opm-core/opm/core/simulator/TimeStepControl.hpp
Robert K fbaa790e70 AdaptiveSimulatorTimer: -improvement in time step adjustment near end of time interval
-max time step parameter

PIDTimeStepControl --> TimeStepControl:
- added simple iteration count time step control
- bug fix in PIDAndIterationCountTimeStepControl

AdaptiveTimeStepping: apply the above changes.
2015-02-06 13:59:50 +01:00

140 lines
6.0 KiB
C++

/*
Copyright 2014 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TIMESTEPCONTROL_HEADER_INCLUDED
#define OPM_TIMESTEPCONTROL_HEADER_INCLUDED
#include <vector>
#include <opm/core/simulator/TimeStepControlInterface.hpp>
namespace Opm
{
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
///
/// A simple iteration count based adaptive time step control.
//
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
class SimpleIterationCountTimeStepControl : public TimeStepControlInterface
{
public:
/// \brief constructor
/// \param target_iterations number of desired iterations (e.g. Newton iterations) per time step in one time step
// \param decayrate decayrate of time step when target iterations are not met (should be <= 1)
// \param growthrate growthrate of time step when target iterations are not met (should be >= 1)
/// \param verbose if true get some output (default = false)
SimpleIterationCountTimeStepControl( const int target_iterations,
const double decayrate,
const double growthrate,
const bool verbose = false);
/// \brief \copydoc TimeStepControlInterface::computeTimeStepSize
double computeTimeStepSize( const double dt, const int iterations, const SimulatorState& state ) const;
protected:
const int target_iterations_;
const double decayrate_;
const double growthrate_;
const bool verbose_;
};
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
///
/// PID controller based adaptive time step control as suggested in:
/// Turek and Kuzmin. Algebraic Flux Correction III. Incompressible Flow Problems. Uni Dortmund.
///
/// See also:
/// D. Kuzmin and S.Turek. Numerical simulation of turbulent bubbly flows. Techreport Uni Dortmund. 2004
///
/// and the original article:
/// Valli, Coutinho, and Carey. Adaptive Control for Time Step Selection in Finite Element
/// Simulation of Coupled Viscous Flow and Heat Transfer. Proc of the 10th
/// International Conference on Numerical Methods in Fluids. 1998.
///
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
class PIDTimeStepControl : public TimeStepControlInterface
{
public:
/// \brief constructor
/// \param tol tolerance for the relative changes of the numerical solution to be accepted
/// in one time step (default is 1e-3)
/// \param verbose if true get some output (default = false)
PIDTimeStepControl( const double tol = 1e-3, const bool verbose = false );
/// \brief \copydoc TimeStepControlInterface::initialize
void initialize( const SimulatorState& state );
/// \brief \copydoc TimeStepControlInterface::computeTimeStepSize
double computeTimeStepSize( const double dt, const int /* iterations */, const SimulatorState& state ) const;
protected:
// return inner product for given container, here std::vector
template <class Iterator>
double euclidianNormSquared( Iterator it, const Iterator end ) const
{
double product = 0.0 ;
for( ; it != end; ++it ) {
product += ( *it * *it );
}
return product;
}
protected:
mutable std::vector<double> p0_;
mutable std::vector<double> sat0_;
const double tol_;
mutable std::vector< double > errors_;
const bool verbose_;
};
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
///
/// PID controller based adaptive time step control as above that also takes
/// an target iteration into account.
//
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
class PIDAndIterationCountTimeStepControl : public PIDTimeStepControl
{
typedef PIDTimeStepControl BaseType;
public:
/// \brief constructor
/// \param target_iterations number of desired iterations per time step
/// \param tol tolerance for the relative changes of the numerical solution to be accepted
/// in one time step (default is 1e-3)
// \param maxgrowth max growth factor for new time step in relation of old time step (default = 3.0)
/// \param verbose if true get some output (default = false)
PIDAndIterationCountTimeStepControl( const int target_iterations = 20,
const double tol = 1e-3,
const double maxgrowth = 3.0,
const bool verbose = false);
/// \brief \copydoc TimeStepControlInterface::computeTimeStepSize
double computeTimeStepSize( const double dt, const int iterations, const SimulatorState& state ) const;
protected:
const int target_iterations_;
const double maxgrowth_;
};
} // end namespace Opm
#endif