opm-core/examples/wells_example.cpp
Bård Skaflestad 794673d7b4 Fix null-pointer dereference during well construction
The three-argument WellsManager constructor needs access to the real
permeability field lest a null-pointer dereference result when the
problem actually contains any wells.
2013-09-25 15:11:14 +02:00

137 lines
5.2 KiB
C++

#include "config.h"
#include <iostream>
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/simulator/initState.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/pressure/IncompTpfa.hpp>
#include <opm/core/props/IncompPropertiesFromDeck.hpp>
#include <opm/core/wells.h>
#include <opm/core/grid.h>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
int main(int argc, char** argv)
try
{
using namespace Opm::parameter;
using namespace Opm;
ParameterGroup parameters(argc, argv, false);
std::string file_name = parameters.getDefault<std::string > ("inputdeck", "data.data");
SimulatorTimer simtimer;
simtimer.init(parameters);
// Read input file
EclipseGridParser parser(file_name);
std::cout << "Done!" << std::endl;
// Setup grid
GridManager grid(parser);
// Define rock and fluid properties
IncompPropertiesFromDeck incomp_properties(parser, *grid.c_grid());
RockCompressibility rock_comp(parser);
// Finally handle the wells
WellsManager wells(parser, *grid.c_grid(), incomp_properties.permeability());
double gravity[3] = {0.0, 0.0, parameters.getDefault<double>("gravity", 0.0)};
Opm::LinearSolverFactory linsolver(parameters);
double nl_pressure_residual_tolerance = 1e-8;
double nl_pressure_change_tolerance = 0.0;
int nl_pressure_maxiter = 100;
if (rock_comp.isActive()) {
nl_pressure_residual_tolerance = parameters.getDefault("nl_pressure_residual_tolerance", 1e-8);
nl_pressure_change_tolerance = parameters.getDefault("nl_pressure_change_tolerance", 1.0); // in Pascal
nl_pressure_maxiter = parameters.getDefault("nl_pressure_maxiter", 10);
}
std::vector<double> src;
Opm::FlowBCManager bcs;
// EXPERIMENT_ISTL
IncompTpfa pressure_solver(*grid.c_grid(), incomp_properties, &rock_comp, linsolver,
nl_pressure_residual_tolerance, nl_pressure_change_tolerance, nl_pressure_maxiter,
gravity, wells.c_wells(), src, bcs.c_bcs());
std::vector<int> all_cells;
for (int i = 0; i < grid.c_grid()->number_of_cells; i++) {
all_cells.push_back(i);
}
Opm::TwophaseState state;
initStateFromDeck(*grid.c_grid(), incomp_properties, parser, gravity[2], state);
Opm::WellState well_state;
well_state.init(wells.c_wells(), state);
pressure_solver.solve(simtimer.currentStepLength(), state, well_state);
const int np = incomp_properties.numPhases();
std::vector<double> fractional_flows(grid.c_grid()->number_of_cells*np, 0.0);
computeFractionalFlow(incomp_properties, all_cells, state.saturation(), fractional_flows);
// This will be refactored into a separate function once done
std::vector<double> well_resflows(wells.c_wells()->number_of_wells*np, 0.0);
computePhaseFlowRatesPerWell(*wells.c_wells(), well_state.perfRates(), fractional_flows, well_resflows);
// We approximate (for _testing_ that resflows = surfaceflows)
for (int wc_iter = 0; wc_iter < 10 && !wells.conditionsMet(well_state.bhp(), well_resflows, well_resflows); ++wc_iter) {
std::cout << "Conditions not met for well, trying again" << std::endl;
pressure_solver.solve(simtimer.currentStepLength(), state, well_state);
std::cout << "Solved" << std::endl;
computePhaseFlowRatesPerWell(*wells.c_wells(), well_state.perfRates(), fractional_flows, well_resflows);
}
#if 0
std::vector<double> porevol;
computePorevolume(*grid->c_grid(), incomp_properties, porevol);
TwophaseFluid fluid(incomp_properties);
TransportModel model(fluid, *grid->c_grid(), porevol, gravity[2], true);
TransportSolver tsolver(model);
TransportSource* tsrc = create_transport_source(2, 2);
double ssrc[] = {1.0, 0.0};
double ssink[] = {0.0, 1.0};
double zdummy[] = {0.0, 0.0};
{
int well_cell_index = 0;
for (int well = 0; well < wells.c_wells()->number_of_wells; ++well) {
for (int cell = wells.c_wells()->well_connpos[well]; cell < wells.c_wells()->well_connpos[well + 1]; ++cell) {
if (well_rate_per_cell[well_cell_index] > 0.0) {
append_transport_source(well_cell_index, 2, 0,
well_rate_per_cell[well_cell_index], ssrc, zdummy, tsrc);
} else if (well_rate_per_cell[well_cell_index] < 0.0) {
append_transport_source(well_cell_index, 2, 0,
well_rate_per_cell[well_cell_index], ssink, zdummy, tsrc);
}
}
}
}
tsolver.solve(*grid->c_grid(), tsrc, stepsize, ctrl, state, linsolve, rpt);
Opm::computeInjectedProduced(*props, state.saturation(), src, stepsize, injected, produced);
#endif
return 0;
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}