
} else {
Opm::TofReorder tofsolver(grid, use_multidim_upwind);
if (compute_tracer) {
tofsolver.solveTofTracer(flux.data(), porevol.data(), transport_src.data(), tracerheads, tof, tracer);
} else {
tofsolver.solveTof(flux.data(), porevol.data(), transport_src.data(), tof);
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
if (direction == 0) {
std::cout << "Forward ";
} else {
std::cout << "Backward ";
}
std::cout << "time-of-flight/tracer solve took: " << tt << " seconds." << std::endl;
ttime += tt;
// Output.
if (output) {
std::string tof_filename = tof_filenames[direction];
std::ofstream tof_stream(tof_filename.c_str());
tof_stream.precision(16);
std::copy(tof.begin(), tof.end(), std::ostream_iterator<double>(tof_stream, "\n"));
if (compute_tracer) {
std::string tracer_filename = tracer_filenames[direction];
std::ofstream tracer_stream(tracer_filename.c_str());
tracer_stream.precision(16);
const int nt = tracer.size()/num_cells;
for (int i = 0; i < nt*num_cells; ++i) {
tracer_stream << tracer[i] << (((i + 1) % nt == 0) ? '\n' : ' ');
}
tracers[direction] = tracer;
}
}
}
// If we have tracers, compute well pairs.
if (compute_tracer) {
auto wp = Opm::computeWellPairs(wells, porevol, tracers[0], tracers[1]);
std::string wellpair_filename = output_dir + "/wellpairs.txt";
std::ofstream wellpair_stream(wellpair_filename.c_str());
const int nwp = wp.size();
for (int ii = 0; ii < nwp; ++ii) {
wellpair_stream << std::get<0>(wp[ii]) << ' ' << std::get<1>(wp[ii]) << ' ' << std::get<2>(wp[ii]) << '\n';
}
}
total_timer.stop();
std::cout << "\n\n================ End of simulation ===============\n"
<< "Total time taken: " << total_timer.secsSinceStart()
<< "\n Pressure time: " << ptime
<< "\n Tof/tracer time: " << ttime << std::endl;
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}